1
|
Kashyap P, Sharma P, Gohil R, Rajpurohit D, Mishra D, Shrivastav PS. Progress in appended calix[4]arene-based receptors for selective recognition of copper ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123188. [PMID: 37515889 DOI: 10.1016/j.saa.2023.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
In the past two decades, there has been significant progress in the design and development of synthetic receptors for molecular recognition as they find application in the field of chemical, biological, medical, and environmental sciences. Synthetic receptors based on calix systems appended with fluorogenic and chromogenic groups have gained considerable attention for sensing and recognition of ions and molecules. Copper (Cu2+) is an essential element required in trace amounts in all living organisms to carry out various biological processes. The aim of this review is to summarize advancement in π-conjugated fluorogenic and chromogenic groups appended to calix[4]arene motifs for detection and quantitation of Cu2+ ion. The focus is to present a comprehensive account of extended calix[4]arene systems with different linkers and highlight the unique design and binding characteristics for the recognition and sensing of Cu2+ ions.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Payal Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Ritu Gohil
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
2
|
Liu Y, Liu Z, Zhou Y, Tian Y. Implantable Electrochemical Sensors for Brain Research. JACS AU 2023; 3:1572-1582. [PMID: 37388703 PMCID: PMC10301805 DOI: 10.1021/jacsau.3c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Implantable electrochemical sensors provide reliable tools for in vivo brain research. Recent advances in electrode surface design and high-precision fabrication of devices led to significant developments in selectivity, reversibility, quantitative detection, stability, and compatibility of other methods, which enabled electrochemical sensors to provide molecular-scale research tools for dissecting the mechanisms of the brain. In this Perspective, we summarize the contribution of these advances to brain research and provide an outlook on the development of the next generation of electrochemical sensors for the brain.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Zhichao Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Yi Zhou
- School
of Basic Medical Sciences, Chengdu University
of Traditional Chinese Medicine, Sichuan 611137, People’s Republic of China
| | - Yang Tian
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| |
Collapse
|
3
|
Liu J, Liu Z, Wang W, Tian Y. Real-time Tracking and Sensing of Cu + and Cu 2+ with a Single SERS Probe in the Live Brain: Toward Understanding Why Copper Ions Were Increased upon Ischemia. Angew Chem Int Ed Engl 2021; 60:21351-21359. [PMID: 34228388 DOI: 10.1002/anie.202106193] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Indexed: 11/07/2022]
Abstract
The imbalance of Cu+ and Cu2+ in the brain is closely related to neurodegenerative diseases. However, it still lacks of effective analytical methods for simultaneously determining the concentrations of Cu+ and Cu2+ . Herein, we created a novel SERS probe (CuSP) to real-time track and accurately quantify extracellular concentrations of Cu+ and Cu2+ in the live brain. The present CuSP probe demonstrated specific ability for recognition of Cu+ and Cu2+ in a dual-recognition mode. Then, a microarray consisting of 8 CuSP probes with high tempo-spatial resolution and good accuracy was constructed for tracking and simultaneously biosensing of Cu+ and Cu2+ in the cerebral cortex of living brain. Using our powerful tool, it was found that that the concentrations of Cu2+ and Cu+ were increased by ≈4.26 and ≈1.80 times upon ischemia, respectively. Three routes were first discovered for understanding the mechanisms of the increased concentrations of Cu+ and Cu2+ during ischemia.
