1
|
Abdullin D, Hett T, Fleck N, Kopp K, Cassidy S, Richert S, Schiemann O. Magneto-Structural Correlations in a Mixed Porphyrin(Cu 2+ )/Trityl Spin System: Magnitude, Sign, and Distribution of the Exchange Coupling Constant. Chemistry 2023; 29:e202203148. [PMID: 36519664 DOI: 10.1002/chem.202203148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Tetrathiatriarylmethyl radicals (TAM or trityl) are receiving increasing attention in various fields of magnetic resonance such as imaging, dynamic nuclear polarization, spin labeling, and, more recently, molecular magnetism and quantum information technology. Here, a trityl radical attached via a phenyl bridge to a copper(II)tetraphenylporphyrin was synthesized, and its magnetic properties studied by multi-frequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy and magnetic measurements. EPR revealed that the electron spin-spin coupling constant J between the trityl and Cu2+ spin centers is ferromagnetic with a magnitude of -2.3 GHz (-0.077 cm-1 , + J S → 1 S → 2 ${+J{\vec{S}}_{1}{\vec{S}}_{2}}$ convention) and a distribution width of 1.2 GHz (0.040 cm-1 ). With the help of density functional theory (DFT) calculations, the obtained ferromagnetic exchange coupling, which is unusual for para-substituted phenyl-bridged biradicals, could be related to the almost perpendicular orientation of the phenyl linker with respect to the porphyrin and trityl ring planes in the energy minimum, while the J distribution was rationalized by the temperature weighted rotation of the phenyl bridge about the molecular axis connecting both spin centers. This study exemplifies the importance of molecular dynamics for the homogeneity (or heterogeneity) of the magnetic properties of trityl-based systems.
Collapse
Affiliation(s)
- Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Tobias Hett
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Nico Fleck
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Merck KGaA, Q20/001, Frankfurterstr. 250, 64293, Darmstadt, Germany
| | - Kevin Kopp
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Simon Cassidy
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Department of Chemical and Biological Physics, Weizmann Institute of Science, 761001, Rehovot, Israel
| |
Collapse
|
2
|
Pierro A, Bonucci A, Normanno D, Ansaldi M, Pilet E, Ouari O, Guigliarelli B, Etienne E, Gerbaud G, Magalon A, Belle V, Mileo E. Probing the Structural Dynamics of a Bacterial Chaperone in Its Native Environment by Nitroxide‐Based EPR Spectroscopy. Chemistry 2022; 28:e202202249. [DOI: 10.1002/chem.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
- Department of Chemistry University of Konstanz, and Konstanz Research School Chemical Biology 78457 Konstanz Germany
| | - Alessio Bonucci
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Davide Normanno
- Aix Marseille Univ CNRS, Inserm Institut Paoli-Calmettes, CRCM Centre de Recherche en Cancérologie de Marseille 13273 Marseille France
- Univ Montpellier CNRS, IGH Institut de Génétique Humaine 34396 Montpellier France
| | - Mireille Ansaldi
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Eric Pilet
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ CNRS, ICR Institut de Chimie Radicalaire 13397 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Emilien Etienne
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Guillaume Gerbaud
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Axel Magalon
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| |
Collapse
|
3
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202113448. [PMID: 34761852 PMCID: PMC9299766 DOI: 10.1002/anie.202113448] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The β-barrel assembly machinery (BAM) consisting of the central β-barrel BamA and four other lipoproteins mediates the folding of the majority of the outer membrane proteins. BamA is placed in an asymmetric bilayer and its lateral gate is suggested to be the functional hotspot. Here we used in situ pulsed electron-electron double resonance spectroscopy to characterize BamA in the native outer membrane. In the detergent micelles, the data is consistent with mainly an inward-open conformation of BamA. The native membrane considerably enhanced the conformational heterogeneity. The lateral gate and the extracellular loop 3 exist in an equilibrium between different conformations. The outer membrane provides a favorable environment for occupying multiple conformational states independent of the lipoproteins. Our results reveal a highly dynamic behavior of the lateral gate and other key structural elements and provide direct evidence for the conformational modulation of a membrane protein in situ.
