1
|
Shao SW, Puneet P, Li MC, Ikai T, Yashima E, Ho RM. Chiral Luminophore Guided Self-Assembly of Achiral Block Copolymers for the Amplification of Circularly Polarized Luminescence. ACS Macro Lett 2024; 13:734-740. [PMID: 38814070 PMCID: PMC11191678 DOI: 10.1021/acsmacrolett.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
This work aims to examine the effect of self-assembly on the chiroptic responses of the achiral block copolymer (BCP) polystyrene-b-poly(ethylene oxide) (PS-b-PEO) associated with chiral luminophores, (R)- or (S)-1,1'-bi-2-naphthol ((R)- or (S)-BINOL), through hydrogen bonding. With the formation of a well-ordered helical phase (H*), significantly induced circular dichroism (ICD) signals for the PEO block in the mixture can be found. Most interestingly, a remarkable amplification with an extremely large dissymmetry factor of luminescence (glum) from 10-3 to 0.3 (i.e., induced circular polarized luminescence (iCPL) behavior) for the chiral BINOLs in the mixture can be achieved by the formation of the helical phase (H*) via mesochiral self-assembly. As a result, by taking advantage of BCP for mesochiral self-assembly, it is feasible to create a nanostructured monolith with substantial optical activities, offering promising applications in the design of chiroptic devices.
Collapse
Affiliation(s)
- Sheng-Wei Shao
- Department
of Chemical Engineering, National Tsing
Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
| | - Puhup Puneet
- Department
of Chemical Engineering, National Tsing
Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
| | - Ming-Chia Li
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDS2B), National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.
| | - Tomoyuki Ikai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Rong-Ming Ho
- Department
of Chemical Engineering, National Tsing
Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
| |
Collapse
|
2
|
Gao T, Lei J, Zou S, Wang C, Xu X, Gou Q. Conformational equilibria and interaction preference in the complex of isoprene-maleic anhydride. Phys Chem Chem Phys 2023; 25:27798-27804. [PMID: 37814807 DOI: 10.1039/d3cp03712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The rotational spectrum of the isoprene-maleic anhydride complex has been investigated by pulsed jet Fourier transform microwave spectroscopy and interpreted with complementary quantum chemical calculations. Theoretical predictions have yielded four plausible isomers, all residing within an energy window of 12 kJ mol-1. However, two distinct isomers characterized by a π-π stacked configuration have been experimentally observed in pulsed jets, which have differed in the orientation of isoprene over maleic anhydride. The relative population ratio of the two detected isomers has been estimated to be NI/NII ≈ 3/1 from rigorous measurements of the relative intensity on a set of μc-type transitions. Remarkably, this study underscores the pivotal role played by the interaction between the CC bonding orbital (π) of isoprene and the CC antibonding orbital (π*) of maleic anhydride in stabilizing the target complex.
Collapse
Affiliation(s)
- Tianyue Gao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Juncheng Lei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Chenxu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
3
|
Lee H, Hwang JH, Song SH, Han H, Han S, Suh BL, Hur K, Kyhm J, Ahn J, Cho JH, Hwang DK, Lee E, Choi C, Lim JA. Chiroptical Synaptic Heterojunction Phototransistors Based on Self-Assembled Nanohelix of π-Conjugated Molecules for Direct Noise-Reduced Detection of Circularly Polarized Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304039. [PMID: 37501319 PMCID: PMC10520648 DOI: 10.1002/advs.202304039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 07/29/2023]
Abstract
High-performance chiroptical synaptic phototransistors are successfully demonstrated using heterojunctions composed of a self-assembled nanohelix of a π-conjugated molecule and a metal oxide semiconductor. To impart strong chiroptical activity to the device, a diketopyrrolopyrrole-based π-conjugated molecule decorated with chiral glutamic acid is newly synthesized; this molecule is capable of supramolecular self-assembly through noncovalent intermolecular interactions. In particular, nanohelix formed by intertwinded fibers with strong and stable chiroptical activity in a solid-film state are obtained through hydrogen-bonding-driven, gelation-assisted self-assembly. Phototransistors based on interfacial charge transfer at the heterojunction from the chiroptical nanohelix to the metal oxide semiconductor show excellent chiroptical detection with a high photocurrent dissymmetry factor of 1.97 and a high photoresponsivity of 218 A W-1 . The chiroptical phototransistor demonstrates photonic synapse-like, time-dependent photocurrent generation, along with persistent photoconductivity, which is attributed to the interfacial charge trapping. Through the advantage of synaptic functionality, a trained convolutional neural network successfully recognizes noise-reduced circularly polarized images of handwritten alphabetic characters with better than 89.7% accuracy.
