1
|
Ji Y, Pan Y, Ma X, Ma Y, Zhao Z, He Q. pH-Sensitive Glucose-Powered Nanomotors for Enhanced Intracellular Drug Delivery and Ferroptosis Efficiency. Chem Asian J 2024; 19:e202300879. [PMID: 37930193 DOI: 10.1002/asia.202300879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
We propose a glucose-powered Janus nanomotor where two faces are functionalized with glucose oxidase (GOx) and polydopamine-Fe3+ chelates (PDF), respectively. In the glucose fuel solution, the GOx on the one side of these Janus nanomotors catalytically decomposes glucose fuels into gluconic acid and hydrogen peroxide (H2 O2 ) to drive them at a speed of 2.67 μm/s. The underlying propulsion mechanism is the glucose-based self-diffusiophoresis owing to the generated local glucose concentration gradient by the enzymatic reaction. Based on the enhanced diffusion motion, such nanomotors with catalytic activity increase the uptake towards cells and subsequently exhibit excellent capabilities for Fe3+ ions delivery and H2 O2 generation for enhancing ferroptosis efficiency for inducing cancer cell death. In particular, the Fe3+ ions are released from nanomotors in a slightly acidic environment, and subsequently generate toxic hydroxyl radicals via Fenton reactions, which accumulation reactive oxygen species (ROS) level (~300 %) and further lipid peroxidation (LPO) strengthened ferroptosis therapy for cancer treatment. The as-developed glucose-powered Janus nanomotor with efficient diffusion and Fe ions delivery capabilities show great promise as a potential in biomedical applications.
Collapse
Affiliation(s)
- Yuxing Ji
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanan Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuemei Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
2
|
Zhang T, Dong C, Ren J. Probing the Protein Corona of Nanoparticles in a Fluid Flow by Single-Particle Differenced Resonance Light Scattering Correlation Spectroscopy. Anal Chem 2023; 95:2029-2038. [PMID: 36607829 DOI: 10.1021/acs.analchem.2c04568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The protein corona of nanoparticles (NPs) plays a crucial role in determining NPs' biological fates. Here, a novel measurement strategy was proposed to in situ investigate the protein corona formed in the NPs with the home-built dual-wavelength laser-irradiated differenced resonance light scattering correlation spectroscopy (D-RLSCS) technique, combined with the modified generation method of the D-RLSCS curve. With the measurement strategy, the dissociation constants and the binding rates between proteins and gold nanoparticles (GNPs) were determined based on the binding-induced ratiometric diffusion change of NPs (the ratio of characteristic rotational diffusion time to translational one), using the formation of the protein corona of bovine serum albumin (BSA) or fibrinogen (FIB) on gold nanoparticles as a model. It was found that BSA shows a stronger binding constant and faster binding rate to gold nanospheres (GNSs) compared with those of FIB. Meanwhile, the dynamic behavior of the protein corona in a fluid flow mimicking biological vessels was further studied based on the combination of the D-RLSCS technique with a microfluidic channel. The measurement results indicated that some "loose" protein corona layers would strip off the surface of NPs within the microchannel due to the fluid sheath force. This method can provide the comprehensive information of a protein corona by averaging the diffusion behavior of many particles different from some conventional methods and overcome the shortcomings of conventional correlation spectroscopy methods.
Collapse
Affiliation(s)
- Tian Zhang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
| |
Collapse
|
3
|
Zhang W, Taheri-Ledari R, Ganjali F, Mirmohammadi SS, Qazi FS, Saeidirad M, KashtiAray A, Zarei-Shokat S, Tian Y, Maleki A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Adv 2022; 13:80-114. [PMID: 36605676 PMCID: PMC9764328 DOI: 10.1039/d2ra06888e] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In the field of targeted drug delivery, the effects of size and morphology of drug nanocarriers are of great importance and need to be discussed in depth. To be concise, among all the various shapes of nanocarriers, rods and tubes with a narrow cross-section are the most preferred shapes for the penetration of a cell membrane. In this regard, several studies have focused on methods to produce nanorods and nanotubes with controlled optimized size and aspect ratio (AR). Additionally, a non-spherical orientation could affect the cellular uptake process while a tangent angle of less than 45° is better at penetrating the membrane, and Ω = 90° is beneficial. Moreover, these nanocarriers show different behaviors when confronting diverse cells whose fields should be investigated in future studies. In this survey, a comprehensive classification based on carrier shape is first submitted. Then, the most commonly used methods for control over the size and shape of the carriers are reviewed. Finally, influential factors on the cellular uptake and internalization processes and related analytical methods for evaluating this process are discussed.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P. R. China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Amir KashtiAray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ye Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section of South Renmin Road Chengdu 610041 P. R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| |
Collapse
|
4
|
Shao J, Cao S, Williams DS, Abdelmohsen LKEA, van Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem Int Ed Engl 2020; 59:16918-16925. [PMID: 32533754 PMCID: PMC7540338 DOI: 10.1002/anie.202003748] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 01/05/2023]
Abstract
Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non-degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near-infrared (NIR)-irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s-1 . These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.