Collapse
Affiliation(s)
- Aathira Gopinath
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| | - Benesh Joseph
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| |
Collapse
|
4
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aathira Gopinath
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| | - Benesh Joseph
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| |
Collapse
|
5
|
Fleck N, Heubach C, Hett T, Spicher S, Grimme S, Schiemann O. Ox-SLIM: Synthesis of and Site-Specific Labelling with a Highly Hydrophilic Trityl Spin Label. Chemistry 2021; 27:5292-5297. [PMID: 33404074 PMCID: PMC8048664 DOI: 10.1002/chem.202100013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 01/04/2023]
Abstract
The combination of pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) with site-directed spin labelling is a powerful tool in structural biology. Rational design of trityl-based spin labels has enabled studying biomolecular structures at room temperature and within cells. However, most current trityl spin labels suffer either from aggregation with proteins due to their hydrophobicity, or from bioconjugation groups not suitable for in-cell measurements. Therefore, we introduce here the highly hydrophilic trityl spin label Ox-SLIM. Engineered as a short-linked maleimide, it combines the most recent developments in one single molecule, as it does not aggregate with proteins, exhibits high resistance under in-cell conditions, provides a short linker, and allows for selective and efficient spin labelling via cysteines. Beyond establishing synthetic access to Ox-SLIM, its suitability as a spin label is illustrated and ultimately, highly sensitive PDS measurements are presented down to protein concentrations as low as 45 nm resolving interspin distances of up to 5.5 nm.
Collapse
Affiliation(s)
- Nico Fleck
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Caspar Heubach
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Tobias Hett
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Sebastian Spicher
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Stefan Grimme
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Olav Schiemann
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| |
Collapse
|
6
|
Ketter S, Gopinath A, Rogozhnikova O, Trukhin D, Tormyshev VM, Bagryanskaya EG, Joseph B. In Situ Labeling and Distance Measurements of Membrane Proteins in E. coli Using Finland and OX063 Trityl Labels. Chemistry 2021; 27:2299-2304. [PMID: 33197077 PMCID: PMC7898545 DOI: 10.1002/chem.202004606] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/13/2020] [Indexed: 01/03/2023]
Abstract
In situ investigation of membrane proteins is a challenging task. Previously we demonstrated that nitroxide labels combined with pulsed ESR spectroscopy is a promising tool for this purpose. However, the nitroxide labels suffer from poor stability, high background labeling, and low sensitivity. Here we show that Finland (FTAM) and OX063 based labels enable labeling of the cobalamin transporter BtuB and BamA, the central component of the β-barrel assembly machinery (BAM) complex, in E coli. Compared to the methanethiosulfonate spin label (MTSL), trityl labels eliminated the background signals and enabled specific in situ labeling of the proteins with high efficiency. The OX063 labels show a long phase memory time (TM ) of ≈5 μs. All the trityls enabled distance measurements between BtuB and an orthogonally labeled substrate with high selectivity and sensitivity down to a few μm concentration. Our data corroborate the BtuB and BamA conformations in the cellular environment of E. coli.
Collapse
Affiliation(s)
- Sophie Ketter
- Institute of BiophysicsDepartment of PhysicsGoethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| | - Aathira Gopinath
- Institute of BiophysicsDepartment of PhysicsGoethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| | - Olga Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySB RASPr. Lavrentieva 9Novosibirsk630090Russia
| | - Dmitrii Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySB RASPr. Lavrentieva 9Novosibirsk630090Russia
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySB RASPr. Lavrentieva 9Novosibirsk630090Russia
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySB RASPr. Lavrentieva 9Novosibirsk630090Russia
| | - Benesh Joseph
- Institute of BiophysicsDepartment of PhysicsGoethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| |
Collapse
|
7
|
Soetbeer J, Millen M, Zouboulis K, Hülsmann M, Godt A, Polyhach Y, Jeschke G. Dynamical decoupling in water-glycerol glasses: a comparison of nitroxides, trityl radicals and gadolinium complexes. Phys Chem Chem Phys 2021; 23:5352-5369. [PMID: 33635938 DOI: 10.1039/d1cp00055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our previous study on nitroxides in o-terphenyl (OTP) revealed two separable decoherence processes at low temperatures, best captured by the sum of two stretched exponentials (SSE) model. Dynamical decoupling (DD) extends both associated dephasing times linearly for 1 to 5 refocusing pulses [Soetbeer et al., Phys. Chem. Chem. Phys., 2018, 20, 1615]. Here we demonstrate an analogous DD behavior of water-soluble nitroxides in water-glycerol glass by using nitroxide and/or solvent deuteration for component assignment. Compared to the conventional Hahn experiment, we show that Carr-Purcell and Uhrig DD schemes are superior in resolving and identifying active dephasing mechanisms. Thereby, we observe a partial coherence loss to intramolecular nitroxide and trityl nuclei that can be alleviated, while the zero field splitting-induced losses for gadolinium labels cannot be refocused and contribute even at the central transition of this spin-7/2 system. Independent of the studied spin system, Uhrig DD leads to a characteristic convex dephasing envelope in both protonated water-glycerol and OTP glass, thus outperforming the Carr-Purcell scheme.