Collapse
Affiliation(s)
- Hanna Lee
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Seung Ho Song
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hyemi Han
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Seo‐Jung Han
- Chemical and Biological Integrative Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolUniversity of Science and Technology of KoreaSeoul02792Republic of Korea
| | - Bong Lim Suh
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jihoon Kyhm
- Technology Support CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jongtae Ahn
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Do Kyung Hwang
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| | - Eunji Lee
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Changsoon Choi
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jung Ah Lim
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
4
|
Gao Y, Wang L, Ma X, Jin R, Kang C, Gao L. Chiral Naphthalenediimides with High-Efficiency Fluorescence and Circularly Polarized Luminescence in the Solid State for the Application in Organic Optoelectronics. Chemistry 2023; 29:e202202476. [PMID: 36214724 DOI: 10.1002/chem.202202476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/05/2022]
Abstract
Naphthalenediimides (NDIs) have been extensively studied due to their tunable luminescent properties. However, generally, the monomers or aggregates of non-core substituted NDIs exhibit low fluorescence quantum yields (ΦFL <10 %) in the solid state, which limit their applications as light-emitting materials and render their chiral species unsuitable for circularly polarized luminescence (CPL). Herein, a series of non-core substituted chiral NDIs that exhibit high luminous efficiencies (ΦFL up to 56.8 % for racemate and 36.5 % for enantiomer) and a strong CPL behavior in the solid state is reported. These significant improvements are attributed to the unique molecular conformation of the chiral NDIs and the formation of distinctive discrete dimers. The structures of the NDIs were significantly simpler and more accessible than those of other NDIs. The findings evidence that non-core substituted NDIs can exhibit strong fluorescence in the solid state and provide a new pathway to improve photophysical properties of NDIs.
Collapse
Affiliation(s)
- Yuping Gao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China.,Current address: College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Liangpeng Wang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaoye Ma
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Rizhe Jin
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Chuanqing Kang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lianxun Gao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
5
|
Shi Z, Wang Q, Yi J, Zhao C, Chen S, Tian H, Qu D. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022; 61:e202207405. [DOI: 10.1002/anie.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shao‐Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
6
|
Wang Y, Gong J, Wang X, Li W, Wang X, He X, Wang W, Yang H. Multistate Circularly Polarized Luminescence Switching through Stimuli‐Induced Co‐Conformation Regulations of Pyrene‐Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022; 61:e202210542. [DOI: 10.1002/anie.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Jiacheng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xianwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| |
Collapse
|
7
|
Wang Y, Gong J, Wang X, Li WJ, Wang XQ, He X, Wang W, Yang HB. Multistate Circularly Polarized Luminescence Switching through Stimuli‐induced Co‐conformation Regulations of Pyrene‐functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Jiacheng Gong
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xianwei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei-Jian Li
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xu-Qing Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xiao He
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Hai-Bo Yang
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road 200062 Shanghai CHINA
| |
Collapse
|
8
|
Shi ZT, Wang Q, Yi J, Zhao C, Chen SY, Tian H, Qu DH. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboretory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Joint Research Center East China University of Science and Technology CHINA
| | - Qian Wang
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Chengxi Zhao
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Jiont Research Center East China University of Science and Technology CHINA
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - He Tian
- Key Laboratory for Advanced Materials and Joint Internation Research Laboratory of Precision Chemistry and Molecular Enginering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
9
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host-Guest Complexation-Induced Aggregation Based on Pyrene-Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202203541. [PMID: 35499863 DOI: 10.1002/anie.202203541] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/03/2023]
Abstract
Several γ-cyclodextrin (CD) derivatives mono- or di-substituted by pyrenes at the primary rim of the CD were demonstrated to aggregate into nano-strips in aqueous solutions, with the pyrene moieties interpenetrating into γ-CD cavities. The hydrophobic complexation-induced aggregation provides a rigid chiral environment for the pyrenes and leads to significant electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) activities, giving unprecedently high gabs and glum values up to 4.3×10-2 and 5.3×10-2 , respectively. The aggregates lead to excimer emission with high quantum yields and show BCPL and Bi CPL up to 338. 6 M-1 cm-1 and 169.3 M-1 cm-1 , respectively.
