1
|
Liu K, Shoinkhorova T, You X, Gong X, Zhang X, Chung SH, Ruiz-Martínez J, Gascon J, Dutta Chowdhury A. The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites. Dalton Trans 2024; 53:11344-11353. [PMID: 38899920 DOI: 10.1039/d4dt00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.
Collapse
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Tuiana Shoinkhorova
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Sang-Ho Chung
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Javier Ruiz-Martínez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | | |
Collapse
|
2
|
Xie J, Olsbye U. The Oxygenate-Mediated Conversion of CO x to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chem Rev 2023; 123:11775-11816. [PMID: 37769023 PMCID: PMC10603784 DOI: 10.1021/acs.chemrev.3c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 09/30/2023]
Abstract
Decentralized chemical plants close to circular carbon sources will play an important role in shaping the postfossil society. This scenario calls for carbon technologies which valorize CO2 and CO with renewable H2 and utilize process intensification approaches. The single-reactor tandem reaction approach to convert COx to hydrocarbons via oxygenate intermediates offers clear benefits in terms of improved thermodynamics and energy efficiency. Simultaneously, challenges and complexity in terms of catalyst material and mechanism, reactor, and process gaps have to be addressed. While the separate processes, namely methanol synthesis and methanol to hydrocarbons, are commercialized and extensively discussed, this review focuses on the zeolite/zeotype function in the oxygenate-mediated conversion of COx to hydrocarbons. Use of shape-selective zeolite/zeotype catalysts enables the selective production of fuel components as well as key intermediates for the chemical industry, such as BTX, gasoline, light olefins, and C3+ alkanes. In contrast to the separate processes which use methanol as a platform, this review examines the potential of methanol, dimethyl ether, and ketene as possible oxygenate intermediates in separate chapters. We explore the connection between literature on the individual reactions for converting oxygenates and the tandem reaction, so as to identify transferable knowledge from the individual processes which could drive progress in the intensification of the tandem process. This encompasses a multiscale approach, from molecule (mechanism, oxygenate molecule), to catalyst, to reactor configuration, and finally to process level. Finally, we present our perspectives on related emerging technologies, outstanding challenges, and potential directions for future research.
Collapse
Affiliation(s)
- Jingxiu Xie
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
3
|
Fang X, Wen F, Ding X, Liu H, Chen Z, Liu Z, Liu H, Zhu W, Liu Z. Highly Selective Carbonylation of CH
3
Cl to Acetic Acid Catalyzed by Pyridine‐Treated MOR Zeolite. Angew Chem Int Ed Engl 2022; 61:e202203859. [DOI: 10.1002/anie.202203859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xudong Fang
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fuli Wen
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangnong Ding
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hanbang Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyang Chen
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaopeng Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongchao Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Wenliang Zhu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Fang X, Wen F, Ding X, Liu H, Chen Z, Liu Z, Liu H, Zhu W, Liu Z. Highly Selective Carbonylation of CH
3
Cl to Acetic Acid Catalyzed by Pyridine‐Treated MOR Zeolite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xudong Fang
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fuli Wen
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangnong Ding
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hanbang Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyang Chen
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaopeng Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongchao Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Wenliang Zhu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Fang X, Liu H, Chen Z, Liu Z, Ding X, Ni Y, Zhu W, Liu Z. Highly Enhanced Aromatics Selectivity by Coupling of Chloromethane and Carbon Monoxide over H-ZSM-5. Angew Chem Int Ed Engl 2022; 61:e202114953. [PMID: 35104006 DOI: 10.1002/anie.202114953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/09/2022]
Abstract
The transformation of methane into high value-added chemicals such as aromatics provides a more desired approach towards sustainable chemistry but remains a critical challenge due to the low selectivity of aromatics and poor stability. Herein, we first report a coupling reaction of CH3 Cl and CO (CCTA) based on methane conversion, which achieves extremely high aromatics selectivity (82.2 %) with the selectivity of BTX up to ca. 60 % over HZSM-5. The promoting effects have been demonstrated on other zeolites especially 10-membered rings (10 MR) zeolites. Multiple characterizations show that 2,3-dimethyl-2-cyclopentene-1-one (DMCPO) is generated from acetyl groups and olefins. Furthermore, isotopic labeling analysis confirms that CO is inserted into the DMCPO and aromatics rings. A new aromatization mechanism is proposed, including the formation of the above intermediates, which conspicuously weakens the hydrogen transfer reaction, leading to a considerable increase of aromatics selectivity and a dramatic drop in alkanes.