Collapse
Affiliation(s)
- Janne Soetbeer
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Marthe Millen
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Konstantin Zouboulis
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Miriam Hülsmann
- Bielefeld University, Department of Chemistry, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Adelheid Godt
- Bielefeld University, Department of Chemistry, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Collauto A, Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Sören Bülow
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Subham Saha
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute for Biophysics Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Snorri T. Sigurdsson
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
9
|
Collauto A, von Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell*. Angew Chem Int Ed Engl 2020; 59:23025-23029. [PMID: 32804430 PMCID: PMC7756485 DOI: 10.1002/anie.202009800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/15/2022]
Abstract
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
Collapse
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sören von Bülow
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Subham Saha
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Gerhard Hummer
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
- Institute for BiophysicsGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Snorri T. Sigurdsson
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
10
|
Fleck N, Heubach CA, Hett T, Haege FR, Bawol PP, Baltruschat H, Schiemann O. SLIM: A Short-Linked, Highly Redox-Stable Trityl Label for High-Sensitivity In-Cell EPR Distance Measurements. Angew Chem Int Ed Engl 2020; 59:9767-9772. [PMID: 32329172 PMCID: PMC7318235 DOI: 10.1002/anie.202004452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/15/2022]
Abstract
The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site-directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in-cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide-functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm, and shows high stability against reduction. Using this label, the guanine-nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells.
Collapse
Affiliation(s)
- Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Caspar A. Heubach
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Tobias Hett
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Florian R. Haege
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Pawel P. Bawol
- Institute of Physical and Theoretical ChemistryUniversity of BonnRömerstr. 16453117BonnGermany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical ChemistryUniversity of BonnRömerstr. 16453117BonnGermany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| |
Collapse
|
11
|
Fleck N, Heubach CA, Hett T, Haege FR, Bawol PP, Baltruschat H, Schiemann O. SLIM: A Short‐Linked, Highly Redox‐Stable Trityl Label for High‐Sensitivity In‐Cell EPR Distance Measurements. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Caspar A. Heubach
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Tobias Hett
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Florian R. Haege
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Pawel P. Bawol
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Römerstr. 164 53117 Bonn Germany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Römerstr. 164 53117 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
12
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
13
|
Tormyshev VM, Chubarov AS, Krumkacheva OA, Trukhin DV, Rogozhnikova OY, Spitsyna AS, Kuzhelev AA, Koval VV, Fedin MV, Godovikova TS, Bowman MK, Bagryanskaya EG. Methanethiosulfonate Derivative of OX063 Trityl: A Promising and Efficient Reagent for Side-Directed Spin Labeling of Proteins. Chemistry 2020; 26:2705-2712. [PMID: 31851392 DOI: 10.1002/chem.201904587] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Indexed: 12/20/2022]
Abstract
Trityl radicals (TAMs) have recently appeared as an alternative source of spin labels for measuring long distances in biological systems. Finland trityl radical (FTAM) served as the basis for this new generation of spin labels, but FTAM is rather lipophilic and susceptible to self-aggregation, noncovalent binding with lipophilic sites of proteins, and noncovalent docking at the termini of duplex DNA. In this paper the very hydrophilic OX063 TAM with very low toxicity and little tendency for aggregation is used as the basis for a spin label. Human serum albumin (HSA) labeled with OX063 has an intense narrow line typical of TAM radicals in solution, whereas HSA labeled with FTAM shows broad lines and extensive aggregation. In pulse EPR measurements, the measured phase memory time TM for HSA labeled with OX063 is 6.3 μs at 50 K, the longest yet obtained with a TAM-based spin label. The lowered lipophilicity also decreases side products in the labeling reaction.
