1
|
Zainal S, Alsudani A, Adams RW, Nilsson M, Fan X, D'Agostino C. Exploring the effect of molecular size and framework functionalisation on transport in metal-organic frameworks using pulsed-field gradient nuclear magnetic resonance. Phys Chem Chem Phys 2024; 26:18276-18284. [PMID: 38910559 DOI: 10.1039/d4cp00447g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Molecular transport is an important aspect in metal-organic frameworks (MOFs) as it affects many of their applications, such as adsorption/separation, drug delivery and catalysis. Yet probing the fundamental diffusion mechanisms in MOFs is challenging, and the interplay between the MOF's features (such as the pore structure and linker dynamics) and molecular transport remains mostly unexplored. Here, the pulsed-field gradient nuclear magnetic resonance (PFG NMR) technique is used to probe the diffusion of several probe molecules, i.e., water, xylenes and 1,3,5-triisopropylbenzene (TIPB), within the UiO-66 MOF and its derivatives (UiO-66NH2 and UiO-66Br). Exploiting differences in the size of probe molecules we were able to probe the diffusion rate selectively in the different pore environments of the MOFs. In particular, when relatively small molecules, such as water and small hydrocarbons, were used as probes, the PFG NMR log attenuation plots were non-linear with two distinctive diffusion regions, suggesting faster diffusion in the inter-crystalline space and slower diffusion within crystal aggregates, the latter occurring mostly inside the framework of the MOFs. Conversely, experiments with a larger probe molecule, i.e., TIPB, with a kinetic diameter of 0.95 nm, which makes it unable to access the framework windows of the MOF crystals, showed linear PFG NMR log attenuation plots, which indicates diffusion occurring in a single environment, most likely in the inter-crystalline space. Analysis of the apparent tortuosity values of the systems under investigation highlights the role of linker functionalisation in influencing the molecular diffusion of the probe molecules, which affects both intra-molecular interactions and pore accessibility within the MOF crystals. The findings of this work demonstrate that the diffusion behaviour of probe molecules within MOFs is influenced by the pore size, structure, functionalisation of the MOF linker and molecular interactions. Our study contributes to further advance the understanding of mass transport in MOFs by PFG NMR and provides insights that can inform the design and optimisation of MOF-based materials for various applications.
Collapse
Affiliation(s)
- Shima Zainal
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ahmed Alsudani
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xiaolei Fan
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315048, China
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna, Via Terracini, 28, 40131 Bologna, Italy
| |
Collapse
|
2
|
López-Alcalá D, Ruiz AM, Baldoví JJ. Exploring Spin-Phonon Coupling in Magnetic 2D Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1172. [PMID: 37049265 PMCID: PMC10097403 DOI: 10.3390/nano13071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Layered magnetic metal-organic frameworks (MOFs) are an emerging class of materials that can combine the advantages of both MOFs and 2D magnetic crystals. The recent discovery of large coercivity and long-range magnetic ordering up to 515 K in a layered MOF of general formula MCl2(pyz)2 (M = transition metal, pyz = pyrazine) offers an exciting versatile platform to achieve high-TC magnetism at the 2D limit. In this work, we investigate the exfoliation feasibility down to the monolayer of VCl2(pyz)2 and CrCl2(pyz)2 by means of first-principles calculations. We explore their structural, electronic, magnetic and vibrational properties, as well as the effect of halide substitution. Then, we provide a full analysis of the spin-phonon coupling (SPC) in both 2D derivatives. Our calculations reveal a low SPC and thermal evolution of the magnetic exchange interactions and single-ion anisotropy mainly governed by low-frequency phonon modes. Finally, we provide chemical insights to improve the performance of these magnetic 2D MOFs based on the effective manipulation of the phonon modes that can present a major impact on their magnetic properties.
Collapse
|
3
|
Lu G, Huang C, Qiu M, Zhang Q, Cui S, Zhang L, Zhang YY, Mi L. Output Enhancement of Triboelectric Nanogenerators Based on Hierarchically Regular Cadmium Coordination Polymers for Photocycloaddition. Inorg Chem 2022; 61:12736-12745. [PMID: 35929450 DOI: 10.1021/acs.inorgchem.2c01810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploiting the well-arranged and tunable frameworks of crystalline materials, we herein report coordination polymers (CPs) with modulated hierarchical structures as triboelectric materials to construct and extend the application scope of triboelectric nanogenerators (TENGs). Different lengths and shapes of bridging ligands [4,4'-bpa = 1,2-bis(4-pyridyl)ethane, 4,4'-bpe = 1,2-bis(4-pyridyl)ethene, and 4,4'-bpp = 1,3-di(2-pyridyl)propane for 1, 2, and 3, respectively] were used to construct Cd-CP-based hierarchical frameworks. These compounds were used as triboelectric materials, and their electronic structure contributions were determined by the output of the corresponding TENGs. The results indicated that 2-TENG with the 4,4'-bpe ligand had the highest output, attributed to the improvement in the electron activity due to the π-conjugation group in the bridging ligand, which was further verified by density functional theory calculations. Furthermore, 2@PVDF (PVDF = polyvinylidene fluoride) composite films with different concentrations of Cd-CP were prepared. Detailed electrical characterizations revealed that the arrangement of 12% active constituents of Cd-CP-2 effectively enhanced the output performance of 2@PVDF-TENG, which could light up an ultraviolet lamp plate to successfully execute the [2 + 2] photocycloaddition.
