1
|
Freiberger M, Minameyer MB, Solymosi I, Frühwald S, Krug M, Xu Y, Hirsch A, Clark T, Guldi DM, von Delius M, Amsharov K, Görling A, Pérez-Ojeda ME, Drewello T. Two Rings Around One Ball: Stability and Charge Localization of [1 : 1] and [2 : 1] Complex Ions of [10]CPP and C 60/70 [ * ]. Chemistry 2023; 29:e202203734. [PMID: 36507855 DOI: 10.1002/chem.202203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP⊃C60 and [10]CPP⊃C70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 ⊃C60/70 )+ ⋅/- ⋅ type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.
Collapse
Affiliation(s)
- Markus Freiberger
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Martin B Minameyer
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Iris Solymosi
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Stefan Frühwald
- Theoretical Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Marcel Krug
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Youzhi Xu
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Hirsch
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Timothy Clark
- Computer-Chemistry-Center Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Dirk M Guldi
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Konstantin Amsharov
- Organic Chemistry Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Germany
| | - Andreas Görling
- Theoretical Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - M Eugenia Pérez-Ojeda
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Thomas Drewello
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Mitani T, Tsurumaki E, Toyota S. Structures and Supramolecular Properties of Inclusion Complexes of Anthracene-Triptycene Nanocages with Fullerene Guests and Their Dynamic Motion as Molecular Gyroscopes. Chemistry 2023; 29:e202203462. [PMID: 36460616 DOI: 10.1002/chem.202203462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Three derivatives of macrocyclic cage compounds consisting of diarylanthracene and triptycene units were synthesized. These nanocages formed host-guest complexes with C60 and other fullerene guests as confirmed by 1 H NMR and fluorescence spectroscopy. The association constant of the mesityl and 2,4,6-tributoxyphenyl derivatives with C60 was determined to be 2.2 × 104 L mol-1 , which was larger than that of the pentafluorophenyl derivative. Direct experimental evidence of the complexation was obtained by X-ray diffraction analysis: the guest C60 molecule was included in the cavity via multipoint CH⋅⋅⋅π interactions. Dynamic disorders of the included C60 molecule in variable-temperature X-ray analysis indicated uniaxial motion, such as gyroscopic motion. The unique dynamic behavior of the spherical C60 rotor anchored by the cage stator via CH⋅⋅⋅π interactions in the crystal, as well as substituent effects on the association properties, are discussed with the aid of DFT calculations.
Collapse
Affiliation(s)
- Takuji Mitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
3
|
Zhu M, Zhou Q, Cheng H, Sha Y, Bregadze VI, Yan H, Sun Z, Li X. Boron-Cluster Embedded Necklace-Shaped Nanohoops. Angew Chem Int Ed Engl 2023; 62:e202213470. [PMID: 36203221 DOI: 10.1002/anie.202213470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 12/30/2022]
Abstract
The combination of carbon-based nanohoops with other functional organic molecular structures should lead to the design of new molecular configurations with interesting properties. Here, necklace-like nanohoops embedded with carborane were synthesized for the first time. The unique deboronization of o-carborane has led to the facile preparation of ionic nanohoop compounds. Nanohoops functionalized by nido-o-carborane show excellent fluorescence emission, with a solution quantum yield of up to 90.0 % in THF and a solid-state quantum efficiency of 87.3 %, which opens an avenue for the applications of the nanohoops in OLEDs and bioimaging.
Collapse
Affiliation(s)
- Miao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Zhou
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Cheng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Sha
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Vladimir I Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences, Moscow, 119991, Russia
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Kohrs D, Becker J, Wegner HA. A Modular Synthesis of Substituted Cycloparaphenylenes. Chemistry 2022; 28:e202104239. [PMID: 35001444 PMCID: PMC9302675 DOI: 10.1002/chem.202104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/20/2022]
Abstract
Herein, we report a modular synthesis providing access to substituted cycloparaphenylenes (CPPs) of different sizes. A key synthon introducing two geminal ester units was efficiently prepared by [2+2+2] cycloaddition. This building block can be conveniently converted to macrocyclic precursors controlling the ring size of the final CPP. Efficient reductive aromatization through single-electron transfer provided the substituted nanohoops in a straightforward manner. The tBu ester substitution pattern enables a tube-like arrangement in the solid-state governed by van der Waals interactions that exhibits one of the tightest packings of CPPs in tube direction, thus opening new avenues in the crystal design of CPPs.