Collapse
Affiliation(s)
- Jiaqi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Weikang Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
4
|
Liu J, Liu Z, Wang W, Tian Y. Real‐time Tracking and Sensing of Cu
+
and Cu
2+
with a Single SERS Probe in the Live Brain: Toward Understanding Why Copper Ions Were Increased upon Ischemia. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiaqi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Weikang Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
5
|
Liu Y, Liu Z, Zhao F, Tian Y. Long-Term Tracking and Dynamically Quantifying of Reversible Changes of Extracellular Ca 2+ in Multiple Brain Regions of Freely Moving Animals. Angew Chem Int Ed Engl 2021; 60:14429-14437. [PMID: 33797152 DOI: 10.1002/anie.202102833] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/11/2022]
Abstract
Understanding physiological and pathological processes in the brain requires tracking the reversible changes in chemical signals with long-term stability. We developed a new anti-biofouling microfiber array to real-time quantify extracellular Ca2+ concentrations together with neuron activity across many regions in the mammalian brain for 60 days, in which the signal degradation was < ca. 8 %. The microarray with high tempo-spatial resolution (ca. 10 μm, ca. 1.3 s) was implanted into 7 brain regions of free-moving mice to monitor reversible changes of extracellular Ca2+ upon ischemia-reperfusion processes. The changing sequence and rate of Ca2+ in 7 brain regions were different during the stroke. ROS scavenger could protect Ca2+ influx and neuronal activity after stroke, suggesting the significant influence of ROS on Ca2+ overload and neuron death. We demonstrated this microarray is a versatile tool for investigating brain dynamic during pathological processes and drug treatment.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
6
|
Liu Y, Liu Z, Zhao F, Tian Y. Long‐Term Tracking and Dynamically Quantifying of Reversible Changes of Extracellular Ca
2+
in Multiple Brain Regions of Freely Moving Animals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
7
|
Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Wei
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peipei Zhong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Liu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
8
|
Zhang C, Liu Z, Zhang L, Zhu A, Liao F, Wan J, Zhou J, Tian Y. A Robust Au−C≡C Functionalized Surface: Toward Real‐Time Mapping and Accurate Quantification of Fe
2+
in the Brains of Live AD Mouse Models. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chuanping Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Fumin Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Jingjing Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
9
|
Zhang C, Liu Z, Zhang L, Zhu A, Liao F, Wan J, Zhou J, Tian Y. A Robust Au-C≡C Functionalized Surface: Toward Real-Time Mapping and Accurate Quantification of Fe 2+ in the Brains of Live AD Mouse Models. Angew Chem Int Ed Engl 2020; 59:20499-20507. [PMID: 32857422 DOI: 10.1002/anie.202006318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Described here is that Au-C≡C bonds showed the highest stability under biological conditions, with abundant thiols, and the best electrochemical performance compared to Au-S and Au-Se bonds. The new finding was also confirmed by theorical calculations. Based on this finding, a specific molecule for recognition of Fe2+ was designed and synthesized, and used to create a selective and accurate electrochemical sensor for the quantification of Fe2+ . The present ratiometric strategy demonstrates high spatial resolution for real-time tracking of Fe2+ in a dynamic range of 0.2-120 μM. Finally, a microelectrode array with good biocompatibility was applied in imaging and biosensing of Fe2+ in the different regions of live mouse brains. Using this tool, it was discovered that the uptake of extracellular Fe2+ into the cortex and striatum was largely mediated by cyclic adenosine monophosphate (cAMP) through the CREB-related pathway in the brain of a mouse with Alzheimer's disease.
Collapse
Affiliation(s)
- Chuanping Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Fumin Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jingjing Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
10
|
Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angew Chem Int Ed Engl 2020; 59:22652-22658. [DOI: 10.1002/anie.202010195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Wei
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peipei Zhong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Yifei Xue
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Liu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of the Ministry of Education College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Zhao F, Liu Y, Dong H, Feng S, Shi G, Lin L, Tian Y. An Electrochemophysiological Microarray for Real‐Time Monitoring and Quantification of Multiple Ions in the Brain of a Freely Moving Rat. Angew Chem Int Ed Engl 2020; 59:10426-10430. [DOI: 10.1002/anie.202002417] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Shiqing Feng
- Key Laboratory of Brain Functional Genomics-Ministry of Education School of Life Science Department East China Normal University North Zhongshan Road Shanghai 200241 China
| | - Guoyue Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics-Ministry of Education School of Life Science Department East China Normal University North Zhongshan Road Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| |
Collapse
|
12
|
Zhao F, Liu Y, Dong H, Feng S, Shi G, Lin L, Tian Y. An Electrochemophysiological Microarray for Real‐Time Monitoring and Quantification of Multiple Ions in the Brain of a Freely Moving Rat. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Shiqing Feng