Collapse
Affiliation(s)
- Guizhen Lu
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Mei Qiu
- Department of Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiang Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Siwen Cui
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lin Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ying-Ying Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Liwei Mi
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
4
|
Tang J, Chu Y, Li S, Xu J, Xiong W, Wang Q, Deng F. Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL-53. Chemistry 2021; 27:14711-14720. [PMID: 34357658 DOI: 10.1002/chem.202102419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/24/2022]
Abstract
The breathing effects of functionalized MIL-53-X (X=H, CH3 , NH2 , OH, and NO2 ) induced by the inclusions of water, methanol, acetone, and N,N-dimethylformamide solvents were comprehensively investigated by solid-state NMR spectroscopy. 2D homo-nuclear correlation NMR provided direct experimental evidence for the host-guest interaction between the guest solvents and the MOF frameworks. The variations of the 1 H and 13 C NMR chemical shifts in functionalized MIL-53 from the narrow pore phase transitions to large pore forms due to solvent inclusions were clearly identified. The influence of functionalized linkers and their host-guest interactions with the confined solvents on the rotational dynamics of the linkers was examined by separated-local-field MAS NMR experiments in conjunction with DFT theoretical calculations. It is found that the linker rotational dynamics of functionalized MIL-53 in narrow pore form is closely related to the computational rotational energy barrier. The BDC-NO2 linker of activated MIL-53-NO2 undergoes relatively faster rotation, whereas the BDC-NH2 and BDC-OH linkers of activated MIL-53-NH2 and MIL-53-OH exhibit relatively slower rotation. The host-guest interactions between confined solvents and MIL-53-NO2 , MIL-53-CH3 would significantly induce an increase of the order parameters of unsubstituted carbon and reduce the rotational frequency of linkers. This study provides a spectroscopic approach for the investigation of linker rotation in functionalized MOFs at natural abundance with solvents inclusions.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Wenpeng Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| |
Collapse
|
5
|
Blahut J, Lejeune AL, Ehrling S, Senkovska I, Kaskel S, Wisser FM, Pintacuda G. Untersuchung von Dynamik, Struktur und Magnetismus von schaltbaren Metall‐organischen Gerüstverbindungen mittels
1
H‐detektierter MAS‐NMR‐Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan Blahut
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs UMR 5082 CNRS ENS Lyon UCBL) Université de Lyon 69100 Villeurbanne Frankreich
- NMR Laboratory Faculty of Science Charles University Hlavova 8 12842 Prag Czech Republic
| | - Arthur L. Lejeune
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs UMR 5082 CNRS ENS Lyon UCBL) Université de Lyon 69100 Villeurbanne Frankreich
- IFP Energies Nouvelles 69360 Solaize Frankreich
| | - Sebastian Ehrling
- Professur für Anorganische Chemie I Technische Universität Dresden 01069 Dresden Deutschland
- Derzeitige Adresse: 3P Instruments GmbH & Co. KG Rudolf-Diesel-Straße 12 85235 Odelzhausen Deutschland
| | - Irena Senkovska
- Professur für Anorganische Chemie I Technische Universität Dresden 01069 Dresden Deutschland
| | - Stefan Kaskel
- Professur für Anorganische Chemie I Technische Universität Dresden 01069 Dresden Deutschland
| | - Florian M. Wisser
- IRCELYON (UMR 5256 CNRS, UCBL) Université de Lyon 69100 Villeurbanne Frankreich
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs UMR 5082 CNRS ENS Lyon UCBL) Université de Lyon 69100 Villeurbanne Frankreich
| |
Collapse
|
6
|
Blahut J, Lejeune AL, Ehrling S, Senkovska I, Kaskel S, Wisser FM, Pintacuda G. Monitoring Dynamics, Structure, and Magnetism of Switchable Metal-Organic Frameworks via 1 H-Detected MAS NMR. Angew Chem Int Ed Engl 2021; 60:21778-21783. [PMID: 34273230 PMCID: PMC8519119 DOI: 10.1002/anie.202107032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Indexed: 01/03/2023]
Abstract
We present a toolbox for the rapid characterisation of powdered samples of paramagnetic metal-organic frameworks at natural abundance by 1 H-detected solid-state NMR. Very fast MAS rates at room and cryogenic temperatures and a set of tailored radiofrequency irradiation schemes help overcome the sensitivity and resolution limits often associated with the characterisation of MOF materials. We demonstrate the approach on DUT-8(Ni), a framework containing Ni2+ paddle-wheel units which can exist in two markedly different architectures. Resolved 1 H and 13 C resonances of organic linkers are detected and assigned in few hours with only 1-2 mg of sample at natural isotopic abundance, and used to rapidly extract information on structure and local internal dynamics of the assemblies, as well as to elucidate the metal electronic properties over an extended temperature range. The experiments disclose new possibilities for describing local and global structural changes and correlating them to electronic and magnetic properties of the assemblies.
