1
|
Cao S, Li H, Teng X, Si H, Chen R, Zhu Y. Access to Fully Substituted Dihydropyrimidines via Dual Copper/Photoredox‐Catalyzed Domino Annulation of Oxime Esters and Imines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Luo ZT, Fan JH, Xiong BQ, Liu Y, Huang PF. Visible‐Light‐Induced Acylation/Arylation of Alkenes via Aryl Migration/Desulfonylation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen-Tao Luo
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering CHINA
| | - Jian-Hong Fan
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering CHINA
| | - Bi-Quan Xiong
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering CHINA
| | - Yu Liu
- Hunan Institute of Science and Technology Department of Chemistry and Chemical engineering Xueyuan Road 414006 Yueyang CHINA
| | - Peng-Fei Huang
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
3
|
Wu J, Peng Z, Shen T, Liu ZQ. Electrosynthesis of ortho‐Amino Aryl Ketones by Aerobic Electrooxidative Cleavage of the C(2)=C(3)/C(2)‐N Bonds of N‐Boc Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jintao Wu
- Nanjing University of Chinese Medicine CHINA
| | - Zehui Peng
- Nanjing University of Chinese Medicine CHINA
| | - Tong Shen
- Nanjing University of Chinese Medicine CHINA
| | - Zhong-Quan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University CHINA
| |
Collapse
|
4
|
Zheng YN, Liu Y, Cai XE, Wu HL, Huang XJ, Liu Y, Wei WT. Ring‐opening/cyclization of cyclobutanone oxime esters with alkenes in biomass‐derived solvent using copper catalyst and inorganic oxidant. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan-Nan Zheng
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yi Liu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xue-Er Cai
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Hong-Li Wu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xun-Jie Huang
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yilin Liu
- Huaihua University College of Chemistry and Materials Engineering 418008 Huaihua CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
5
|
Kweon B, Kim C, Kim S, Hong S. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of
O
‐Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Changha Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
6
|
Kweon B, Kim C, Kim S, Hong S. Remote C-H Pyridylation of Hydroxamates through Direct Photoexcitation of O-Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021; 60:26813-26821. [PMID: 34636478 DOI: 10.1002/anie.202112364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/22/2023]
Abstract
Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.
Collapse
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Gao PP, Yan DM, Bi MH, Jiang M, Xiao WJ, Chen JR. Alkene Synthesis by Photo-Wolff-Kischner Reaction of Sulfur Ylides and N-Tosylhydrazones. Chemistry 2021; 27:14195-14201. [PMID: 34374474 DOI: 10.1002/chem.202102671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 12/17/2022]
Abstract
A visible-light-driven and room temperature photo-Wolff-Kischner reaction of sulfur ylides and N-tosylhydrazones has been developed for the first time to provide modular access to alkene synthesis. The high functional group tolerance and broad substrate scope were demonstrated by more than 60 examples. Both E- and Z-olefinic stereochemistry in the products could be controlled with excellent stereoselectivity. A series of mechanistic studies support that the reaction should proceed through a radical-carbanion crossover pathway, specifically involving addition of photo-generated sulfur ylide radical cations to N-tosylhydrazones to form carbanions and subsequent Wolff-Kischner process.
Collapse
Affiliation(s)
- Pan-Pan Gao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Dong-Mei Yan
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Ming-Hang Bi
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310036, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
8
|
Whalley DM, Seayad J, Greaney MF. Truce–Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal‐Free Arylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Whalley
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Michael F. Greaney
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
9
|
Whalley DM, Seayad J, Greaney MF. Truce-Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal-Free Arylation. Angew Chem Int Ed Engl 2021; 60:22219-22223. [PMID: 34370898 DOI: 10.1002/anie.202108240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/30/2023]
Abstract
The ring-opening of 3-aminocyclobutanone oximes enables easy generation of primary alkyl radicals, capable of undergoing an unprecedented strain-release, desulfonylative radical Truce-Smiles rearrangement, providing divergent access to valuable 1,3 diamines and unnatural β-amino acids. Characterized by mild conditions and wide scope of migrating species, this protocol allows the modular assembly of sp3 -aryls under transition metal-free, room-temperature conditions.