Collapse
Affiliation(s)
- Daniel Kohrs
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| | - Jonathan Becker
- Institute of Inorganic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
5
|
Volkmann J, Kohrs D, Bernt F, Wegner HA. Synthesis of a Substituted [10]Cycloparaphenylene through [2+2+2] Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jannis Volkmann
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Daniel Kohrs
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Felix Bernt
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Material Research (ZfM/LaMa) Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| |
Collapse
|
6
|
Wang S, Li Z, Ding P, Mattioli C, Huang W, Wang Y, Gourdon A, Sun Y, Chen M, Kantorovich L, Yang X, Rosei F, Yu M. On-Surface Decarboxylation Coupling Facilitated by Lock-to-Unlock Variation of Molecules upon the Reaction. Angew Chem Int Ed Engl 2021; 60:17435-17439. [PMID: 34080274 DOI: 10.1002/anie.202106477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/11/2022]
Abstract
On-surface synthesis (OSS) involving relatively high energy barriers remains challenging due to a typical dilemma: firm molecular anchor is required to prevent molecular desorption upon the reaction, whereas sufficient lateral mobility is crucial for subsequent coupling and assembly. By locking the molecular precursors on the substrate then unlocking them during the reaction, we present a strategy to address this challenge. High-yield synthesis based on well-defined decarboxylation, intermediate transition, and hexamerization is demonstrated, resulting in an extended and ordered network exclusively composed of the newly synthesized macrocyclic compound. Thanks to the steric hindrance of its maleimide group, we attain a preferential selection of the coupling. This work unlocks a promising path to enrich the reaction types and improve the coupling selectivity hence the structual homogeneity of the final product for OSS.
Collapse
Affiliation(s)
- Shaoshan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhuo Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Pengcheng Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | | | - Wujun Huang
- Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | | | - Ye Sun
- Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Mingshu Chen
- Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Lev Kantorovich
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK
| | - Xueming Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications, Varennes Quebec, J3X 1S2, Canada
| | - Miao Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
7
|
Wang S, Li Z, Ding P, Mattioli C, Huang W, Wang Y, Gourdon A, Sun Y, Chen M, Kantorovich L, Yang X, Rosei F, Yu M. On‐Surface Decarboxylation Coupling Facilitated by Lock‐to‐Unlock Variation of Molecules upon the Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shaoshan Wang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhuo Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Pengcheng Ding
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | | | - Wujun Huang
- Department of Chemistry Xiamen University Xiamen 361005 China
| | - Yang Wang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | | | - Ye Sun
- Condensed Matter Science and Technology Institute Harbin Institute of Technology Harbin 150001 China
| | - Mingshu Chen
- Department of Chemistry Xiamen University Xiamen 361005 China
| | - Lev Kantorovich
- Department of Physics King's College London The Strand London WC2R 2LS UK
| | - Xueming Yang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications Varennes Quebec J3X 1S2 Canada
| | - Miao Yu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
8
|
Asad K, Stergiou A, Kourtellaris A, Tagmatarchis N, Chronakis N. First Synthesis of the Inherently Chiral Trans-4' Bisadduct of C 59 N Azafullerene by Using Cyclo-[2]-dodecylmalonate as a Tether. Chemistry 2021; 27:13879-13886. [PMID: 34291513 DOI: 10.1002/chem.202101776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/06/2022]
Abstract
The multiaddition chemistry of azafullerene C59 N has been scarcely explored, and the isolation of pure bisadducts is in its infancy. Encouraged by the recent regioselective synthesis of the inherently chiral equatorialface bisadduct of C59 N, we focused on the isolation of the first trans-4 bisadduct in a simple two-step approach. The first regioselective synthesis of the trans-4 bisadduct of C59 N by using cyclo-[2]-dodecylmalonate as a tether is now reported. The newly synthesized bisadduct has C1 symmetry, as evidenced by 13 C NMR, while X-ray crystallography validated the trans-4' addition pattern. Furthermore, the inherently chiral trans-4' C59 N bisadduct was enantiomerically resolved, and the mirror-image relation of the two enantiomers was probed by circular dichroism spectroscopy. Finally, UV-Vis and redox assays suggested that the addition pattern has a reflection in the light-harvesting and redox properties of the bisadduct.
