1
|
Liu Z, Zhang Z, Liu Y, Mei Y, Feng E, Liu Y, Zheng T, Chen J, Zhang S, Tian Y. Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals. Angew Chem Int Ed Engl 2022; 61:e202111630. [PMID: 35224847 DOI: 10.1002/anie.202111630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Developing a novel tool capable of real-time monitoring and simultaneous quantitation of multiple molecules in mitochondria across the whole brain of freely moving animals is the key bottleneck for understanding the physiological and pathological roles that mitochondria play in the brain events. Here we built a Raman fiber photometry, and created a highly selective non-metallic Raman probe based on the triple-recognition strategies of chemical reaction, charge transfer, and characteristic fingerprint peaks, for tracking and simultaneous quantitation of mitochondrial O2 .- , Ca2+ and pH at the same location in six brain regions of free-moving animal upon hypoxia. It was found that mitochondrial O2 .- , Ca2+ and pH changed from superficial to deep brain regions upon hypoxia. It was discovered that hypoxia-induced mitochondrial O2 .- burst was regulated by ASIC1a, leading to mitochondrial Ca2+ overload and acidification. Furthermore, we found the overload of mitochondrial Ca2+ was mostly attributed to the influx of extracellular Ca2+ .
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhonghui Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yuxiao Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
2
|
Liu Z, Zhang Z, Liu Y, Mei Y, Feng E, Liu Y, Zheng T, Chen J, Zhang S, Tian Y. Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhonghui Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yuxiao Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
- State Key Laboratory of Precision Spectroscopy East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
3
|
Wang Y, Ewing A. Electrochemical Quantification of Neurotransmitters in Single Live Cell Vesicles Shows Exocytosis is Predominantly Partial. Chembiochem 2021; 22:807-813. [PMID: 33174683 PMCID: PMC7984156 DOI: 10.1002/cbic.202000622] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/02/2020] [Indexed: 12/18/2022]
Abstract
Exocytosis plays an essential role in the communication between cells in the nervous system. Understanding the regulation of neurotransmitter release during exocytosis and the amount of neurotransmitter content that is stored in vesicles is of importance, as it provides fundamental insights to understand how the brain works and how neurons elicit a certain behavior. In this minireview, we summarize recent progress in amperometric measurements for monitoring exocytosis in single cells and electrochemical cytometry measurements of vesicular neurotransmitter content in individual vesicles. Important steps have increased our understanding of the different mechanisms of exocytosis. Increasing evidence is firmly establishing that partial release is the primary mechanism of release in multiple cell types.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
4
|
Ranjbari E, Taleat Z, Mapar M, Aref M, Dunevall J, Ewing A. Direct Measurement of Total Vesicular Catecholamine Content with Electrochemical Microwell Arrays. Anal Chem 2020; 92:11325-11331. [PMID: 32692153 DOI: 10.1021/acs.analchem.0c02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have designed and fabricated a microwell array chip (MWAC) to trap and detect the entire content of individual vesicles after disruption of the vesicular membrane by an applied electrical potential. To understand the mechanism of vesicle impact electrochemical cytometry (VIEC) in microwells, we simulated the rupture of the vesicles and subsequent diffusion of entrapped analytes. Two possibilities were tested: (i) the vesicle opens toward the electrode, and (ii) the vesicle opens away from the electrode. These two possibilities were simulated in the different microwells with varied depth and width. Experimental VIEC measurements of the number of molecules for each vesicle in the MWAC were compared to VIEC on a gold microdisk electrode as a control, and the quantified catecholamines between these two techniques was the same. We observed a prespike foot in a significant number of events (∼20%) and argue this supports the hypothesis that the vesicles rupture toward the electrode surface with a more complex mechanism including the formation of a stable pore intermediate. This study not only confirms that in standard VIEC experiments the whole content of the vesicle is oxidized and quantified at the surface of the microdisk electrode but actively verifies that the adsorbed vesicle on the surface of the electrode forms a pore in the vicinity of the electrode rather than away from it. The fabricated MWAC promotes our ability to quantify the content of vesicles accurately, which is fundamentally important in bioanalysis of the vesicles.