- Key Laboratory of Brain Functional Genomics-Ministry of Education School of Life Science Department East China Normal University North Zhongshan Road Shanghai 200241 China
| | - Guoyue Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics-Ministry of Education School of Life Science Department East China Normal University North Zhongshan Road Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Dongchuan Road 500 Shanghai 200092 China
| |
Collapse
|
13
|
Du S, Zhang C, Jiang Y, Jiang P, Leng Y. Au nanoparticle-immobilized l-cysteine-paired porous ionic copolymer as an efficient catalyst for additive-free oxidative coupling of alcohols and amines. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
14
|
Dong H, Zhou Q, Zhang L, Tian Y. Rational Design of Specific Recognition Molecules for Simultaneously Monitoring of Endogenous Polysulfide and Hydrogen Sulfide in the Mouse Brain. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Qi Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
15
|
Dong H, Zhou Q, Zhang L, Tian Y. Rational Design of Specific Recognition Molecules for Simultaneously Monitoring of Endogenous Polysulfide and Hydrogen Sulfide in the Mouse Brain. Angew Chem Int Ed Engl 2019; 58:13948-13953. [PMID: 31322310 DOI: 10.1002/anie.201907210] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Indexed: 01/09/2023]
Abstract
A biosensor was created for the simultaneous monitoring of endogenous H2 Sn and H2 S in mouse brains and exploring their roles in activation of the TRPA1 channel under two types of brain disease models: ischemia and Alzheimer's disease (AD). Based on DFT calculations and electrochemical measurements, two probes, 3,4-bis((2-fluoro-5-nitrobenzoyl)oxy)-benzoic acid (MPS-1 ) and N-(4-(2,5-dinitrophenoxy) phenyl)-5-(1, 2-dithiolan-3-yl)pentanamide (MHS-1 ), were synthesized for specific recognition of H2 Sn and H2 S. Through co-assembly of the two probes at the mesoporous gold film with good anti-biofouling ability and electrocatalytic activity, this microsensor showed high selectivity for H2 Sn and H2 S against potential biological interferences. The biosensor can simultaneously determine the concentration of H2 Sn from 0.2 to 50 μm, as well as that of H2 S from 0.2 to 40 μm. The expression of TRPA1 protein positively correlated with levels of H2 Sn under both ischemia and AD.
Collapse
Affiliation(s)
- Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Qi Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
16
|
Li M, Huang X, Yu H. A colorimetric assay for ultrasensitive detection of copper (II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:614-618. [PMID: 31029354 DOI: 10.1016/j.msec.2019.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/18/2022]
Abstract
Here we report a simple and low-cost colorimetric assay for ultrasensitive detection of copper (II) ions (Cu2+) based on pH-dependent formation of plasmonic MoO3-x nanosheets. The reaction between ascorbic acid (AA) and Cu2+ gives birth to hydrogen ions, which remarkably promotes the reduction of MoO3 nanosheets by AA to form oxygen vacancies-rich MoO3-x nanosheets that increase the free carrier concentration, generating a strong local surface plasmon resonance (LSPR) absorption. The Cu2+-triggered LSPR is utilized for development of the colorimetric assay. Under the optimal experimental conditions, this colorimetric assay can be used for selective detection of Cu2+, and the limit of detection is 0.8 nM, which is lower than that of most of the reported methods. Additionally, the present colorimetric assay has also been successfully employed for Cu2+ determination in real serum and human hair samples with satisfactory recoveries ranging from 96% to 108%.
Collapse
Affiliation(s)
- Meijun Li
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Xiaoxuan Huang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Haili Yu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China.
| |
Collapse
|
17
|
Wang W, Zhao F, Li M, Zhang C, Shao Y, Tian Y. A SERS Optophysiological Probe for the Real‐Time Mapping and Simultaneous Determination of the Carbonate Concentration and pH Value in a Live Mouse Brain. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weikang Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Mingzhi Li
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Chuanping Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
18
|
Wang W, Zhao F, Li M, Zhang C, Shao Y, Tian Y. A SERS Optophysiological Probe for the Real-Time Mapping and Simultaneous Determination of the Carbonate Concentration and pH Value in a Live Mouse Brain. Angew Chem Int Ed Engl 2019; 58:5256-5260. [PMID: 30811077 DOI: 10.1002/anie.201814286] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/01/2019] [Indexed: 01/02/2023]
Abstract
To have a profound understanding of the physiological and pathological processes in a brain, both chemical and electrical signals need to be recorded, but this is still very challenging. Herein, micrometer- to nanometer-sized SERS optophysiological probes were created to determine both the CO3 2- concentration and the pH in live brains and neurons because both species play important roles in regulating the acid-base balance in the brain. A ratiometric SERS microarray of eight microprobes with tip sizes of 5 μm was established and used for the first time for real-time mapping and simultaneous quantification of CO3 2- and pH in a live brain. We found that both the CO3 2- concentration and the pH value dramatically decreased under ischemic conditions. The present SERS technique can be combined with electrophysiology without cross-talk to record both electrical and chemical signals in brains. To deepen our understanding of the mechanism of ischemia on the single-cell level, a SERS nanoprobe with a tip size of 200 nm was developed for use in a single neuron.