Collapse
Affiliation(s)
- Karam Asad
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109, Aglantzia, Nicosia, Cyprus
| | - Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Andreas Kourtellaris
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109, Aglantzia, Nicosia, Cyprus
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Nikos Chronakis
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109, Aglantzia, Nicosia, Cyprus
| |
Collapse
|
9
|
Stasyuk OA, Stasyuk AJ, Solà M, Voityuk AA. [10]CPP-Based Inclusion Complexes of Charged Fulleropyrrolidines. Effect of the Charge Location on the Photoinduced Electron Transfer. Chemistry 2021; 27:8737-8744. [PMID: 33780063 PMCID: PMC8251704 DOI: 10.1002/chem.202005516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/12/2022]
Abstract
A number of non-covalently bound donor-acceptor dyads, consisting of C60 as the electron acceptor and cycloparaphenylene (CPP) as the electron donor, have been reported. A hypsochromic shift of the charge transfer (CT) band in polar medium has been found in [10]CPP⊃Li+ @C60 . To explore this anomalous effect, we study inclusion complexes [10]CPP⊃Li+ @C60 -MP, [10]CPP⊃C60 -MPH+ , and [10]CPP⊃C60 -PPyMe+ formed by fulleropyrrolidine derivatives and [10]CPP using the DFT/TDDFT approach. We show that the introduction of a positively charged fragment into fullerene stabilizes CT states that become the lowest-lying excited states. These charge-separated states can be generated by the decay of locally excited states on a nanosecond to picosecond time scale. The distance of the charged fragment to the center of the fullerenic cage and its accessibility to the solvent determine the strength of the hypsochromic shift.
Collapse
Affiliation(s)
- Olga A. Stasyuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| | - Anton J. Stasyuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Miquel Solà
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
| | - Alexander A. Voityuk
- Institut de Química Computacional and Departament de QuímicaUniversitat de GironaC/ Maria Aurèlia Capmany 6917003GironaSpain
- Institució Catalana de Recerca i Estudis Avancats (ICREA)08010BarcelonaSpain
| |
Collapse
|
10
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene-Phenalenyl Radical and Its Dimeric Double Nanohoop*. Angew Chem Int Ed Engl 2021; 60:13529-13535. [PMID: 33635576 PMCID: PMC8252656 DOI: 10.1002/anie.202101792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/17/2022]
Abstract
The first example of a neutral spin-delocalized carbon-nanoring radical was achieved by integration of the open-shell phenalenyl unit into cycloparaphenylene (CPP). Spin distribution in this hydrocarbon is localized primarily on the phenalenyl segment and partially on the CPP segment as a consequence of steric and electronic effects. The resulting geometry is reminiscent of a diamond ring, with pseudo-perpendicular arrangement of the radial and the planar π-surface. The phenylene rings attached directly to the phenalenyl unit give rise to a steric effect that governs a highly selective dimerization pathway, yielding a giant double nanohoop. Its π-framework made of 158 sp2 -carbon atoms was elucidated by single-crystal X-ray diffraction, which revealed a three-segment CPP-peropyrene-CPP structure. This nanocarbon shows a fluorescence profile characteristic of peropyrene, regardless of which segment gets excited. These results in conjunction with DFT suggest that adjusting the size of the CPP segments in this double nanohoop could deliver donor-acceptor systems.