Collapse
Affiliation(s)
- Victor M Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Olesya A Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Dmitry V Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Olga Yu Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Anna S Spitsyna
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Andrey A Kuzhelev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Michael K Bowman
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama, 35487-0336, USA
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| |
Collapse
|
14
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Frederick A. Villamena
- Department of Biological Chemistry and PharmacologyCollege of MedicineThe Ohio State University Columbus OH 43210 USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and ImagingThe Davis Heart and Lung Research Institutethe Division of Cardiovascular MedicineDepartment of Internal MedicineThe Ohio State University Columbus OH 43210 USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences 1117 Budapest Hungary
- Department of PhysicsBudapest University of Technology and Economics Budafoki ut 8 1111 Budapest Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| |
Collapse
|
15
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2019; 59:928-934. [PMID: 31657108 DOI: 10.1002/anie.201912832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), coexist in biological systems with diverse biological roles. Thus, analytical techniques that can detect, quantify, and distinguish between multiple biothiols are desirable but challenging. Herein, we demonstrate the simultaneous detection and quantitation of multiple biothiols, including up to three different biothiols in a single sample, using electron paramagnetic resonance (EPR) spectroscopy and a trityl-radical-based probe (MTST). We term this technique EPR thiol-trapping. MTST could trap thiols through its methanethiosulfonate group to form the corresponding disulfide conjugate with an EPR spectrum characteristic of the trapped thiol. MTST was used to investigate effects of l-buthionine sulfoximine (BSO) and pyrrolidine dithiocarbamate (PDTC) on the efflux of GSH and Cys from HepG2 cells.
Collapse
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest, Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
16
|
Abdullin D, Brehm P, Fleck N, Spicher S, Grimme S, Schiemann O. Pulsed EPR Dipolar Spectroscopy on Spin Pairs with one Highly Anisotropic Spin Center: The Low-Spin Fe III Case. Chemistry 2019; 25:14388-14398. [PMID: 31386227 PMCID: PMC6900076 DOI: 10.1002/chem.201902908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Indexed: 02/01/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling constants and thus the distance between electron spin centers. Up to now, PDS measurements have been mostly applied to spin centers whose g-anisotropies are moderate and therefore have a negligible effect on the dipolar coupling constants. In contrast, spin centers with large g-anisotropy yield dipolar coupling constants that depend on the g-values. In this case, the usual methods of extracting distances from the raw PDS data cannot be applied. Here, the effect of the g-anisotropy on PDS data is studied in detail on the example of the low-spin Fe3+ ion. First, this effect is described theoretically, using the work of Bedilo and Maryasov (Appl. Magn. Reson. 2006, 30, 683-702) as a basis. Then, two known Fe3+ /nitroxide compounds and one new Fe3+ /trityl compound were synthesized and PDS measurements were carried out on them using a method called relaxation induced dipolar modulation enhancement (RIDME). Based on the theoretical results, a RIDME data analysis procedure was developed, which facilitated the extraction of the inter-spin distance and the orientation of the inter-spin vector relative to the Fe3+ g-tensor frame from the RIDME data. The accuracy of the determined distances and orientations was confirmed by comparison with MD simulations. This method can thus be applied to the highly relevant class of metalloproteins with, for example, low-spin Fe3+ ions.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Philipp Brehm
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
- Current address: Institute of Inorganic ChemistryUniversity of Bonn53115BonnGermany
| | - Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Sebastian Spicher
- Mulliken Center for Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryUniversity of Bonn53115BonnGermany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn53115BonnGermany
| |
Collapse
|
17
|
Kugele A, Silkenath B, Langer J, Wittmann V, Drescher M. Protein Spin Labeling with a Photocaged Nitroxide Using Diels-Alder Chemistry. Chembiochem 2019; 20:2479-2484. [PMID: 31090999 PMCID: PMC6790680 DOI: 10.1002/cbic.201900318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/31/2022]
Abstract
EPR spectroscopy of diamagnetic bio-macromolecules is based on site-directed spin labeling (SDSL). Herein, a novel labeling strategy for proteins is presented. A nitroxide-based spin label has been developed and synthesized that can be ligated to proteins by an inverse-electron-demand Diels-Alder (DAinv ) cycloaddition to genetically encoded noncanonical amino acids. The nitroxide moiety is shielded by a photoremovable protecting group with an attached tetra(ethylene glycol) unit to achieve water solubility. SDSL is demonstrated on two model proteins with the photoactivatable nitroxide for DAinv reaction (PaNDA) label. The strategy features high reaction rates, combined with high selectivity, and the possibility to deprotect the nitroxide in Escherichia coli lysate.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bjarne Silkenath
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Jakob Langer
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Valentin Wittmann
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Malte Drescher