Collapse
Affiliation(s)
- Weikang Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chuanping Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
19
|
Liu F, Dong H, Tian Y. Real-time monitoring of peroxynitrite (ONOO−) in the rat brain by developing a ratiometric electrochemical biosensor. Analyst 2019; 144:2150-2157. [DOI: 10.1039/c9an00079h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a reactive oxygen species (ROS), peroxynitrite (ONOO−) generated by nitric oxide (NO) and superoxide anion (O2˙−) plays important roles in physiological and pathological processes in the brain.
Collapse
Affiliation(s)
- Feiyue Liu
- Shanghai State Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Hui Dong
- Shanghai State Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yang Tian
- Shanghai State Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
20
|
Yu Y, Li C, Chen C, Huang H, Liang C, Lou Y, Chen XB, Shi Z, Feng S. Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12. Talanta 2018; 195:117-126. [PMID: 30625521 DOI: 10.1016/j.talanta.2018.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/16/2022]
Abstract
Photoluminescence(PL) nano-biosensors that can be used for accurately and reliably monitoring pH and vitamin hold a great promise in biology and medicine. Herein, a high quantum yield of 16% saccharomyces-derived N-doped carbon dots (s-N-CDs) was synthesized through a simple and one-pot microwave-assisted hydrothermal approach. The produced s-N-CDs are an excellent multi-functional biosensor for the applications of pH sensing and vitamin probing. Fluorescence intensity and fluorescence lifetime dramatically increases with pH decreasing from 14 to 2. Moreover, the fluorescence intensity presents highly reversible abilty from 13 to 2 without any profound attenuation after ten consecutive circles. More importantly, the CDs prepared herein are sound option for assaying cobalamin (VB 12) based fluorescence resonance energy transfer (FRET) with a superior low detection limit of 2.19 μM.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Cailing Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - He Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chen Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, VIC 3053, Australia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
21
|
Lin Y, Wang J, Luo F, Guo L, Qiu B, Lin Z. Highly reproducible ratiometric aptasensor based on the ratio of amplified electrochemiluminescence signal and stable internal reference electrochemical signal. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhou H, Ran G, Masson JF, Wang C, Zhao Y, Song Q. Rational Design of Magnetic Micronanoelectrodes for Recognition and Ultrasensitive Quantification of Cysteine Enantiomers. Anal Chem 2018; 90:3374-3381. [DOI: 10.1021/acs.analchem.7b05006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Haifeng Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Chemistry, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7 Canada
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jean-Francois Masson
- Department of Chemistry, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7 Canada
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
Sharma S, Ghosh SK. Metal-Organic Framework-Based Selective Sensing of Biothiols via Chemidosimetric Approach in Water. ACS OMEGA 2018; 3:254-258. [PMID: 31457890 PMCID: PMC6641300 DOI: 10.1021/acsomega.7b01891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Selective detection of biothiols holds prime importance owing to the role of varied concentrations of biothiols in various diseases, thus demanding extensive research for developing materials toward selective sensing. In this study, we targeted postsynthetic modification (PSM) approach for imparting desired functionality to chemically stable UiO-66-NH2 metal-organic framework, which exhibits highly selective sensing toward biothiols. The appended dinitrobenzenesulfonyl group reacts with biothiols via chemidosimetric approach. As a consequence, the probe exhibits a turn on response, which holds immense importance for facile biological studies.