Collapse
Affiliation(s)
- Yong Yang
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Olivier Blacque
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Sota Sato
- Department of Applied ChemistryThe University of TokyoHongo, Bunkyo-kuTokyo113-8656Japan
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
11
|
Saura‐Sanmartin A, Martinez‐Cuezva A, Marin‐Luna M, Bautista D, Berna J. Effective Encapsulation of C
60
by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Alberto Martinez‐Cuezva
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Marta Marin‐Luna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC) Area Cientifica y Tecnica de Investigacion (ACTI) Universidad de Murcia 30100 Murcia Spain
| | - Jose Berna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
12
|
Yang Y, Blacque O, Sato S, Juríček M. Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong Yang
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Olivier Blacque
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Sota Sato
- Department of Applied Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Michal Juríček
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
13
|
Saura-Sanmartin A, Martinez-Cuezva A, Marin-Luna M, Bautista D, Berna J. Effective Encapsulation of C 60 by Metal-Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021; 60:10814-10819. [PMID: 33617658 DOI: 10.1002/anie.202100996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Indexed: 12/14/2022]
Abstract
A flexible benzylic amide macrocycle, functionalized with two carboxylic acid groups, was employed as the organic ligand for the preparation of robust copper(II)- and zinc(II)-based metal-organic frameworks. These polymers crystallized in the C2/m space group of the monoclinic crystal system, creating non-interpenetrated channels in one direction with an extraordinary solvent-accessible volume of 46 %. Unlike metal-organic rotaxane frameworks having benzylic amide macrocycles as linkers, the absence of the thread in these novel reticular materials causes a decrease of dimensionality and an improvement of pore size and dynamic guest adaptability. We studied the incorporation of fullerene C60 inside the adjustable pocket generated between two macrocycles connected to the same dinuclear clusters, occupying a remarkable 98 % of the cavities inside the network. The use of these materials as hosts for the selective recognition of different fullerenes was evaluated, mainly encapsulating the smaller size fullerene derivative in several mixtures of C60 and C70 .
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC), Area Cientifica y Tecnica de Investigacion (ACTI), Universidad de Murcia, 30100, Murcia, Spain
| | - Jose Berna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
14
|
Zhao C, Liu F, Feng L, Nie M, Lu Y, Zhang J, Wang C, Wang T. Construction of a double-walled carbon nanoring. NANOSCALE 2021; 13:4880-4886. [PMID: 33625431 DOI: 10.1039/d0nr08931a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nanoring structure of cycloparaphenylenes (CPPs) can be considered as the shortest fragment of a carbon nanotube. Herein, we successfully prepared a double-walled carbon nanoring of [6]CPP⊂[12]CPP, which can be regarded as the shortest double-walled carbon nanotube. [6]CPP⊂[12]CPP was constructed through the supramolecular assembly, and its crystallographic structure was unambiguously determined by single-crystal X-ray diffraction. The host-guest interaction and charge transfer in [6]CPP⊂[12]CPP were disclosed by UV-Vis absorption, fluorescence, and electrochemical studies. Electron paramagnetic resonance (EPR) spectroscopy disclosed the stability of the [6]CPP⊂[12]CPP cation radical, whose unpaired spin was fully delocalized on the inner [6]CPP and well protected by outer [12]CPP. Moreover, [6]CPP⊂[12]CPP shows highly enhanced photoconductivity and photocurrent under light irradiation compared to those of pristine monomers. The self-assembly behavior of [6]CPP⊂[12]CPP was also studied, and it was found that [6]CPP⊂[12]CPP molecules tend to form a square rod structure in the DMF solution. Thus, these results demonstrate that this double-walled carbon nanoring material has a great potential application in photoelectronic devices and organic semiconductors.