Collapse
Affiliation(s)
- Xudong Fang
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongchao Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhiyang Chen
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaopeng Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangnong Ding
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youming Ni
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wenliang Zhu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
6
|
Wang N, Li J, Sun W, Hou Y, Zhang L, Hu X, Yang Y, Chen X, Chen C, Chen B, Qian W. Rational Design of Zinc/Zeolite Catalyst: Selective Formation of
p
‐Xylene from Methanol to Aromatics Reaction. Angew Chem Int Ed Engl 2022; 61:e202114786. [DOI: 10.1002/anie.202114786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Ning Wang
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 China
| | - Jing Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Wenjing Sun
- China-America Cancer Research Institute Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Guangdong Medical University Dongguan Guangdong 523808 China
| | - Yilin Hou
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Lan Zhang
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 China
| | - Xiaomin Hu
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 China
| | - Yifeng Yang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Congmei Chen
- National Supercomputing Center in Shenzhen Shenzhen Cloud Computing Center) Guangdong Shenzhen 518055 China
| | - Biaohua Chen
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 China
| | - Weizhong Qian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
7
|
Fang X, Liu H, Chen Z, Liu Z, Ding X, Ni Y, Zhu W, Liu Z. Highly Enhanced Aromatics Selectivity by Coupling of Chloromethane and Carbon Monoxide over H‐ZSM‐5. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xudong Fang
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongchao Liu
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhiyang Chen
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaopeng Liu
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangnong Ding
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Youming Ni
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Wenliang Zhu
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
8
|
Xie J, Firth DS, Cordero-Lanzac T, Airi A, Negri C, Øien-Ødegaard S, Lillerud KP, Bordiga S, Olsbye U. MAPO-18 Catalysts for the Methanol to Olefins Process: Influence of Catalyst Acidity in a High-Pressure Syngas (CO and H 2) Environment. ACS Catal 2022; 12:1520-1531. [PMID: 35096471 PMCID: PMC8788383 DOI: 10.1021/acscatal.1c04694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 12/01/2022]
Abstract
The transition from integrated petrochemical complexes toward decentralized chemical plants utilizing distributed feedstocks calls for simpler downstream unit operations. Less separation steps are attractive for future scenarios and provide an opportunity to design the next-generation catalysts, which function efficiently with effluent reactant mixtures. The methanol to olefins (MTO) reaction constitutes the second step in the conversion of CO2, CO, and H2 to light olefins. We present a series of isomorphically substituted zeotype catalysts with the AEI topology (MAPO-18s, M = Si, Mg, Co, or Zn) and demonstrate the superior performance of the M(II)-substituted MAPO-18s in the conversion of MTO when tested at 350 °C and 20 bar with reactive feed mixtures consisting of CH3OH/CO/CO2/H2. Co-feeding high pressure H2 with methanol improved the catalyst activity over time, but simultaneously led to the hydrogenation of olefins (olefin/paraffin ratio < 0.5). Co-feeding H2/CO/CO2/N2 mixtures with methanol revealed an important, hitherto undisclosed effect of CO in hindering the hydrogenation of olefins over the Brønsted acid sites (BAS). This effect was confirmed by dedicated ethene hydrogenation studies in the absence and presence of CO co-feed. Assisted by spectroscopic investigations, we ascribe the favorable performance of M(II)APO-18 under co-feed conditions to the importance of the M(II) heteroatom in altering the polarity of the M-O bond, leading to stronger BAS. Comparing SAPO-18 and MgAPO-18 with BAS concentrations ranging between 0.2 and 0.4 mmol/gcat, the strength of the acidic site and not the density was found to be the main activity descriptor. MgAPO-18 yielded the highest activity and stability upon syngas co-feeding with methanol, demonstrating its potential to be a next-generation MTO catalyst.