Collapse
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wenting Liang
- Department of Chemistry, Institute of Environmental Science Shanxi University, Taiyuan, 030006, China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Shigang Wan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
10
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host–Guest Complexation‐Induced Aggregation Based on Pyrene‐Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wenting Liang
- Department of Chemistry Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Shigang Wan
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| |
Collapse
|
11
|
Kalaw JM, Kitagawa M, Shigemitsu H, Kida T. Highly Regulated Supramolecular Assembly of 2- O-Methylated α-Cyclodextrin to Construct Vertically Oriented Microrods on Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5149-5155. [PMID: 34652161 DOI: 10.1021/acs.langmuir.1c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precisely controlling self-assembled molecules to fabricate highly ordered nano/microstructures is a challenging task. Here, a simple precipitation technique with common solvents forms supramolecular microstructures with highly regulated molecular arrangements from a methylated derivative of α-cyclodextrin at the 2-O position (2-Me-α-CD). The formation of a head-to-tail channel assembly of 2-Me-α-CD through host-guest complexation with a solvent molecule such as benzene or cyclohexane yields well-defined hexagonal microrods. Specifically, the self-assembly of 2-Me-α-CD forms vertically aligned hexagonal microrods on a highly ordered pyrolytic graphite (HOPG) surface via epitaxial growth. This work should provide insight into the design of supramolecular building blocks for controlled self-assembly.
Collapse
|
12
|
Wang Y, Niu D, Ouyang G, Liu M. Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence. Nat Commun 2022; 13:1710. [PMID: 35361805 PMCID: PMC8971395 DOI: 10.1038/s41467-022-29396-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 01/15/2023] Open
Abstract
The canonical double helical π-stacked array of base pairs within DNA interior has inspired the interest in supramolecular double helical architectures with advanced electronic, magnetic and optical functions. Here, we report a selective-recognized and chirality-matched co-assembly strategy for the fabrication of fluorescent π-amino acids into double helical π-aggregates, which show exceptional strong circularly polarized luminescence (CPL). The single crystal structure of the optimal combination of co-assemblies shows that the double-stranded helical organization of these π-amino acids is cooperatively assisted by both CH-π and hydrogen-bond arrays with chirality match. The well-defined spatial arrangement of the π-chromophores could effectively suppress the non-radiative decay pathways and facilitate chiral exciton couplings, leading to superior CPL with a strong figure of merit (glum = 0.14 and QY = 0.76). Our findings might open a new door for developing DNA-inspired chiroptical materials with prominent properties by enantioselective co-assembly initiated double helical π-aggregation.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Dian Niu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Wang S, Gao L, Su N, Yang L, Gao F, Dou X, Feng C. Inversion of Supramolecular Chirality by In Situ Hydrolyzation of Achiral Diethylene Glycol Motifs. J Phys Chem B 2022; 126:1325-1333. [PMID: 35113541 DOI: 10.1021/acs.jpcb.1c10018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral inversion of supramolecular assemblies is of great research interest due to its broad practical applications. However, chiral structure transition induced by in situ regulation of building molecules has remained a challenge. Herein, left-handed fibrous assemblies were constructed by C2-symmetic l-phenylalanine coupled with diethylene glycol (LPFEG) molecules. In situ hydrolyzing terminal diethylene glycol motifs in LPFEG successfully inverted the chirality of the nanofibers from left- to right-handedness. The transition of right-handed fibers into left-handed fibers could also be achieved via hydrolyzing DPFEG molecules. Circular dichroism (CD) spectroscopy, 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy revealed that the back-folded achiral diethylene glycol played a vital role in L/DPFEG molecular arrangements and removing terminal diethylene glycol could induce the opposite rotation of molecular assemblies. Thanks to this merit, the enantioselective separation of racemic phenylalanine was obtained and the enantiomeric excess (ee) values could achieve around ±20% after separation. This study not only provides a new strategy to regulate the chiral structure via dynamic modulation of terminal substituents but also presents a promising application in the field of enantioselective separation.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Su
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengli Gao
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Qu DH, Xu H, Zhang Q, Gan JA, Wang Z, Chen M, Shan Y, Chen S, Tong F. Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion. Chem Asian J 2022; 17:e202101354. [PMID: 35007397 DOI: 10.1002/asia.202101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Indexed: 11/07/2022]
Abstract
Intelligent control over the handedness of circular dichroism (CD) is of special significance in self-organized biological and artificial systems. Herein, we report a chiral organic molecule (R1) containing a disulfide unit self-assembles into M-type helical fibers gels, which undergoes chirality inversion by incorporating gold nanospheres due to the formation of Au-S bonds between R1 and gold nanospheres. Upon heating at 80oC, the aggregation of gold nanospheres results in a disappearance of the Au-S bond, allowing the reversible switching back to M-type helical fibers. The original chirality of M-type fibers could also be retained by adding anisotropic gold nanorods. A series of characterization methods, involving CD, Raman, Infrared spectroscopy, electric microscopy, and small-angle X-ray scattering (SAXS) measurements were used to investigate the mechanism of chiral evolutions. Our results provide a facile way of fabricating hysteresis nanoarchitectonics to achieve dynamic supramolecular chirality using inorganic metallic nanoparticles.