Collapse
Affiliation(s)
- Chong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), 01069 Dresden, Germany
| | - Lai Feng
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Jiangsu Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, 215006 Suzhou, China
| | - Mingzhe Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Yuxi Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| |
Collapse
|
15
|
Kajiyama K, Tsurumaki E, Wakamatsu K, Fukuhara G, Toyota S. Complexation of an Anthracene-Triptycene Nanocage Host with Fullerene Guests through CH⋅⋅⋅π Contacts. Chempluschem 2021; 86:716-722. [PMID: 33620779 DOI: 10.1002/cplu.202000816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/11/2021] [Indexed: 12/22/2022]
Abstract
A bicyclic anthracene macrocycle containing two triptycene units at the bridgehead positions was synthesized by Ni-mediated coupling of the corresponding precursor as a cage-shaped aromatic hydrocarbon host. This cage host formed an inclusion complex with C60 or C70 guest in 1 : 1 ratio in solution. The association constants (Ka ) determined by the fluorescence titration method were 1.3×104 and 3.3×105 L mol -1 for the C60 and C70 complexes, respectively, at 298 K in toluene. DFT calculations revealed that the guest molecules were included in the middle of the cavity with several CH⋅⋅⋅π contacts. The strong affinity of the cage host for the fullerene guests and the high selectivity toward C70 are discussed on the basis of spectroscopic and structural data.
Collapse
Affiliation(s)
- Kazuki Kajiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Gaku Fukuhara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
16
|
Xue T, Bongu SR, Huang H, Liang W, Wang Y, Zhang F, Liu Z, Zhang Y, Zhang H, Cui X. Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem Commun (Camb) 2021; 56:7041-7044. [PMID: 32453808 DOI: 10.1039/d0cc01004a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bismuthene, a monoelemental two-dimensional material, has shown promise in the biomedical, electronic, and energy fields due to its high carrier mobility and stability at room temperature. However, its use in biosensing applications is restricted due to its undefined quenching mechanism for dye molecules. Herein, we developed a novel ultrathin bismuthene-based sensing platform for microRNA (miRNA)-specific detection that even discriminates single-base mismatches. The detection limit can reach 60 pM. Excitingly, with the fluorescence quenching mechanism of bismuthene, ground state weakly fluorescent charge transfer is determined via femtosecond pump-probe spectroscopy. This finding provides a proof-of-concept platform to (i) fundamentally explore the quenching mechanism of bismuthene and (ii) sensitively detect miRNA molecules for early cancer.
Collapse
Affiliation(s)
- Tianyu Xue
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Luo Z, Yang X, Cai K, Fu X, Zhang D, Ma Y, Zhao D. Toward Möbius and Tubular Cyclopolyarene Nanorings via Arylbutadiyne Macrocycles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhouyang Luo
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xiao Yang
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Kang Cai
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xiangyu Fu
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| |
Collapse
|
18
|
Lovell TC, Garrison ZR, Jasti R. Synthesis, Characterization, and Computational Investigation of Bright Orange‐Emitting Benzothiadiazole [10]Cycloparaphenylene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Terri C. Lovell
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Zachary R. Garrison
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| |
Collapse
|
19
|
Lovell TC, Garrison ZR, Jasti R. Synthesis, Characterization, and Computational Investigation of Bright Orange‐Emitting Benzothiadiazole [10]Cycloparaphenylene. Angew Chem Int Ed Engl 2020; 59:14363-14367. [DOI: 10.1002/anie.202006350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Terri C. Lovell
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Zachary R. Garrison
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry Materials Science Institute, and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA
| |
Collapse
|
20
|
Ineffective OH Pinning of the Flipping Dynamics of a Spherical Guest within a Tight‐Fitting Tube. Angew Chem Int Ed Engl 2020; 59:14570-14576. [DOI: 10.1002/anie.202005538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Indexed: 01/27/2023]
|
21
|
Matsuno T, Someya M, Sato S, Maeda S, Isobe H. Ineffective OH Pinning of the Flipping Dynamics of a Spherical Guest within a Tight‐Fitting Tube. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Taisuke Matsuno
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Maki Someya
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Sota Sato
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Satoshi Maeda
- Department of Chemistry and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo 060-0810 Japan
| | - Hiroyuki Isobe
- Department of Chemistry The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
22
|