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
18
|
Bonucci A, Ouari O, Guigliarelli B, Belle V, Mileo E. In‐Cell EPR: Progress towards Structural Studies Inside Cells. Chembiochem 2019; 21:451-460. [DOI: 10.1002/cbic.201900291] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alessio Bonucci
- Magnetic Resonance CenterCERMUniversity of Florence 50019 Sesto Fiorentino Italy
| | - Olivier Ouari
- Aix Marseille UnivCNRSICRInstitut de Chimie Radicalaire 13013 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| |
Collapse
|
19
|
Krumkacheva OA, Timofeev IO, Politanskaya LV, Polienko YF, Tretyakov EV, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Chubarov AS, Bagryanskaya EG, Fedin MV. Triplet Fullerenes as Prospective Spin Labels for Nanoscale Distance Measurements by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olesya A. Krumkacheva
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Ivan O. Timofeev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Larisa V. Politanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Yuliya F. Polienko
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Evgeny V. Tretyakov
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Dmitry V. Trukhin
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Victor M. Tormyshev
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Alexey S. Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Elena G. Bagryanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| |
Collapse
|
20
|
Krumkacheva OA, Timofeev IO, Politanskaya LV, Polienko YF, Tretyakov EV, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Chubarov AS, Bagryanskaya EG, Fedin MV. Triplet Fullerenes as Prospective Spin Labels for Nanoscale Distance Measurements by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2019; 58:13271-13275. [PMID: 31322814 DOI: 10.1002/anie.201904152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Indexed: 11/11/2022]
Abstract
Precise nanoscale distance measurements by pulsed electron paramagnetic resonance (EPR) spectroscopy play a crucial role in structural studies of biomolecules. The properties of the spin labels used in this approach determine the sensitivity limits, attainable distances, and proximity to biological conditions. Herein, we propose and validate the use of photoexcited fullerenes as spin labels for pulsed dipolar (PD) EPR distance measurements. Hyperpolarization and the narrower spectrum of fullerenes compared to other triplets (e.g., porphyrins) boost the sensitivity, and superior relaxation properties allow PD EPR measurements up to a near-room temperature. This approach is demonstrated using fullerene-nitroxide and fullerene-triarylmethyl pairs, as well as a supramolecular complex of fullerene with nitroxide-labeled protein. Photoexcited triplet fullerenes can be considered as new spin labels with outstanding spectroscopic properties for future structural studies of biomolecules.
Collapse
Affiliation(s)
- Olesya A Krumkacheva
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ivan O Timofeev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Larisa V Politanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yuliya F Polienko
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Evgeny V Tretyakov
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Olga Yu Rogozhnikova
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Dmitry V Trukhin
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Victor M Tormyshev
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Elena G Bagryanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
21
|
Abdullin D, Matsuoka H, Yulikov M, Fleck N, Klein C, Spicher S, Hagelueken G, Grimme S, Lützen A, Schiemann O. Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case. Chemistry 2019; 25:8820-8828. [PMID: 31017706 DOI: 10.1002/chem.201900977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+ /nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006, 30, 683-702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Current address: Graduate School of Science, Osaka City University, Osaka, Japan
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nico Fleck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Christoph Klein
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Qu Y, Li Y, Tan X, Zhai W, Han G, Hou J, Liu G, Song Y, Liu Y. Synthesis and Characterization of Hydrophilic Trityl Radical TFO for Biomedical and Biophysical Applications. Chemistry 2019; 25:7888-7895. [PMID: 30972843 DOI: 10.1002/chem.201900262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 12/18/2022]
Abstract
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications as spin probes/labels for EPR spectroscopy and imaging, and as polarizing agents for dynamic nuclear polarization. The high hydrophilicity of TAM radicals is essential for their biomedical applications. However, the synthesis of hydrophilic TAM radicals (e.g., OX063) is extremely challenging and has only been reported in the patent literature, to date. Herein, an efficient synthesis of a highly water-soluble TAM radical bis(8-carboxyl-2,2,6,6-tetramethylbenzo[1,2-d:4,5-d']bis([1,3]dithiol-4-yl)-mono-(8-carboxyl-2,2,6,6-tetrakis(2-hydroxyethyl)benzo[1,2-d:4,5-d']bis([1,3]dithiol-4-yl)methyl (TFO), which contains four additional hydroxylethyl groups, relative to the Finland trityl radical CT-03, is reported. Similar to OX063, TFO exhibits excellent properties, including high water solubility in phosphate buffer, low log P, low pKa , long relaxation times, and negligible binding with bovine serum albumin. On the other hand, TFO has a sharper EPR line and higher O2 sensitivity than those of OX063. Therefore, in combination with its facile synthesis, TFO should find wide applications in magnetic resonance related fields and this synthetic approach would shed new light on the synthesis of other hydrophilic TAM radicals.