Collapse
Affiliation(s)
- Da-Hui Qu
- Key Labs for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, CHINA
| | - Hui Xu
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Qi Zhang
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Jia-An Gan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Zhuo Wang
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Meng Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Yahan Shan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Shaoyu Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Fei Tong
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, 200237, Shanghai, CHINA
| |
Collapse
|
15
|
Xue C, Xu L, Wang H, Li T, Liu M. Circularly Polarized Luminescence (CPL) from Pyrene‐Appended Cyclohexanediamides and Photoirradiation‐Tuned CPL Inversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenlu Xue
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Lifei Xu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Han‐Xiao Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Tiesheng Li
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| |
Collapse
|
16
|
Zhao J, Xing P. Regulation of Circularly Polarized Luminescence in Multicomponent Supramolecular Coassemblies. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| |
Collapse
|
17
|
Chen Y, Sun B, Feng H, Wang R, Cheng M, Wang P, Zhou Z, Jiang J, Wang L. Multilevel Chirality Transfer from Amino Acid Derivatives to Circularly Polarized Luminescence-Active Nanoparticles in Aqueous Medium. Chemistry 2021; 27:12305-12309. [PMID: 34231284 DOI: 10.1002/chem.202100458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Chirality at different levels is widely observed in nature, but the clue to connect it all together, and the way chirality transfers among different levels are still obscure. Herein, a l-/d-lysine-based self-assembly system was constructed, in which two-step chirality transfer among three different levels was observed in aqueous solution. The chirality originated from the point chirality of amino acid derivatives l-/d-PyLys hydrochloride, and was transferred to the planar conformational chirality of water-soluble pillar[5]arene pR-/pS-WP5. Then, with the aid of pR-/pS-WP5, nanoparticles were formed that exhibited L-/R-handed circularly polarized luminescence with a dissymmetry factor of up to ±0.001, arising from pyrene chiral excimers. This multilevel chirality transfer not only provides a perspective to trace potential clues, and to pursue certain ways by which the chirality transfers, but also offers a strategy to create controllable CPL emission in aqueous media.
Collapse
Affiliation(s)
- Yuan Chen
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Baobao Sun
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Haohui Feng
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Ranran Wang
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Ming Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Zhiping Zhou
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Juli Jiang
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
18
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V-shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021; 60:19451-19457. [PMID: 34196488 DOI: 10.1002/anie.202107842] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Here, we designed symmetric and dissymmetric chiral V-shaped pyrenes by linking achiral pyrenes to trans-1,2-cyclohexane diamine scaffolds with varied spacers to investigate their circular dichroism (CD) and circularly polarized excimer emission (CPEE). In molecular solution, the symmetric V-shaped molecules (P1, P2, P3) displayed spacer-dependent CD and CPEE originating from the intramolecular excimers while the dissymmetric V-shaped B was silent in CD and CPEE. Upon self-assembly, the chiral V-shaped conformation guided a helical hexagonal packing. Notably, P1 self-assembled into delicate superhelices with optimum chiroptical activities and the largest gCD for pyrene derivatives to date. The dissymmetric B formed two distinct hexagonal aggregates as twists and rectangular nanotubes with greatly amplified CPEE. This work demonstrates unprecedented hexagonal superhelices from chiral V-shaped scaffolds and provides a deep insight into the relationship between molecular conformation, supramolecular architectures, and their chiroptical performance.