Collapse
Affiliation(s)
- Jingxiu Xie
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo N-0315, Norway
| | - Daniel S. Firth
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo N-0315, Norway
| | - Tomás Cordero-Lanzac
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo N-0315, Norway
| | - Alessia Airi
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, Torino 10125, Italy
| | - Chiara Negri
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo N-0315, Norway
| | - Sigurd Øien-Ødegaard
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo N-0315, Norway
| | - Karl Petter Lillerud
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo N-0315, Norway
| | - Silvia Bordiga
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, Torino 10125, Italy
| | - Unni Olsbye
- Centre
for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelandsvei 26, Oslo N-0315, Norway
| |
Collapse
|
9
|
Wang N, Li J, Sun W, Hou Y, Zhang L, Hu X, Yang Y, Chen X, Chen C, Chen B, Qian W. Rational Design of Zinc/Zeolite Catalyst: Selective Formation of p‐Xylene from Methanol to Aromatics Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ning Wang
- Beijing University of Technology College of Environmental and Energy Engineering No.100, Pingleyuan, Chaoyang District, Beijing, China 100124 Beijing CHINA
| | - Jing Li
- Tsinghua University Department of Chemistry CHINA
| | - Wenjing Sun
- Guangdong Medical University China-American Cancer Research Institute CHINA
| | - Yilin Hou
- Tsinghua University Department of Chemical Engineering CHINA
| | - Lan Zhang
- Beijing University of Technology College of Environmental and Energy Engineering CHINA
| | - Xiaomin Hu
- Beijing University of Technology College of Environmental and Energy Engineering CHINA
| | - Yifeng Yang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Xiao Chen
- Tsinghua University Department of Chemical Engineering CHINA
| | - Congmei Chen
- Guangdong Medical University Shenzhen Cloud Computing Center CHINA
| | - Biaohua Chen
- Beijing University of Technology College of Environmental and Energy Engineering CHINA
| | - Weizhong Qian
- Tsinghua University Department of Chemical Engineering CHINA
| |
Collapse
|
10
|
Wang Y, Gao W, Wang K, Gao X, Zhang B, Zhao H, Ma Q, Zhang P, Yang G, Wu M, Tsubaki N. Boosting the synthesis of value-added aromatics directly from syngas via a Cr 2O 3 and Ga doped zeolite capsule catalyst. Chem Sci 2021; 12:7786-7792. [PMID: 34168832 PMCID: PMC8188606 DOI: 10.1039/d1sc01859k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 12/04/2022] Open
Abstract
Even though the transformation of syngas into aromatics has been realized via a methanol-mediated tandem process, the low product yield is still the bottleneck, limiting the industrial application of this technology. Herein, a tailor-made zeolite capsule catalyst with Ga doping and SiO2 coating was combined with the methanol synthesis catalyst Cr2O3 to boost the synthesis of value-added aromatics, especially para-xylene, from syngas. Multiple characterization studies, control experiments, and density functional theory (DFT) calculation results clarified that Ga doped zeolites with strong CO adsorption capability facilitated the transformation of the reaction intermediate methanol by optimizing the first C-C coupling step under a high-pressure CO atmosphere, thereby driving the reaction forward for aromatics synthesis. This work not only reveals the synergistic catalytic network in the tandem process but also sheds new light on principles for the rational design of a catalyst in terms of oriented conversion of syngas.
Collapse
Affiliation(s)
- Yang Wang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Weizhe Gao
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Kangzhou Wang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Baizhang Zhang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Heng Zhao
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Zhang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| | - Guohui Yang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 China
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
| |
Collapse
|
11
|
Shang H, Wang T, Pei J, Jiang Z, Zhou D, Wang Y, Li H, Dong J, Zhuang Z, Chen W, Wang D, Zhang J, Li Y. Design of a Single-Atom Indium δ+ -N 4 Interface for Efficient Electroreduction of CO 2 to Formate. Angew Chem Int Ed Engl 2020; 59:22465-22469. [PMID: 32876989 DOI: 10.1002/anie.202010903] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Main-group element indium (In) is a promising electrocatalyst which triggers CO2 reduction to formate, while the high overpotential and low Faradaic efficiency (FE) hinder its practical application. Herein, we rationally design a new In single-atom catalyst containing exclusive isolated Inδ+ -N4 atomic interface sites for CO2 electroreduction to formate with high efficiency. This catalyst exhibits an extremely large turnover frequency (TOF) up to 12500 h-1 at -0.95 V versus the reversible hydrogen electrode (RHE), with a FE for formate of 96 % and current density of 8.87 mA cm-2 at low potential of -0.65 V versus RHE. Our findings present a feasible strategy for the accurate regulation of main-group indium catalysts for CO2 reduction at atomic scale.