Collapse
Affiliation(s)
- Yuying Qu
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Yingchun Li
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, P.R. China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| |
Collapse
|
23
|
Dal Farra MG, Richert S, Martin C, Larminie C, Gobbo M, Bergantino E, Timmel CR, Bowen AM, Di Valentin M. Light-Induced Pulsed EPR Dipolar Spectroscopy on a Paradigmatic Hemeprotein. Chemphyschem 2019; 20:931-935. [PMID: 30817078 PMCID: PMC6618045 DOI: 10.1002/cphc.201900139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/27/2019] [Indexed: 01/12/2023]
Abstract
Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.
Collapse
Affiliation(s)
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
- current affiliation: Institute of Physical ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Caterina Martin
- Department of BiologyUniversity of Padovaviale G. Colombo 335121PadovaItaly
- current affiliation: Groningen Biomolecular Science and Biotechnology InstituteUniversity of Groningen9700 ABGroningenThe Netherlands
| | - Charles Larminie
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| | | | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Alice M. Bowen
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marilena Di Valentin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
24
|
Yang Y, Yang F, Gong YJ, Bahrenberg T, Feintuch A, Su XC, Goldfarb D. High Sensitivity In-Cell EPR Distance Measurements on Proteins using an Optimized Gd(III) Spin Label. J Phys Chem Lett 2018; 9:6119-6123. [PMID: 30277780 DOI: 10.1021/acs.jpclett.8b02663] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Distance measurements by electron-electron double resonance (DEER) carried out on spin-labeled proteins delivered into cells provide new insights into the conformational states of proteins in their native environment. Such measurements depend on spin labels that exhibit high redox stability and high DEER sensitivity. Here we present a new Gd(III)-based spin label, BrPSPy-DO3A-Gd(III), which was derived from an earlier label, BrPSPy-DO3MA-Gd(III), by removing the methyl group from the methyl acetate pending arms. The small chemical modification led to a reduction in the zero-field splitting and to a significant increase in the phase memory time, which together culminated in a remarkable improvement of in-cell DEER sensitivity, while maintaining the high distance resolution. The excellent performance of BrPSPy-DO3A-Gd(III) in in-cell DEER measurements was demonstrated on doubly labeled ubiquitin and GB1 delivered into HeLa cells by electroporation.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
25
|
Tan X, Tao S, Liu W, Rockenbauer A, Villamena FA, Zweier JL, Song Y, Liu Y. Synthesis and Characterization of the Perthiatriarylmethyl Radical and Its Dendritic Derivatives with High Sensitivity and Selectivity to Superoxide Radical. Chemistry 2018; 24:6958-6967. [DOI: 10.1002/chem.201800134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/03/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Shanqing Tao
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Wenbo Liu
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry; Hungarian Academy of Sciences and; Department of Physics; Budapest University of Technology and Economics; Budafoki ut 8 1111 Budapest Hungary
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology; College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging; The Davis Heart and Lung Research Institute; Division of Cardiovascular Medicine; Department of Internal Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of; Clinical Therapeutics and Diagnostics; School of Pharmacy; Tianjin Medical University; Tianjin 300070 P.R. China
| |
Collapse
|
26
|
Giannoulis A, Oranges M, Bode BE. Monitoring Complex Formation by Relaxation-Induced Pulse Electron Paramagnetic Resonance Distance Measurements. Chemphyschem 2017; 18:2318-2321. [PMID: 28672084 PMCID: PMC5601224 DOI: 10.1002/cphc.201700666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/14/2022]
Abstract
Biomolecular complexes are often multimers fueling the demand for methods that allow unraveling their composition and geometric arrangement. Pulse electron paramagnetic resonance (EPR) spectroscopy is increasingly applied for retrieving geometric information on the nanometer scale. The emerging RIDME (relaxation‐induced dipolar modulation enhancement) technique offers improved sensitivity in distance experiments involving metal centers (e.g. on metalloproteins or proteins labelled with metal ions). Here, a mixture of a spin labelled ligand with increasing amounts of paramagnetic CuII ions allowed accurate quantification of ligand‐metal binding in the model complex formed. The distance measurement was highly accurate and critical aspects for identifying multimerization could be identified. The potential to quantify binding in addition to the high‐precision distance measurement will further increase the scope of EPR applications.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance and, EaStCHEM School of Chemistry, University of St AndrewsNorth Haugh, St Andrews, KY16 9ST, UK