Collapse
Affiliation(s)
- Shivani Sharma
- Department
of Chemistry, Indian
Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sujit K. Ghosh
- Department
of Chemistry, Indian
Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Centre
for Research in Energy & Sustainable Materials, IISER Pune, Dr. Homi
Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
24
|
Qin H, Zhu Z, Ji W, Zhang M. Carbon Nanotube Paper-based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate. ELECTROANAL 2018. [DOI: 10.1002/elan.201700689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hancheng Qin
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Ziyu Zhu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Wenliang Ji
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Meining Zhang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
25
|
Ganganboina AB, Dutta Chowdhury A, Doong RA. N-Doped Graphene Quantum Dots-Decorated V 2O 5 Nanosheet for Fluorescence Turn Off-On Detection of Cysteine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:614-624. [PMID: 29227622 DOI: 10.1021/acsami.7b15120] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of a fast-response sensing technique for detection of cysteine can provide an analytical platform for prescreening of disease. Herein, we have developed a fluorescence turn off-on fluorescence sensing platform by combining nitrogen-doped graphene quantum dots (N-GQDs) with V2O5 nanosheets for the sensitive and selective detection of cysteine in human serum samples. V2O5 nanosheets with 2-4 layers are successfully synthesized via a simple and scalable liquid exfoliation method and then deposited with 2-8 nm of N-GQDs as the fluorescence turn off-on nanoprobe for effective detection of cysteine in human serum samples. The V2O5 nanosheets serve as both fluorescence quencher and cysteine recognizer in the sensing platform. The fluorescence intensity of N-GQDs with quantum yield of 0.34 can be quenched after attachment onto V2O5 nanosheets. The addition of cysteine triggers the reduction of V2O5 to V4+ as well as the release of N-GQDs within 4 min, resulting in the recovery of fluorescence intensity for the turn off-on detection of cysteine. The sensing platform exhibits a two-stage linear response to cysteine in the concentration range of 0.1-15 and 15-125 μM at pH 6.5, and the limit of detection is 50 nM. The fluorescence response of N-GQD@V2O5 exhibits high selectivity toward cysteine over other 22 electrolytes and biomolecules. Moreover, this promising platform is successfully applied in detection of cysteine in human serum samples with excellent recovery of (95 ± 3.8) - (108 ± 2.4)%. These results clearly demonstrate a newly developed redox reaction-based nanosensing platform using N-GQD@V2O5 nanocomposites as the sensing probe for cysteine-associated disease monitoring and diagnosis in biomedical applications, which can open an avenue for the development of high performance and robust sensing probes to detect organic metabolites.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ankan Dutta Chowdhury
- Institute of Environmental Engineering, National Chiao Tung University , 1001 University Road, Hsinchu 30010, Taiwan
| | - Ruey-An Doong
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Institute of Environmental Engineering, National Chiao Tung University , 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
26
|
Liu W, Dong H, Zhang L, Tian Y. Development of an Efficient Biosensor for the In Vivo Monitoring of Cu+
and pH in the Brain: Rational Design and Synthesis of Recognition Molecules. Angew Chem Int Ed Engl 2017; 56:16328-16332. [DOI: 10.1002/anie.201710863] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
27
|
Liu W, Dong H, Zhang L, Tian Y. Development of an Efficient Biosensor for the In Vivo Monitoring of Cu+
and pH in the Brain: Rational Design and Synthesis of Recognition Molecules. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
28
|
Liu L, Zhao F, Liu W, Zhu T, Zhang JZH, Chen C, Dai Z, Peng H, Huang JL, Hu Q, Bu W, Tian Y. An Electrochemical Biosensor with Dual Signal Outputs: Toward Simultaneous Quantification of pH and O2
in the Brain upon Ischemia and in a Tumor during Cancer Starvation Therapy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201705615] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
| | - Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - John Z. H. Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science and Laboratory of Advanced Materials; Department of Chemistry; Fudan University; China
| | - Jun-Long Huang
- Discipline of Neuroscience; Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qin Hu
- Discipline of Neuroscience; Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
29
|
Liu L, Zhao F, Liu W, Zhu T, Zhang JZH, Chen C, Dai Z, Peng H, Huang JL, Hu Q, Bu W, Tian Y. An Electrochemical Biosensor with Dual Signal Outputs: Toward Simultaneous Quantification of pH and O2
in the Brain upon Ischemia and in a Tumor during Cancer Starvation Therapy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