Collapse
Affiliation(s)
- David M Whalley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Michael F Greaney
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
10
|
Chen P, Xie J, Chen Z, Xiong B, Liu Y, Yang C, Tang K. Visible‐Light‐Mediated Nitrogen‐Centered Radical Strategy: Preparation of 3‐Acylated Spiro[4,5]trienones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Chang‐An Yang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| |
Collapse
|
11
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
12
|
Meyer T, Rabeah J, Brückner A, Wu XF. Visible-Light-Induced Palladium-Catalyzed Dehydrogenative Carbonylation of Amines to Oxalamides. Chemistry 2021; 27:5642-5647. [PMID: 33565685 DOI: 10.1002/chem.202100009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/08/2021] [Indexed: 12/23/2022]
Abstract
The palladium-catalyzed oxidative carbonylation of amines toward the synthesis of oxalamides has been established around 30 years ago and it usually needs the presence of (over)stoichiometric amounts of oxidant. In this work, the first transformation of this type in which the oxidant was replaced by visible light is described. The new approach uses a simple robust Pd complex, which can even be partially recycled. A mechanistic reason is provided and supported by control experiments and EPR studies, showing that PdI was formed and Pd0 was the active species. Both nitrogen- and the intermediate acyl radical can be detected. Moreover, the formation of hydrogen was confirmed by gas GC.
Collapse
Affiliation(s)
- Tim Meyer
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China
| |
Collapse
|
13
|
Matsumoto A, Nguyen BN, Honda T, Sakamoto R, Huang X, Sakaki S, Maruoka K. Deacylative Carbon-Carbon Bond Cleavage of Ketone Equivalents: Applications to Radical Carbon-Carbon Bond Formation Reactions. Chem Asian J 2021; 16:282-286. [PMID: 33346943 DOI: 10.1002/asia.202001366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Indexed: 11/08/2022]
Abstract
This article describes the synthetic application of ketone-derived oxaziridines as alkyl radical precursors in copper-catalyzed Carbon-Carbon bond formation reactions. Experimental and computational studies indicate a free radical mechanism, where alkyl radicals are efficiently generated via cleavage of a Carbon-Carbon bond of oxaziridines. Acyclic and unstrained cyclic oxaziridines are applicable to the present radical process, allowing for the generation of various alkyl radicals with good functional group compatibility.
Collapse
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Bich-Ngoc Nguyen
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Tsubasa Honda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Ryu Sakamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Xiao Huang
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo, Kyoto, 606-8103, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
14
|
Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianbo Du
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xiaokun Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xin Wang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Qing An
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xu He
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Hui Pan
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
15
|
Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angew Chem Int Ed Engl 2021; 60:5370-5376. [PMID: 33259085 DOI: 10.1002/anie.202012720] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/16/2020] [Indexed: 12/17/2022]
Abstract
We describe a cerium-catalyzed aerobic oxidative ring expansion for the expedient construction of synthetically challenging macrolactones under visible-light conditions. Cyanoanthracene has been employed as co-catalyst to accelerate the turnover of the cerium cycle leading to a fast conversion within 20 min of irradiation. Taking advantage of the high efficiency and operationally simple conditions, a collection of over 100 macrolactones equipped with ring systems ranging from 9- to 19-membered macrocycles have been prepared from simple building blocks. Moreover, the enabling potential of this strategy to simplify the generation of molecular complexity has been demonstrated through the concise synthesis of sonnerlactone.