Collapse
Affiliation(s)
- Jan Blahut
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
- NMR LaboratoryFaculty of ScienceCharles UniversityHlavova 812842PragueCzech Republic
| | - Arthur L. Lejeune
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
- IFP Energies Nouvelles69360SolaizeFrance
| | - Sebastian Ehrling
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
- Present address: 3P Instruments GmbH & Co. KGRudolf-Diesel-Strasse 1285235OdelzhausenGermany
| | - Irena Senkovska
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry ITechnische Universität Dresden01069DresdenGermany
| | - Florian M. Wisser
- IRCELYON (UMR 5256 CNRS, UCBL)Université de Lyon69100VilleurbanneFrance
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsUMR 5082 CNRSENS LyonUCBL)Université de Lyon69100VilleurbanneFrance
| |
Collapse
|
7
|
Dong J, Wee V, Peh SB, Zhao D. Molecular‐Rotor‐Driven Advanced Porous Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jinqiao Dong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Vanessa Wee
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Shing Bo Peh
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
8
|
Dong J, Wee V, Peh SB, Zhao D. Molecular-Rotor-Driven Advanced Porous Materials. Angew Chem Int Ed Engl 2021; 60:16279-16292. [PMID: 33682981 DOI: 10.1002/anie.202101646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 01/01/2023]
Abstract
Advanced porous materials (APMs)-such as metal-organic frameworks (MOFs) and porous organic polymers (POPs)-have emerged as an exciting research frontier of chemistry and materials science. Given their tunable pore size and extensive diversity, APMs have found widespread applications. In addition, adding dynamic functional groups to porous solids furthers the development of stimuli-responsive materials. By incorporating moving elements-molecular rotors-into the porous frameworks, molecular-rotor-driven advanced porous materials (MR-APMs) can respond reversibly to chemical and physical stimuli, thus imparting dynamic functionalities that have not been found in conventional porous materials. This Minireview discusses exemplary MR-APMs in terms of their design, synthesis, rotor dynamics, and potential applications.
Collapse
Affiliation(s)
- Jinqiao Dong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.,School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Vanessa Wee
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
9
|
Fu Y, Guan H, Yin J, Kong X. Probing molecular motions in metal-organic frameworks with solid-state NMR. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Kolodzeiski E, Amirjalayer S. Atomistic Insight Into the Host-Guest Interaction of a Photoresponsive Metal-Organic Framework. Chemistry 2020; 26:1263-1268. [PMID: 31802550 PMCID: PMC7027908 DOI: 10.1002/chem.201905139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal-organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host-guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host-guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches InstitutWestfälische Wilhelms-Universität MünsterWillhelm-Klemm-Strasse 1048149MünsterGermany
- Center for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstrasse 1148149MünsterGermany
| | - Saeed Amirjalayer
- Physikalisches InstitutWestfälische Wilhelms-Universität MünsterWillhelm-Klemm-Strasse 1048149MünsterGermany
- Center for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstrasse 1148149MünsterGermany
| |
Collapse
|
11
|
Zhang R, Duong NT, Nishiyama Y. Resolution enhancement and proton proximity probed by 3D TQ/DQ/SQ proton NMR spectroscopy under ultrafast magic-angle-spinning beyond 70 kHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:78-86. [PMID: 31146121 DOI: 10.1016/j.jmr.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Proton nuclear magnetic resonance (NMR) in solid state has gained significant attention in recent years due to the remarkable resolution and sensitivity enhancement afforded by ultrafast magic-angle-spinning (MAS). In spite of the substantial suppression of 1H-1H dipolar couplings, the proton spectral resolution is still poor compared to that of 13C or 15N NMR, rendering it challenging for the structural and conformational analysis of complex chemicals or biological solids. Herein, by utilizing the benefits of double-quantum (DQ) and triple-quantum (TQ) coherences, we propose a 3D single-channel pulse sequence that correlates proton triple-quantum/double-quantum/single-quantum (TQ/DQ/SQ) chemical shifts. In addition to the two-spin proximity information, this 3D TQ/DQ/SQ pulse sequence enables more reliable extraction of three-spin proximity information compared to the regular 2D TQ/SQ correlation experiment, which could aid in revealing the proton network in solids. Furthermore, the TQ/DQ slice taken at a specific SQ chemical shift only reveals the local correlations to the corresponding SQ chemical shift, and thus it enables accurate assignments of the proton peaks along the TQ and DQ dimensions and simplifies the interpretation of proton spectra especially for dense proton networks. The high performance of this 3D pulse sequence is well demonstrated on small compounds, L-alanine and a tripeptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (MLF). We expect that this new methodology can inspire the development of multidimensional solid-state NMR pulse sequences using the merits of TQ and DQ coherences and enable high-throughput investigations of complex solids using abundant protons.
Collapse
Affiliation(s)
- Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Nghia Tuan Duong
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|