| | - Fan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - John Z. H. Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science and Laboratory of Advanced Materials; Department of Chemistry; Fudan University; China
| | - Jun-Long Huang
- Discipline of Neuroscience; Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qin Hu
- Discipline of Neuroscience; Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
30
|
Li S, Zhu A, Zhu T, Zhang JZH, Tian Y. Single Biosensor for Simultaneous Quantification of Glucose and pH in a Rat Brain of Diabetic Model Using Both Current and Potential Outputs. Anal Chem 2017; 89:6656-6662. [DOI: 10.1021/acs.analchem.7b00881] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuai Li
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Anwei Zhu
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Tong Zhu
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - John Z. H. Zhang
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Yang Tian
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, School of Chemistry and Molecular
Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| |
Collapse
|
31
|
Thanzeel FY, Wolf C. Substrate‐Specific Amino Acid Sensing Using a Molecular
d
/
l
‐Cysteine Probe for Comprehensive Stereochemical Analysis in Aqueous Solution. Angew Chem Int Ed Engl 2017; 56:7276-7281. [DOI: 10.1002/anie.201701188] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/10/2017] [Indexed: 01/07/2023]
Affiliation(s)
- F. Yushra Thanzeel
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
32
|
Thanzeel FY, Wolf C. Substratspezifische Analyse von Aminosäuren mit Sensoren für
d
/
l
‐Cystein: umfassende stereochemische Untersuchungen in wässriger Lösung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- F. Yushra Thanzeel
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
33
|
Ma R, Jin M, Tian Y. An Ultrasensitive and Selective Probe for Ratiometric Determination and Removal of Hg2+. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0011-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Zhang F, Sun Y, Tian D, Li H. Chiral Selective Transport of Proteins by Cysteine-Enantiomer-Modified Nanopores. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Yue Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| |
Collapse
|
35
|
Zhang F, Sun Y, Tian D, Li H. Chiral Selective Transport of Proteins by Cysteine-Enantiomer-Modified Nanopores. Angew Chem Int Ed Engl 2017; 56:7186-7190. [DOI: 10.1002/anie.201701255] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/07/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Fan Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Yue Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| |
Collapse
|
36
|
Yang F, Kong N, Conlan XA, Wang H, Barrow CJ, Yan F, Guo J, Yang W. Electrochemical Evidences of Chiral Molecule Recognition Using L/D-Cysteine Modified Gold Electrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Dong H, Zhang L, Liu W, Tian Y. Label-Free Electrochemical Biosensor for Monitoring of Chloride Ion in an Animal Model of Alzhemier's Disease. ACS Chem Neurosci 2017; 8:339-346. [PMID: 27992175 DOI: 10.1021/acschemneuro.6b00296] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The potential damage of Alzheimer's disease (AD) in brain function has attracted extensive attention. As the most common anion, Cl- has been indicated to play significant roles in brain diseases, particularly in the pathological process of AD. In this work, a label-free selective and accurate electrochemical biosensor was first developed for real-time monitoring of Cl- levels in a mouse brain model of AD and rat brain upon global cerebral ischemia. Silver nanoparticles (AgNPs) were designed and synthesized as selective recognition element for Cl-, while 5'-MB-GGCGCGATTTT-SH-3' (SH-DNA-MB, MB = methylene blue) was selected as an inner reference molecule for a built-in correction to avoid the effects from the complicated brain. The electrochemical biosensor showed high accuracy and remarkable selectivity for determination of Cl- over other anions, metal ions, amino acids, and other biomolecules. Furthermore, three-dimensional nanostructures composed of single-walled carbon nanotubes (SWNTs) and Au nanoleaves were assembled on the carbon fiber microelectrode (CFME) surface to enhance the response signal. Finally, the developed biosensor with high analytical performance, as well as the unique characteristic of CFME itself including inertness in live brain and good biocompatibility, was successfully applied to in vivo determination of Cl- levels in three brain regions: striatum, hippocampus, and cortex of live mouse and rat brains. The comparison of average levels of Cl- in normal striatum, hippocampus, and cortex of normal mouse brains and those in the mouse model brains of AD was reported. In addition, the results in rat brains followed by cerebral ischemia demonstrated that the concentrations of Cl- decreased by 19.8 ± 0.5% (n = 5) in the striatum and 27.2 ± 0.3% (n = 5) in hippocampus after cerebral ischemia for 30 min, but that negligible change in Cl- concentration was observed in cortex.