Collapse
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V‐shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Nian H, Cheng L, Wang L, Zhang H, Wang P, Li Y, Cao L. Hierarchical Two-Level Supramolecular Chirality of an Achiral Anthracene-Based Tetracationic Nanotube in Water. Angew Chem Int Ed Engl 2021; 60:15354-15358. [PMID: 34111314 DOI: 10.1002/anie.202105593] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Herein, we report an achiral anthracene-based tetracationic nanotube (1⋅4Cl- ) that shows two levels of supramolecular chirality: namely, conformationally adaptive host-guest complexation with nucleoside triphosphates (e.g. ATP, GTP, CTP, and UTP) and twisted packing of the chiral host-guest complexes in water. Interestingly, achiral 1⋅4Cl- exhibits chiral recognition for ATP/GTP and CTP/UTP through structural transformation of its intramolecular M- and P-twisted conformation as the first level of supramolecular chirality, which leads to adaptive chirality with opposite CD responses. Furthermore, the formation of chiral M-1⋅4Cl- ⊃ATP can promote an intermolecular P-twisted dimeric packing of anthracene rings as the second level of supramolecular chirality to achieve assembled chirality with strong circularly polarized luminescence arising from the excimer ((+)-CPL, glum ≈10-2 ) in water.
Collapse
Affiliation(s)
- Hao Nian
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Ling Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Haiyang Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Pinpin Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yawen Li
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
21
|
Nian H, Cheng L, Wang L, Zhang H, Wang P, Li Y, Cao L. Hierarchical Two‐Level Supramolecular Chirality of an Achiral Anthracene‐Based Tetracationic Nanotube in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hao Nian
- College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Lin Cheng
- College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Ling Wang
- College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Haiyang Zhang
- College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Pinpin Wang
- College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Yawen Li
- College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| | - Liping Cao
- College of Chemistry and Materials Science Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
22
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
23
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:9507-9515. [DOI: 10.1002/anie.202100934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
24
|
Wu B, Wu H, Zhou Y, Zheng D, Jia X, Fang L, Zhu L. Controlling Ultra-Large Optical Asymmetry in Amorphous Molecular Aggregations. Angew Chem Int Ed Engl 2021; 60:3672-3678. [PMID: 33119201 DOI: 10.1002/anie.202012224] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Indexed: 11/10/2022]
Abstract
Although ultra-large optical asymmetry appears in crystalline materials, distractions from the mesoscopic ordering often causes inauthenticity in chiropticity. In amorphous materials, however, it remains challenging and elusive to achieve large chiropticity. Herein, we report the quantitative control of chiral amplification, on amorphous supramolecular structures of cholesteryl-linked bis(dipyrrinato)zinc(II), to an exceptionally high level. A proper chiral packing of the building block at several molecular scale considerably contributes to the absorptive dissymmetry factor gabs , although the system is overall disordered. The intense and tunable aggregation strength renders a variable gabs value up to +0.10 and +0.31 in the solution and in film state. On this basis, a superior ON-OFF switching of chiropticity is realized under external stimuli. This work establishes a general design principle to control over ultra-large optical asymmetry on a wider scope of chiral materials.
Collapse
Affiliation(s)
- Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongwei Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yunyun Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Dongxiao Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
| | - Lei Fang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
25
|
Wu B, Wu H, Zhou Y, Zheng D, Jia X, Fang L, Zhu L. Controlling Ultra‐Large Optical Asymmetry in Amorphous Molecular Aggregations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Hongwei Wu
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Yunyun Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Dongxiao Zheng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials Henan University Kaifeng 475004 China
| | - Lei Fang
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
26
|
Wang Z, Li Y, Hao A, Xing P. Multi‐Modal Chiral Superstructures in Self‐Assembled Anthracene‐Terminal Amino Acids with Predictable and Adjustable Chiroptical Activities and Color Evolution. Angew Chem Int Ed Engl 2020; 60:3138-3147. [DOI: 10.1002/anie.202011907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yingzhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering Qilu University of Technology (Shandong Academy of Science) Jinan 250353 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
27
|
Wang Z, Li Y, Hao A, Xing P. Multi‐Modal Chiral Superstructures in Self‐Assembled Anthracene‐Terminal Amino Acids with Predictable and Adjustable Chiroptical Activities and Color Evolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yingzhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering Qilu University of Technology (Shandong Academy of Science) Jinan 250353 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
28
|
Yi H, Albrecht M, Pan F, Valkonen A, Rissanen K. Stacking of Sterically Congested Trifluoromethylated Aromatics in their Crystals – The Role of Weak F···π or F···F Contacts. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hai Yi