Collapse
Affiliation(s)
- Jianbo Du
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaokun Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Xin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Xu He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
16
|
Jiang YX, Chen L, Ran CK, Song L, Zhang W, Liao LL, Yu DG. Visible-Light Photoredox-Catalyzed Ring-Opening Carboxylation of Cyclic Oxime Esters with CO 2. CHEMSUSCHEM 2020; 13:6312-6317. [PMID: 33017513 DOI: 10.1002/cssc.202002032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The carboxylation of cyclic oxime esters with carbon dioxide via visible-light photoredox catalysis is demonstrated for the first time. A variety of cyclic oxime esters undergo ring-opening C-C bond cleavage and carboxylation to give cyanoalkyl-containing carboxylic acids in moderate to good yields. Moreover, this methodology features mild reaction conditions (room temperature, 1 atm), wide substrate scope, good functional group tolerance as well as facile derivations of products. Mechanistic studies indicate that the benzylic radicals and anions might be the key intermediates.
Collapse
Affiliation(s)
- Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Liang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, 3663N Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
17
|
Niu P, Li J, Zhang Y, Huo C. One‐Electron Reduction of Redox‐Active Esters to Generate Carbon‐Centered Radicals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000525] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pengfei Niu
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Jun Li
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Yongxin Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Congde Huo
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| |
Collapse
|
18
|
Chen Z, Zhou Q, Wang Q, Chen P, Xiong B, Liang Y, Tang K, Liu Y. Iron‐Mediated Cyanoalkylsulfonylation/Arylation of Active Alkenes with Cycloketone Oxime Derivatives via Sulfur Dioxide Insertion. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000369] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Quan Zhou
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Qiao‐Lin Wang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Pu Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| |
Collapse
|
19
|
Zhang JW, Wang YR, Pan JH, He YH, Yu W, Han B. Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angew Chem Int Ed Engl 2020; 59:3900-3904. [PMID: 31869508 DOI: 10.1002/anie.201914623] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Indexed: 12/20/2022]
Abstract
A deconstructive oxygenation of unstrained primary cycloalkanamines has been developed for the first time using an auto-oxidative aromatization promoted C(sp3 )-C(sp3 ) bond cleavage strategy. This metal-free method involves the substitution reaction of cycloalkanamines with hydrazonyl chlorides and subsequent auto-oxidative annulation to in situ generate pre-aromatics, followed by N-radical-promoted ring-opening and further oxygenation by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and m-cholorperoxybenzoic acid (mCPBA). Consequently, a series of 1,2,4-triazole-containing acyclic carbonyl compounds were efficiently produced. This protocol features a one-pot operation, mild reaction conditions, high regioselectivity and ring-opening efficiency, broad substrate scope, and is compatible with alkaloids, osamines, and peptides, as well as steroids.
Collapse
Affiliation(s)
- Jian-Wu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuan-Rui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia-Hao Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yi-Heng He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
20
|
Zhang J, Wang Y, Pan J, He Y, Yu W, Han B. Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian‐Wu Zhang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yuan‐Rui Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Jia‐Hao Pan
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yi‐Heng He
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
21
|
Mai WP, Liu Y, Sui HD, Xiao YM, Mao P, Lu K. A Novel Ketonitrile Synthesis by Palladium-Catalyzed Carbonylative Coupling Reactions of Amides with Arylboronic Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wen-Peng Mai
- School of Materials and Chemical Engineering; Henan University of Engineering; 450006 Zhengzhou China
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Yang Liu
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Hong-Dai Sui
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Pu Mao
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