Collapse
Affiliation(s)
- Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Zahra Taleat
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mokhtar Mapar
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Mohaddeseh Aref
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Thomen A, Najafinobar N, Penen F, Kay E, Upadhyay PP, Li X, Phan NTN, Malmberg P, Klarqvist M, Andersson S, Kurczy ME, Ewing AG. Subcellular Mass Spectrometry Imaging and Absolute Quantitative Analysis across Organelles. ACS NANO 2020; 14:4316-4325. [PMID: 32239916 PMCID: PMC7199216 DOI: 10.1021/acsnano.9b09804] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/02/2020] [Indexed: 05/22/2023]
Abstract
Mass spectrometry imaging is a field that promises to become a mainstream bioanalysis technology by allowing the combination of single-cell imaging and subcellular quantitative analysis. The frontier of single-cell imaging has advanced to the point where it is now possible to compare the chemical contents of individual organelles in terms of raw or normalized ion signal. However, to realize the full potential of this technology, it is necessary to move beyond this concept of relative quantification. Here we present a nanoSIMS imaging method that directly measures the absolute concentration of an organelle-associated, isotopically labeled, pro-drug directly from a mass spectrometry image. This is validated with a recently developed nanoelectrochemistry method for single organelles. We establish a limit of detection based on the number of isotopic labels used and the volume of the organelle of interest, also offering this calculation as a web application. This approach allows subcellular quantification of drugs and metabolites, an overarching and previously unmet goal in cell science and pharmaceutical development.
Collapse
Affiliation(s)
- Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| | - Neda Najafinobar
- Medicinal
Chemistry, Research and Early Development, Respiratory, Inflammation,
and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Florent Penen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, 412 96, Sweden
| | - Emma Kay
- Bioscience,
Research and Early Development, Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Pratik P. Upadhyay
- Pharmaceutical
Technolgy and Development, AstraZeneca R&D, Gothenburg, 430 52, Sweden
| | - Xianchan Li
- Center
for Imaging and Systems Biology, College of Life and Environmental
Sciences, Minzu University of China, Beijing, 100081, China
| | - Nhu T. N. Phan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, 412 96, Sweden
| | - Magnus Klarqvist
- Early
Product Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, 431 50, Sweden
| | - Shalini Andersson
- New Modalities,
Discovery Sciences, R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Michael E. Kurczy
- DMPK,
Research and Early Development, Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| |
Collapse
|
6
|
Larsson A, Majdi S, Oleinick A, Svir I, Dunevall J, Amatore C, Ewing AG. Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Larsson
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 412 96 Gothenburg Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 412 96 Gothenburg Sweden
| | - Alexander Oleinick
- CNRS, Ecole Normale Superieure—PSL research UniversitySorbonne University UMR 8640 “PASTEUR”Departement de Chimie 24 rue Lhomond 75005 Paris France
| | - Irina Svir
- CNRS, Ecole Normale Superieure—PSL research UniversitySorbonne University UMR 8640 “PASTEUR”Departement de Chimie 24 rue Lhomond 75005 Paris France
| | - Johan Dunevall
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 412 96 Gothenburg Sweden
| | - Christian Amatore
- CNRS, Ecole Normale Superieure—PSL research UniversitySorbonne University UMR 8640 “PASTEUR”Departement de Chimie 24 rue Lhomond 75005 Paris France
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen University 361005 Xiamen China
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 412 96 Gothenburg Sweden
| |
Collapse
|
7
|
Larsson A, Majdi S, Oleinick A, Svir I, Dunevall J, Amatore C, Ewing AG. Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angew Chem Int Ed Engl 2020; 59:6711-6714. [PMID: 31967714 DOI: 10.1002/anie.201914564] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 11/07/2022]
Abstract
Since the early work of Bernard Katz, the process of cellular chemical communication through exocytosis, quantal release, has been considered to be all or none. Recent evidence has shown exocytosis to be partial or "subquantal" at single-cell model systems, but there is a need to understand this at communicating nerve cells. Partial release allows nerve cells to control the signal at the site of release during individual events, for which the smaller the fraction released, the greater the range of regulation. Herein, we show that the fraction of the vesicular octopamine content released from a living Drosophila larval neuromuscular neuron is very small. The percentage of released molecules was found to be only 4.5 % for simple events and 10.7 % for complex (i.e., oscillating or flickering) events. This large content, combined with partial release controlled by fluctuations of the fusion pore, offers presynaptic plasticity that can be widely regulated.