- College of Chemistry and Pharmaceutical Engineering Zhumadian Academy of Industry Innovation and Development Huanghuai University Kaiyuan Road 76 463000 Zhumadian P. R. China
- Institut für Organische Chemie RWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Fangfang Pan
- Department of Chemistry Nanoscience Center University of Jyvaskyla P. O. Box 35 40014 University of Jyväskylä Finland
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Luoyu Road 152 430079 Wuhan P. R. China
| | - Arto Valkonen
- Department of Chemistry Nanoscience Center University of Jyvaskyla P. O. Box 35 40014 University of Jyväskylä Finland
| | - Kari Rissanen
- Department of Chemistry Nanoscience Center University of Jyvaskyla P. O. Box 35 40014 University of Jyväskylä Finland
| |
Collapse
|
29
|
Xu L, Wang C, Li Y, Xu X, Zhou L, Liu N, Wu Z. Crystallization‐Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White‐light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Chao Wang
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Yan‐Xiang Li
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Xun‐Hui Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
30
|
Xu L, Wang C, Li YX, Xu XH, Zhou L, Liu N, Wu ZQ. Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:16675-16682. [PMID: 32543000 DOI: 10.1002/anie.202006561] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Controlling the self-assembly morphology of π-conjugated block copolymer is of great interesting. Herein, amphiphilic poly(3-hexylthiophene)-block-poly(phenyl isocyanide)s (P3HT-b-PPI) copolymers composed of π-conjugated P3HT and optically active helical PPI segments were readily prepared. Taking advantage of the crystallizable nature of P3HT and the chirality of the helical PPI segment, crystallization-driven asymmetric self-assembly (CDASA) of the block copolymers lead to the formation of single-handed helical nanofibers with controlled length, narrow dispersity, and well-defined helicity. During the self-assembly process, the chirality of helical PPI was transferred to the supramolecular assemblies, giving the helical assemblies large optical activity. The single-handed helical assemblies of the block copolymers exhibited interesting white-light emission and circularly polarized luminescence (CPL). The handedness and dissymmetric factor of the induced CPL can be finely tuned through the variation on the helicity and length of the helical nanofibers.
Collapse
Affiliation(s)
- Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| |
Collapse
|
31
|
Wang H, Wu Q, Ding X, Shao Z, Xu W, Zhao Y, Xie Q, Meng X, Hou H. The 50-Fold Enhanced Proton Conductivity Brought by Aqueous-Phase Single-Crystal-to-Single-Crystal Central Metal Exchange. Inorg Chem 2020; 59:8361-8368. [DOI: 10.1021/acs.inorgchem.0c00766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hongfei Wang
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qiong Wu
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xianyong Ding
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, P. R. China
| | - Zhichao Shao
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wenjuan Xu
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qiong Xie
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiangru Meng
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
32
|
Guo BB, Azam M, AlResayes SI, Lin YJ, Jin GX. Discrete Supramolecular Stacks Based on Multinuclear Tweezer-Type Rhodium Complexes. Chemistry 2020; 26:558-563. [PMID: 31692129 DOI: 10.1002/chem.201904580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/03/2019] [Indexed: 12/14/2022]
Abstract
By taking advantage of self-complementary π-π stacking and CH-π interactions, a series of discrete quadruple stacks were constructed through the self-aggregation of U-shaped dirhodium metallotweezer complexes featuring various planar polyaromatic ligands. By altering the conjugate stacking strength and bridging ligands, assemblies with a range of topologies were obtained, including a binuclear D-shaped macrocycle, tetranuclear open-ended cagelike frameworks, and duplex metallotweezer stacking structures. Furthermore, a rare stacking interaction resulting in selective C-H activation was observed during the self-assembly process of these elaborate architectures.
Collapse
Affiliation(s)
- Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh, 11451, KSA
| | - Saud I AlResayes
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh, 11451, KSA
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
33
|
Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Finely Controlled Circularly Polarized Luminescence of a Mechano‐Responsive Supramolecular Polymer. Angew Chem Int Ed Engl 2019; 58:18878-18882. [DOI: 10.1002/anie.201911380] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Seonae Lee
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal ArtsGyeongnam National University of Science and Technology(GNTECH) Jinju Republic of Korea
| | - Ji Ha Lee
- Department of Chemistry and BiochemistryUniversity of Kitakyushu Hibikino Kitakyushu 808-0135 Japan
| | - Mihoko Yamada
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ramarani Sethy
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|
34
|
Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Finely Controlled Circularly Polarized Luminescence of a Mechano‐Responsive Supramolecular Polymer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911380] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Seonae Lee
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal ArtsGyeongnam National University of Science and Technology(GNTECH) Jinju Republic of Korea
| | - Ji Ha Lee
- Department of Chemistry and BiochemistryUniversity of Kitakyushu Hibikino Kitakyushu 808-0135 Japan
| | - Mihoko Yamada
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ramarani Sethy
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|