Luo Z, Yang X, Cai K, Fu X, Zhang D, Ma Y, Zhao D. Toward Möbius and Tubular Cyclopolyarene Nanorings via Arylbutadiyne Macrocycles. Angew Chem Int Ed Engl 2020; 59:14854-14860. [DOI: 10.1002/anie.202003538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Zhouyang Luo
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xiao Yang
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Kang Cai
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xiangyu Fu
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| |
Collapse
|
23
|
Liu G, Hong J, Ma K, Wan Y, Zhang X, Huang Y, Kang K, Yang M, Chen J, Deng S. Porphyrin Trio−Pendant fullerene guest as an In situ universal probe of high ECL efficiency for sensitive miRNA detection. Biosens Bioelectron 2020; 150:111963. [DOI: 10.1016/j.bios.2019.111963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
|
24
|
Wang J, Zhuang G, Chen M, Lu D, Li Z, Huang Q, Jia H, Cui S, Shao X, Yang S, Du P. Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (−)/(+)‐(12,4) Carbon Nanotubes with Strong Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909401] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Guilin Zhuang
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou Zhejiang Province 310032 China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Dapeng Lu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Zhe Li
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Qiang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Hongxing Jia
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Shengsheng Cui
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Xiang Shao
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui Province 230026 China
| |
Collapse
|
25
|
Wang J, Zhuang G, Chen M, Lu D, Li Z, Huang Q, Jia H, Cui S, Shao X, Yang S, Du P. Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (-)/(+)-(12,4) Carbon Nanotubes with Strong Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2019; 59:1619-1626. [PMID: 31710148 DOI: 10.1002/anie.201909401] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/21/2019] [Indexed: 01/04/2023]
Abstract
Carbon nanotubes (CNTs) have unusual physical properties that are valuable for nanotechnology and electronics, but the chemical synthesis of chirality- and diameter-specific CNTs and π-conjugated CNT segments is still a great challenge. Reported here are the selective syntheses, isolations, characterizations, and photophysical properties of two novel chiral conjugated macrocycles ([4]cyclo-2,6-anthracene; [4]CAn2,6 ), as (-)/(+)-(12,4) carbon nanotube segments. These conjugated macrocyclic molecules were obtained using a bottom-up assembly approach and subsequent reductive elimination reaction. The hoop-shaped molecules can be directly viewed by a STM technique. In addition, chiral enantiomers with (-)/(+) helicity of the [4]CAn2,6 were successfully isolated by HPLC. The new tubular CNT segments exhibit large absorption and photoluminescence redshifts compared to the monomer unit. The carbon enantiomers are also observed to show strong circularly polarized luminescence (glum ≈0.1). The results reported here expand the scope of materials design for bottom-up synthesis of chiral macrocycles and enrich existing knowledge of their optoelectronic properties.
Collapse
Affiliation(s)
- Jinyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province, 310032, China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Dapeng Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhe Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Qiang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Hongxing Jia
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shengsheng Cui
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Xiang Shao
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
26
|
Stergiou A, Rio J, Griwatz JH, Arčon D, Wegner HA, Ewels CP, Tagmatarchis N. A Long-Lived Azafullerenyl Radical Stabilized by Supramolecular Shielding with a [10]Cycloparaphenylene. Angew Chem Int Ed Engl 2019; 58:17745-17750. [PMID: 31557367 PMCID: PMC7003913 DOI: 10.1002/anie.201909126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Indexed: 11/29/2022]
Abstract
A major handicap towards the exploitation of radicals is their inherent instability. In the paramagnetic azafullerenyl radical C59 N. , the unpaired electron is strongly localized next to the nitrogen atom, which induces dimerization to diamagnetic bis(azafullerene), (C59 N)2 . Conventional stabilization by introducing steric hindrance around the radical is inapplicable here because of the concave fullerene geometry. Instead, we developed an innovative radical shielding approach based on supramolecular complexation, exploiting the protection offered by a [10]cycloparaphenylene ([10]CPP) nanobelt encircling the C59 N. radical. Photoinduced radical generation is increased by a factor of 300. The EPR signal showing characteristic 14 N hyperfine splitting of C59 N. ⊂ [10]CPP was traced even after several weeks, which corresponds to a lifetime increase of >108 . The proposed approach can be generalized by tuning the diameter of the employed nanobelts, opening new avenues for the design and exploitation of radical fullerenes.