Collapse
Affiliation(s)
- Anna Larsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Alexander Oleinick
- CNRS, Ecole Normale Superieure-PSL research University, Sorbonne University UMR 8640 "PASTEUR", Departement de Chimie, 24 rue Lhomond, 75005, Paris, France
| | - Irina Svir
- CNRS, Ecole Normale Superieure-PSL research University, Sorbonne University UMR 8640 "PASTEUR", Departement de Chimie, 24 rue Lhomond, 75005, Paris, France
| | - Johan Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Christian Amatore
- CNRS, Ecole Normale Superieure-PSL research University, Sorbonne University UMR 8640 "PASTEUR", Departement de Chimie, 24 rue Lhomond, 75005, Paris, France
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
| |
Collapse
|
8
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
9
|
Shin M, Copeland JM, Venton BJ. Drosophila as a Model System for Neurotransmitter Measurements. ACS Chem Neurosci 2018; 9:1872-1883. [PMID: 29411967 DOI: 10.1021/acschemneuro.7b00456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila melanogaster, the fruit fly, is an important, simple model organism for studying the effects of genetic mutations on neuronal activity and behavior. Biologists use Drosophila for neuroscience studies because of its genetic tractability, complex behaviors, well-known and simple neuroanatomy, and many orthologues to human genes. Neurochemical measurements in Drosophila are challenging due to the small size of the central nervous system. Recently, methods have been developed to measure real-time neurotransmitter release and clearance in both larvae and adults using electrochemistry. These studies have characterized dopamine, serotonin, and octopamine release in both wild type and genetic mutant flies. Tissue content measurements are also important, and separations are predominantly used. Capillary electrophoresis, with either electrochemical, laser-induced fluorescence, or mass spectrometry detection, facilitates tissue content measurements from single, isolated Drosophila brains or small samples of hemolymph. Neurochemical studies in Drosophila have revealed that flies have functioning transporters and autoreceptors, that their metabolism is different than in mammals, and that flies have regional, life stage, and sex differences in neurotransmission. Future studies will develop smaller electrodes, expand optical imaging techniques, explore physiological stimulations, and use advanced genetics to target single neuron release or study neurochemical changes in models of human diseases.
Collapse
Affiliation(s)
- Mimi Shin
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Jeffrey M. Copeland
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
- Department of Biology, Eastern Mennonite University, Harrisonburg, Virginia 22802, United States
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
10
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
11
|
Alessandro Volta Medal: C. Amatore / Centenary Award: P. Cramer / RUSNANOPRIZE: C. A. Mirkin / Frontiers in Chemical Energy Science Award: W. B. Tolman. Angew Chem Int Ed Engl 2016; 55:15954. [DOI: 10.1002/anie.201610739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Alessandro-Volta-Medaille: C. Amatore / Centenary Award: P. Cramer / RUSNANOPRIZE: C. A. Mirkin / Frontiers in Chemical Energy Science Award: W. B. Tolman. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Karajić A, Reculusa S, Ravaine S, Mano N, Kuhn A. Miniaturized Electrochemical Device from Assembled Cylindrical Macroporous Gold Electrodes. ChemElectroChem 2016. [DOI: 10.1002/celc.201600466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aleksandar Karajić
- Univ. Bordeaux, UMR 5255 CNRS, Bordeaux INP, ENSCBP; 16 Avenue Pey Berland 33607 Pessac France
- Centre de Recherche Paul Pascal; Univ. Bordeaux, UPR 8641, CNRS; Avenue Albert Schweitzer 33600 Pessac France
| | - Stéphane Reculusa
- Univ. Bordeaux, UMR 5255 CNRS, Bordeaux INP, ENSCBP; 16 Avenue Pey Berland 33607 Pessac France
- BrivaTech-ADERA, ENSCBP; 16 Avenue Pey Berland 33607 Pessac France
| | - Serge Ravaine
- Centre de Recherche Paul Pascal; Univ. Bordeaux, UPR 8641, CNRS; Avenue Albert Schweitzer 33600 Pessac France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal; Univ. Bordeaux, UPR 8641, CNRS; Avenue Albert Schweitzer 33600 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, UMR 5255 CNRS, Bordeaux INP, ENSCBP; 16 Avenue Pey Berland 33607 Pessac France
| |
Collapse
|