Collapse
Affiliation(s)
- Jingxin Shao
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Shoupeng Cao
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| | - David S. Williams
- Department of ChemistryCollege of ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology, Helix (STO 3.41)P. O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
5
|
Shao J, Cao S, Williams DS, Abdelmohsen LKEA, Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingxin Shao
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Shoupeng Cao
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - David S. Williams
- Department of Chemistry College of Science Swansea University Swansea SA2 8PP UK
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jan C. M. Hest
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology, Helix (STO 3.41) P. O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
6
|
Lian M, Xue Z, Qiao X, Liu C, Zhang S, Li X, Huang C, Song Q, Yang W, Chen X, Wang T. Movable Hollow Nanoparticles as Reactive Oxygen Scavengers. Chem 2019. [DOI: 10.1016/j.chempr.2019.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Chen X, Zhou C, Wang W. Colloidal Motors 101: A Beginner's Guide to Colloidal Motor Research. Chem Asian J 2019; 14:2388-2405. [DOI: 10.1002/asia.201900377] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xi Chen
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| | - Chao Zhou
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| | - Wei Wang
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| |
Collapse
|
8
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019; 58:7992-7996. [DOI: 10.1002/anie.201900697] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
9
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
10
|
Saad E, Faltas M. Theory of thermophoresis of a spherical particle embedded in a micropolar fluid. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Xuan M, Shao J, Gao C, Wang W, Dai L, He Q. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angew Chem Int Ed Engl 2018; 57:12463-12467. [DOI: 10.1002/anie.201806759] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Jingxin Shao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Wei Wang
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Luru Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beiyitiao 11 Beijing 100190 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| |
Collapse
|
12
|
Xuan M, Shao J, Gao C, Wang W, Dai L, He Q. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806759] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Jingxin Shao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Wei Wang
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Luru Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beiyitiao 11 Beijing 100190 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing; Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| |
Collapse
|
13
|
Xuan M, Mestre R, Gao C, Zhou C, He Q, Sánchez S. Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor. Angew Chem Int Ed Engl 2018; 57:6838-6842. [DOI: 10.1002/anie.201801910] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Chang Zhou
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
- Institució Catalana de Recerca i Estudis Avancats (ICREA); Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
14
|
Xuan M, Mestre R, Gao C, Zhou C, He Q, Sánchez S. Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mingjun Xuan
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Chang Zhou
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing (Ministry of Education); Micro/Nanotechnology Research Centre; Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Yikuangjie 2 Harbin 150080 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
- Max Planck Institute for Intelligent Systems; Heisenbergstraße 3 70569 Stuttgart Germany
- Institució Catalana de Recerca i Estudis Avancats (ICREA); Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
15
|
Li H, Wang P, Gong W, Wang Q, Zhou J, Zhu WH, Cheng Y. Dendron-Grafted Polylysine-Based Dual-Modal Nanoprobe for Ultra-Early Diagnosis of Pancreatic Precancerosis via Targeting a Urokinase-Type Plasminogen Activator Receptor. Adv Healthc Mater 2018; 7. [PMID: 29195018 DOI: 10.1002/adhm.201700912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/17/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death. Early detection of precancerous pancreatic intraepithelial neoplasia (PanIN) tissues is an urgent challenge to improve the PDAC prognosis. Here, a urokinase-type plasminogen activator receptor (uPAR)-targeted magnetic resonance (MR)/near-infrared fluorescence (NIRF) dual-modal nanoprobe dendron-grafted polylysine (DGL)-U11 for ultra-early detection of pancreatic precancerosis is reported. Because of its good biocompatibility and biodegradability, globular architecture, and well-defined reactive groups, the DGL is chosen as the platform to load with a pancreatic tumor-targeting peptide U11, a magnetic resonance contrast agent Gd3+ -diethylene triamine pentaacetic acid, and a near-infrared fluorescent cyanine dye Cy5.5. The nanoprobe DGL-U11 has several preferable characteristics, such as active peptide targeting to activator receptor, good biocompatibility, dual-modal imaging diagnosis, and well controlled diameter in a range of 15-25 nm. Upon incorporation of the active U11 peptide target to the overexpressed activator receptor uPAR, the targeted nanoprobe DGL-U11 can increase to the earlier PanIN-II stage through in vivo NIRF imaging. Labeled with both MR and NIRF bioimaging reporters, the uPAR-targeted dual-modal nanoprobe is very effective in the targeted imaging of precancerous PanINs and PDAC lesions with high sensitivity and spatial resolution, providing a promising platform to the ultra-early detection of PDAC.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Wenyu Gong
- Department of CT, the First People's Hospital of Yancheng City, Jiangsu, 224005, China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jia Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| |
Collapse
|