Collapse
Affiliation(s)
- Anastasios Stergiou
- National Hellenic Research FoundationTheoretical and Physical Chemistry Institute48 Vassileos Constantinou Avenue11635AthensGreece
| | - Jérémy Rio
- Institut des Materiaux Jean Rouxel (IMN)-UMR65022 Rue de la Houssiniere, BP3222944322NantesFrance
| | - Jan H. Griwatz
- Justus Liebig UniversityInstitute of Organic Chemistry, Center for Materials ResearchHeinrich-Buff-Ring 16–1735392GiessenGermany
| | - Denis Arčon
- University of LjubljanaFaculty of Mathematics and PhysicsJadranska 191000LjubljanaSlovenia
- Institute Jozef StefanJamova 391000LjubljanaSlovenia
| | - Hermann A. Wegner
- Justus Liebig UniversityInstitute of Organic Chemistry, Center for Materials ResearchHeinrich-Buff-Ring 16–1735392GiessenGermany
| | - Christopher P. Ewels
- Institut des Materiaux Jean Rouxel (IMN)-UMR65022 Rue de la Houssiniere, BP3222944322NantesFrance
| | - Nikos Tagmatarchis
- National Hellenic Research FoundationTheoretical and Physical Chemistry Institute48 Vassileos Constantinou Avenue11635AthensGreece
| |
Collapse
|
27
|
Stergiou A, Rio J, Griwatz JH, Arčon D, Wegner HA, Ewels CP, Tagmatarchis N. A Long‐Lived Azafullerenyl Radical Stabilized by Supramolecular Shielding with a [10]Cycloparaphenylene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anastasios Stergiou
- National Hellenic Research FoundationTheoretical and Physical Chemistry Institute 48 Vassileos Constantinou Avenue 11635 Athens Greece
| | - Jérémy Rio
- Institut des Materiaux Jean Rouxel (IMN)-UMR6502 2 Rue de la Houssiniere, BP32229 44322 Nantes France
| | - Jan H. Griwatz
- Justus Liebig UniversityInstitute of Organic Chemistry, Center for Materials Research Heinrich-Buff-Ring 16–17 35392 Giessen Germany
| | - Denis Arčon
- University of LjubljanaFaculty of Mathematics and Physics Jadranska 19 1000 Ljubljana Slovenia
- Institute Jozef Stefan Jamova 39 1000 Ljubljana Slovenia
| | - Hermann A. Wegner
- Justus Liebig UniversityInstitute of Organic Chemistry, Center for Materials Research Heinrich-Buff-Ring 16–17 35392 Giessen Germany
| | - Christopher P. Ewels
- Institut des Materiaux Jean Rouxel (IMN)-UMR6502 2 Rue de la Houssiniere, BP32229 44322 Nantes France
| | - Nikos Tagmatarchis
- National Hellenic Research FoundationTheoretical and Physical Chemistry Institute 48 Vassileos Constantinou Avenue 11635 Athens Greece
| |
Collapse
|
28
|
Affiliation(s)
- Youzhi Xu
- Institut für Organische Chemie und Neue MaterialienUniversität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Max Delius
- Institut für Organische Chemie und Neue MaterialienUniversität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
29
|
Xu Y, von Delius M. The Supramolecular Chemistry of Strained Carbon Nanohoops. Angew Chem Int Ed Engl 2019; 59:559-573. [PMID: 31190449 DOI: 10.1002/anie.201906069] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 01/24/2023]
Abstract
Since 1996, a growing number of strained macrocycles, comprising only sp2 - or sp-hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes (CPPAs) and the [n]cycloparaphenylenes (CPPs) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near-perfect circular shape, the unusually high degree of shape-persistence, and the presence of both convex and concave π-faces. In this Minireview, we give an overview on the use of strained carbon-rich nanohoops in host-guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.