| | - Kui Lu
- School of Materials and Chemical Engineering; Henan University of Engineering; 450006 Zhengzhou China
- School of Chemistry and Chemical Engineering; Henan University of Technology; 450001 Zhengzhou China
- School of Chemical Engineering and Food Science; Zhengzhou Institute of Technology; 450044 Zhengzhou China
| |
Collapse
|
22
|
Zhou X, Cheng Y, Chen J, Yu X, Xiao W, Chen J. Copper‐Catalyzed Radical Cross‐Coupling of Oxime Esters and Sulfinates for Synthesis of Cyanoalkylated Sulfones. ChemCatChem 2019. [DOI: 10.1002/cctc.201901695] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xue‐Song Zhou
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Xiao‐Ye Yu
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry 345 Lingling Road Shanghai 200032 P. R. China
| | - Jia‐Rong Chen
- CCNU-uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of ChemistryCentral China Normal University 152 Luoyu Road Hubei 430079 P. R. China
| |
Collapse
|
23
|
Song C, Dong X, Wang Z, Liu K, Chiang C, Lei A. Visible‐Light‐Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Zhongjie Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 Jiangxi P. R. China
| |
Collapse
|
24
|
Song C, Dong X, Wang Z, Liu K, Chiang C, Lei A. Visible‐Light‐Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angew Chem Int Ed Engl 2019; 58:12206-12210. [DOI: 10.1002/anie.201905971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/16/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Zhongjie Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 Jiangxi P. R. China
| |
Collapse
|
25
|
Zhao J, Bao Y, Wang Y, Chen C, Zhu B. Copper‐Catalyzed Group‐Transfer Radical Cyclization of γ,δ‐Unsaturated Oxime Esters: Synthesis of Ester‐Functionalized Pyrrolines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Yinwei Bao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Yuebo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
26
|
Morcillo SP. Radical‐Promoted C−C Bond Cleavage: A Deconstructive Approach for Selective Functionalization. Angew Chem Int Ed Engl 2019; 58:14044-14054. [DOI: 10.1002/anie.201905218] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sara P. Morcillo
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Granada Avda. Fuentenueva, s/n 18071 Granada Spain
| |
Collapse
|
27
|
Morcillo SP. Radical‐Promoted C−C Bond Cleavage: A Deconstructive Approach for Selective Functionalization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905218] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sara P. Morcillo
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Granada Avda. Fuentenueva, s/n 18071 Granada Spain
| |
Collapse
|
28
|
Zhao Q, Chen J, Zhou X, Yu X, Chen J, Xiao W. Photogenerated Neutral Nitrogen Radical Catalyzed Bifunctionalization of Alkenes. Chemistry 2019; 25:8024-8029. [DOI: 10.1002/chem.201901665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Quan‐Qing Zhao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Xue‐Song Zhou
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Xiao‐Ye Yu
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Jia‐Rong Chen
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
29
|
Torres-Ochoa RO, Leclair A, Wang Q, Zhu J. Iron-Catalysed Remote C(sp 3 )-H Azidation of O-Acyl Oximes and N-Acyloxy Imidates Enabled by 1,5-Hydrogen Atom Transfer of Iminyl and Imidate Radicals: Synthesis of γ-Azido Ketones and β-Azido Alcohols. Chemistry 2019; 25:9477-9484. [PMID: 30968981 DOI: 10.1002/chem.201901079] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/16/2022]
Abstract
In the presence of a catalytic amount of iron(III) acetylacetonate [Fe(acac)3 ], the reaction of structurally diverse ketoxime esters with trimethylsilyl azide (TMSN3 ) afforded γ-azido ketones in good to excellent yields. This unprecedented distal γ-C(sp3 )-H bond azidation reaction went through a sequence of reductive generation of an iminyl radical, 1,5-hydrogen atom transfer (1,5-HAT) and iron-mediated redox azido transfer to the translocated carbon radical. TMSN3 served not only as a nitrogen source to functionalise the unactivated C(sp3 )-H bond, but also as a reductant to generate the catalytically active FeII species in situ. Based on the same principle, a novel β-C(sp3 )-H functionalisation of alcohols via N-acyloxy imidates was subsequently realised, leading, after hydrolysis of the resulting ester, to β-azido alcohols, which are important building blocks in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Rubén O Torres-Ochoa
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Alexandre Leclair
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
30
|