Collapse
Affiliation(s)
- Hui Dong
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Wei Liu
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of
Green Chemistry and Chemical Processes, Department of Chemistry, School
of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
38
|
Xu Q, Liu W, Li L, Zhou F, Zhou J, Tian Y. Ratiometric SERS imaging and selective biosensing of nitric oxide in live cells based on trisoctahedral gold nanostructures. Chem Commun (Camb) 2017; 53:1880-1883. [PMID: 28111649 DOI: 10.1039/c6cc09563a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a ratiometric SERS probe was created for monitoring nitric oxide (NO) by designing a novel molecule, 3,4-diaminobenzene-thiol, and immobilizing this molecule onto trisoctahedral gold nanostructures with superior SERS capability. The established probe possessed good selectivity and biocompatibility, high sensitivity and accuracy, thus enabling imaging and biosensing of NO in live cells.
Collapse
Affiliation(s)
- Qiao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.
| | | | | | | | | | | |
Collapse
|
39
|
Liu L, Zhang L, Dai Z, Tian Y. A simple functional carbon nanotube fiber for in vivo monitoring of NO in a rat brain following cerebral ischemia. Analyst 2017; 142:1452-1458. [DOI: 10.1039/c7an00138j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple ratiometric electrochemical biosensor for NO monitoring in rat brain following cerebral ischemia was developed based on a carbon nanotube fiber modified with hemin.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
40
|
Cui Z, Bu W, Fan W, Zhang J, Ni D, Liu Y, Wang J, Liu J, Yao Z, Shi J. Sensitive imaging and effective capture of Cu2+: Towards highly efficient theranostics of Alzheimer's disease. Biomaterials 2016; 104:158-67. [DOI: 10.1016/j.biomaterials.2016.06.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/11/2023]
|
41
|
Zhu G, Lee HJ. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens Bioelectron 2016; 89:959-963. [PMID: 27816594 DOI: 10.1016/j.bios.2016.09.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
A novel sandwich-type biosensor was developed for the electrochemical detection of α-1 antitrypsin (AAT, a recognized biomarker for Alzheimer's disease). The biosensor was composed of 3, 4, 9, 10-perylene tetracarboxylic acid/carbon nanotubes (PTCA-CNTs) as a sensing platform and alkaline phosphatase-labeled AAT antibody functionalized silver nanoparticles (ALP-AAT Ab-Ag NPs) as a signal enhancer. CNTs offer high surface area and good electrical conductivity. Importantly, Ag NPs could increase the amount of ALP on the sensing surface and the ALP could dephosphorylate 4-amino phenyl phosphate (APP) enzymatically to produce electroactive species 4-aminophenol (AP). For detecting AAT based on the sandwich-type biosensor, the results show that the peak current value of AP using ALP-AAT Ab-Ag NPs as signal enhancer is much higher than that by using ALP-AAT Ab bioconjugate (without Ag NPs), the biosensor exhibited desirable performance for AAT determination with a wide linearity in the range from 0.05 to 20.0pM and a low detection limit of 0.01pM. Finally, the developed sensor was successfully applied to the analysis of AAT concentration in serum samples.
Collapse
Affiliation(s)
- Gangbing Zhu
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea.
| |
Collapse
|
42
|
Zhao F, Zhang L, Zhu A, Shi G, Tian Y. In vivo monitoring of local pH values in a live rat brain based on the design of a specific electroactive molecule for H+. Chem Commun (Camb) 2016; 52:3717-20. [DOI: 10.1039/c5cc09540a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have developed a two-channel electrochemical ratiometric biosensor for local pH determination in different regions of the rat brain with remarkable selectivity and accuracy, and report the accurate pH values.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Limin Zhang
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Anwei Zhu
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Guoyue Shi
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Yang Tian
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- P. R. China
| |
Collapse
|