Collapse
Affiliation(s)
- Huishan Shang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tao Wang
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuoli Jiang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Danni Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Haijing Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100029, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Shang H, Wang T, Pei J, Jiang Z, Zhou D, Wang Y, Li H, Dong J, Zhuang Z, Chen W, Wang D, Zhang J, Li Y. Design of a Single‐Atom Indium
δ+
–N
4
Interface for Efficient Electroreduction of CO
2
to Formate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huishan Shang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Tao Wang
- SUNCAT Center for Interface Science and Catalysis Department of Chemical Engineering Stanford University Stanford CA 94305 USA
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhuoli Jiang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Danni Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201204 China
| | - Haijing Li
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Science Beijing 100029 China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Science Beijing 100029 China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Mulik BB, Bankar BD, Munde AV, Biradar AV, Sathe BR. Bismuth‐Oxide‐Decorated Graphene Oxide Hybrids for Catalytic and Electrocatalytic Reduction of CO
2. Chemistry 2020; 26:8801-8809. [DOI: 10.1002/chem.202001589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Balaji B. Mulik
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Balasaheb D. Bankar
- Inorganic Material and Catalysis DivisionCSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar 364002 Gujarat India
| | - Ajay V. Munde
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Ankush V. Biradar
- Inorganic Material and Catalysis DivisionCSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar 364002 Gujarat India
| | - Bhaskar R. Sathe
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| |
Collapse
|
14
|
Yang X, Su X, Chen D, Zhang T, Huang Y. Direct conversion of syngas to aromatics: A review of recent studies. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63346-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Yang X, Wang R, Yang J, Qian W, Zhang Y, Li X, Huang Y, Zhang T, Chen D. Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst–Zeolite Process for Syngas Conversion. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaoli Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7049, Norway
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruifeng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Jia Yang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7049, Norway
| | - Weixin Qian
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7049, Norway
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7049, Norway
| |
Collapse
|
16
|
Xie G, Hauschild M, Hoffmann H, Ahrens L, Rominger F, Borkowski M, Marszalek T, Freudenberg J, Kivala M, Bunz UHF. 5,7,12,14-Tetrafunctionalized 6,13-Diazapentacenes. Chemistry 2020; 26:799-803. [PMID: 31609025 PMCID: PMC7004126 DOI: 10.1002/chem.201904516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 11/09/2022]
Abstract
The synthesis, property evaluation, and single crystal X-ray structures of four 5,7,12,14-tetrafunctionalized diazapentacenes are presented. The synthesis of these compounds either starts from tetrabromo-N,N-dihydrodiazapentacene or from a diazapentacene tetraketone. Pd-catalyzed coupling or addition of a lithium acetylide gave the precursors that furnish, after further redox reactions, the diazapentacenes as stable crystalline materials. The performance of the tetraphenyl-substituted compound as n-channel semiconductor was evaluated in organic field effect transistors.
Collapse
Affiliation(s)
- Gaozhan Xie
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Miriam Hauschild
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hendrik Hoffmann
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lukas Ahrens
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Michal Borkowski
- Department of Molecular PhysicsLodz University of TechnologyZeromskiego 11690924LodzPoland
| | - Tomasz Marszalek
- Department of Molecular PhysicsLodz University of TechnologyZeromskiego 11690924LodzPoland
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Jan Freudenberg
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Milan Kivala
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Uwe H. F. Bunz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
17
|
Chen Z, Hou Y, Yang Y, Cai D, Song W, Wang N, Qian W. A multi-stage fluidized bed strategy for the enhanced conversion of methanol into aromatics. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 2019; 48:3193-3228. [DOI: 10.1039/c8cs00502h] [Citation(s) in RCA: 454] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in bifunctional catalysis for conversion of syngas and hydrogenation of CO2 into chemicals and fuels have been highlighted.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Jincan Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Cheng Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Vijayanand Subramanian
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| |
Collapse
|