Jian Y, Chen M, Yang C, Xia WJ. Minisci-Type C-H Cyanoalkylation of Heteroarenes Through N-O/C-C Bonds Cleavage. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yong Jian
- State Key Lab of Urban Water Resource and Environment; Harbin Institute of Technology (Shenzhen); 518055 Shenzhen China
| | - Ming Chen
- School of Basic Medical Sciences; Xinxiang Medical University; 453003 Xinxiang China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment; Harbin Institute of Technology (Shenzhen); 518055 Shenzhen China
| | - Wu-jiong Xia
- State Key Lab of Urban Water Resource and Environment; Harbin Institute of Technology (Shenzhen); 518055 Shenzhen China
| |
Collapse
|
31
|
Jiang X, Zhang MM, Xiong W, Lu LQ, Xiao WJ. Deaminative (Carbonylative) Alkyl-Heck-type Reactions Enabled by Photocatalytic C-N Bond Activation. Angew Chem Int Ed Engl 2019; 58:2402-2406. [PMID: 30565825 DOI: 10.1002/anie.201813689] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Indexed: 12/26/2022]
Abstract
The palladium-catalyzed Heck reaction is a well-known, Nobel Prize winning transformation for producing alkenes. Unlike the alkenyl and aryl variants of the Heck reaction, the alkyl-Heck reaction is still underdeveloped owing to the competitive side reactions of alkyl-palladium species. Herein, we describe the development of a deaminative alkyl-Heck-type reaction that proceeds through C-N bond activation by visible-light photoredox catalysis. A variety of aliphatic primary amines were found to be efficient starting materials for this new process, affording the corresponding alkene products in good yields under mild reaction conditions. Moreover, this strategy was successfully applied to deaminative carbonylative alkyl-Heck-type reactions.
Collapse
Affiliation(s)
- Xuan Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Mao-Mao Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wei Xiong
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Liang-Qiu Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
32
|
Jiang X, Zhang MM, Xiong W, Lu LQ, Xiao WJ. Deaminative (Carbonylative) Alkyl-Heck-type Reactions Enabled by Photocatalytic C−N Bond Activation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuan Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 China
| | - Mao-Mao Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wei Xiong
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang-Qiu Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
33
|
Zhang W, Zou Z, Wang Y, Wang Y, Liang Y, Wu Z, Zheng Y, Pan Y. Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using N
-Hydroxybenzimidoyl Chloride Esters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yuanheng Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
34
|
Zhang W, Zou Z, Wang Y, Wang Y, Liang Y, Wu Z, Zheng Y, Pan Y. Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using N-Hydroxybenzimidoyl Chloride Esters. Angew Chem Int Ed Engl 2018; 58:624-627. [PMID: 30444559 DOI: 10.1002/anie.201812192] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 01/07/2023]
Abstract
Redox-active esters (RAEs) as alkyl radical precursors have been extensively developed for C-C bond formations. However, the analogous transformations of fluoroalkyl radicals from the corresponding acid or ester precursors remain challenging because of the high oxidation potential of the fluoroalkyl carboxylate anions. The newly developed N-hydroxybenzimidoylchloride (NHBC) ester provides a general leaving group assisted strategy to generate a portfolio of fluoroalkyl radicals, and can be successfully applied in photoinduced decarboxylative hydrofluoroalkylation and heteroarylation of unactivated olefins. In addition, DFT calculations revealed that the NHBC ester proceeds by the fluorocarbon radical pathway, whereas other well-known RAEs proceed by the nitrogen radical pathway.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuanheng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhengguang Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
35
|
Yu X, Zhao Q, Chen J, Chen J, Xiao W. Copper‐Catalyzed Radical Cross‐Coupling of Redox‐Active Oxime Esters, Styrenes, and Boronic Acids. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Ye Yu
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Quan‐Qing Zhao
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Jun Chen
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Jia‐Rong Chen
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 China
| |
Collapse
|
36
|
Yu X, Zhao Q, Chen J, Chen J, Xiao W. Copper‐Catalyzed Radical Cross‐Coupling of Redox‐Active Oxime Esters, Styrenes, and Boronic Acids. Angew Chem Int Ed Engl 2018; 57:15505-15509. [DOI: 10.1002/anie.201809820] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao‐Ye Yu