| | - Maria Oranges
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance and, EaStCHEM School of Chemistry, University of St AndrewsNorth Haugh, St Andrews, KY16 9ST, UK
| | - Bela E Bode
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance and, EaStCHEM School of Chemistry, University of St AndrewsNorth Haugh, St Andrews, KY16 9ST, UK
| |
Collapse
|
27
|
Krumkacheva O, Bagryanskaya E. EPR-based distance measurements at ambient temperature. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:117-126. [PMID: 28579097 DOI: 10.1016/j.jmr.2017.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/24/2023]
Abstract
Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.
Collapse
Affiliation(s)
- Olesya Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; International Tomography Center SB RAS, Institutskaya 3A, Novosibirsk 630090, Russian Federation.
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
28
|
Lawless MJ, Shimshi A, Cunningham TF, Kinde MN, Tang P, Saxena S. Analysis of Nitroxide-Based Distance Measurements in Cell Extracts and in Cells by Pulsed ESR Spectroscopy. Chemphyschem 2017; 18:1653-1660. [PMID: 28295910 DOI: 10.1002/cphc.201700115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 11/10/2022]
Abstract
Measurements of distances in cells by pulsed ESR spectroscopy afford tremendous opportunities to study proteins in native environments that are irreproducible in vitro. However, the in-cell environment is harsh towards the typical nitroxide radicals used in double electron-electron resonance (DEER) experiments. A systematic examination is performed on the loss of the DEER signal, including contributions from nitroxide decay and nitroxide side-chain cleavage. In addition, the possibility of extending the lifetime of the nitroxide radical by use of an oxidizing agent is investigated. Using this oxidizing agent, DEER distance measurements are performed on doubly nitroxide-labeled GB1, the immunoglobulin-binding domain of protein G, at varying incubation times in the cellular environment. It is found that, by comparison of the loss of DEER signal to the loss of the CW spectrum, cleavage of the nitroxide side chain contributes to the loss of DEER signal, which is significantly greater in cells than in cell extracts. Finally, local spin concentrations are monitored at varying incubation times to show the time required for molecular diffusion of a small globular protein within the cellular milieu.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Amit Shimshi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.,Current address: Department of Chemistry, Hanover College, 484 Ball Dr, Hanover, IN, 47243, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA.,Current address: Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 2901 St. John's Blvd., Joplin, MO, 64804, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
29
|
Yang Y, Yang F, Gong YJ, Chen JL, Goldfarb D, Su XC. A Reactive, Rigid Gd III Labeling Tag for In-Cell EPR Distance Measurements in Proteins. Angew Chem Int Ed Engl 2017; 56:2914-2918. [PMID: 28145030 DOI: 10.1002/anie.201611051] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/02/2016] [Indexed: 01/17/2023]
Abstract
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in-cell distance measurements by the double electron-electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol-specific DOTA-derivative (DO3MA-3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in-cell distance measurements by the DEER method carried out at W-band frequencies. The high performance of DO3MA-3BrPy-GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High-quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in-cell protein concentrations as low as 5-10 μm.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
30
|
Yang Y, Yang F, Gong YJ, Chen JL, Goldfarb D, Su XC. A Reactive, Rigid GdIII
Labeling Tag for In-Cell EPR Distance Measurements in Proteins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yin Yang
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Daniella Goldfarb
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|