Collapse
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
30
|
Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Photoconductive Curved-Nanographene/Fullerene Supramolecular Heterojunctions. Angew Chem Int Ed Engl 2019; 58:6244-6249. [PMID: 30843633 DOI: 10.1002/anie.201900084] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/06/2022]
Abstract
This study presents synthesis and characterizations of two novel curved nanographenes that strongly bind with fullerene C60 to form photoconductive heterojunctions. Films of the self-assembled curved nanographene/fullerene complexes, which served as the photoconductive layer, generated a significant photocurrent under light irradiation. Gram-scale quantities of these curved nanographenes (TCR and HCR) as the "crown" sidewalls can be incorporated into a carbon nanoring to form molecular crowns, and the molecular structure of C60 @TCR is determined by single-crystal X-ray diffraction. The UV/Vis absorption and emission spectra, and theoretical studies revealed their unique structural features and photophysical properties. Time-resolved spectroscopic results clearly suggest fast photoinduced electron transfer process in the supramolecular heterojunctions.
Collapse
Affiliation(s)
- Qiang Huang
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province, 310032, P. R. China
| | - Hongxing Jia
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Manman Qian
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Shengsheng Cui
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Shangfeng Yang
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Pingwu Du
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| |
Collapse
|
31
|
Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Photoconductive Curved‐Nanographene/Fullerene Supramolecular Heterojunctions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900084] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qiang Huang
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Guilin Zhuang
- College of Chemical EngineeringZhejiang University of Technology 18, Chaowang Road Hangzhou Zhejiang Province 310032 P. R. China
| | - Hongxing Jia
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Manman Qian
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Shengsheng Cui
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Shangfeng Yang
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Pingwu Du
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| |
Collapse
|
32
|
Toyota S, Tsurumaki E. Exploration of Nano-Saturns: A Spectacular Sphere-Ring Supramolecular System. Chemistry 2019; 25:6878-6890. [DOI: 10.1002/chem.201900039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Shinji Toyota
- Department of Chemistry, School of Science; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
33
|
Stasyuk AJ, Stasyuk OA, Solà M, Voityuk AA. Photoinduced electron transfer and unusual environmental effects in fullerene–Zn-porphyrin–BODIPY triads. Phys Chem Chem Phys 2019; 21:25098-25107. [DOI: 10.1039/c9cp04104d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Molecular arrays containing donor–acceptor sites and antenna molecules are promising candidates for organic photovoltaic devices.
Collapse
Affiliation(s)
- A. J. Stasyuk
- Institut de Química Computacional and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - O. A. Stasyuk
- Institut de Química Computacional and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - M. Solà
- Institut de Química Computacional and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - A. A. Voityuk
- Institut de Química Computacional and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA)
| |
Collapse
|
34
|
Schaub TA, Margraf JT, Zakharov L, Reuter K, Jasti R. Strain‐Promoted Reactivity of Alkyne‐Containing Cycloparaphenylenes. Angew Chem Int Ed Engl 2018; 57:16348-16353. [DOI: 10.1002/anie.201808611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Tobias A. Schaub
- Department of Chemistry & Biochemistry and Material Science Institute University of Oregon Eugene OR 97403 USA
| | - Johannes T. Margraf
- Chair of Theoretical Chemistry Technical University of Munich 85747 Garching Germany
| | - Lev Zakharov
- Department of Chemistry & Biochemistry and Material Science Institute University of Oregon Eugene OR 97403 USA
| | - Karsten Reuter
- Chair of Theoretical Chemistry Technical University of Munich 85747 Garching Germany
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry and Material Science Institute University of Oregon Eugene OR 97403 USA
| |
Collapse
|
35
|
Schaub TA, Margraf JT, Zakharov L, Reuter K, Jasti R. Strain‐Promoted Reactivity of Alkyne‐Containing Cycloparaphenylenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tobias A. Schaub
- Department of Chemistry & Biochemistry and Material Science Institute University of Oregon Eugene OR 97403 USA
| | - Johannes T. Margraf
- Chair of Theoretical Chemistry Technical University of Munich 85747 Garching Germany
| | - Lev Zakharov
- Department of Chemistry & Biochemistry and Material Science Institute University of Oregon Eugene OR 97403 USA
| | - Karsten Reuter
- Chair of Theoretical Chemistry Technical University of Munich 85747 Garching Germany
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry and Material Science Institute University of Oregon Eugene OR 97403 USA
| |
Collapse
|