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Quan‐Qing Zhao
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Jun Chen
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Jia‐Rong Chen
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreHubei International Scientific and Technological Cooperation Base of Pesticide and Green SynthesisKey Laboratory of Pesticides & Chemical Biology Ministry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 China
| |
Collapse
|
37
|
Yan D, Zhao Q, Rao L, Chen J, Xiao W. Eosin Y as a Redox Catalyst and Photosensitizer for Sequential Benzylic C−H Amination and Oxidation. Chemistry 2018; 24:16895-16901. [DOI: 10.1002/chem.201804229] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Dong‐Mei Yan
- CCNU–uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of, Pesticide and Green Synthesis Key Laboratory of Pesticides &, Chemical Biology Ministry of Education College of Chemistry Central China Normal University 52 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Quan‐Qing Zhao
- CCNU–uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of, Pesticide and Green Synthesis Key Laboratory of Pesticides &, Chemical Biology Ministry of Education College of Chemistry Central China Normal University 52 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Li Rao
- CCNU–uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of, Pesticide and Green Synthesis Key Laboratory of Pesticides &, Chemical Biology Ministry of Education College of Chemistry Central China Normal University 52 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Jia‐Rong Chen
- CCNU–uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of, Pesticide and Green Synthesis Key Laboratory of Pesticides &, Chemical Biology Ministry of Education College of Chemistry Central China Normal University 52 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Wen‐Jing Xiao
- CCNU–uOttawa Joint Research Centre Hubei International Scientific and Technological Cooperation Base of, Pesticide and Green Synthesis Key Laboratory of Pesticides &, Chemical Biology Ministry of Education College of Chemistry Central China Normal University 52 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
38
|
Ma ZY, Guo LN, Gu YR, Chen L, Duan XH. Iminyl Radical-Mediated Controlled Hydroxyalkylation of Remote C(sp
3
)-H Bond via Tandem 1,5-HAT and Difunctionalization of Aryl Alkenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801198] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi-Yong Ma
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Li-Na Guo
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Yu-Rui Gu
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Li Chen
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Xin-Hua Duan
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| |
Collapse
|
39
|
Wang H, Zhang D, Bolm C. Photocatalytic Additions of 1-Sulfoximidoyl-1,2-Benziodoxoles to Styrenes. Chemistry 2018; 24:14942-14945. [PMID: 30079969 DOI: 10.1002/chem.201803975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 11/10/2022]
Abstract
Sulfoximidoyl-containing 1,2-benziodoxoles add to styrenes by a photoredox radical process affording difunctionalized products with high regioselectivity. The solvent plays a significantly role in the reaction path, in which Eosin Y appears to have a dual role rendering the process diastereoselective.
Collapse
Affiliation(s)
- Han Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Duo Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
40
|
Zhao JF, Gao P, Duan XH, Guo LN. Iron-Catalyzed Ring-Opening/Allylation of Cyclobutanone Oxime Esters with Allylic Sulfones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701630] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing-Feng Zhao
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Pin Gao
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Xin-Hua Duan
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Li-Na Guo
- Department of Chemistry; School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| |
Collapse
|
41
|
Jiang H, Studer A. α-Aminoxy-Acid-Auxiliary-Enabled Intermolecular Radical γ-C(sp3
)−H Functionalization of Ketones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712066] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
42
|
Jiang H, Studer A. α-Aminoxy-Acid-Auxiliary-Enabled Intermolecular Radical γ-C(sp3
)−H Functionalization of Ketones. Angew Chem Int Ed Engl 2018; 57:1692-1696. [DOI: 10.1002/anie.201712066] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|