1
|
Yim K, Yeung C, Wong MY, Probert MR, Law G. Differentiable Formation of Chiroptical Lanthanide Heterometallic Ln n Ln' 4-n (L 6 ) (n=0-4) Tetrahedra with C 2 -Symmetrical Bis(tridentate) Ligands. Chemistry 2022; 28:e202201655. [PMID: 35778773 PMCID: PMC9805037 DOI: 10.1002/chem.202201655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/09/2023]
Abstract
Construction of lanthanide heterometallic complex is important for engineering multifunction molecular containers. However, it remains a challenge because of the similar ionic radii of lanthanides. Herein we attempt to prepare chiral lanthanide heterometallic tetrahedra. Upon crystallization with a mixture of [Eu2 L3 ] and [Ln2 L3 ] (Ln=Gd, Tb and Dy) helicates, a mixture of heterometallic Eun Ln'4-n (L6 ) (n=0-4) tetrahedra was prepared. Selective formation of heterometallic tetrahedron was observed as MS deconvolution results deviated from statistical results. The formation of heterometallic tetrahedron was found to be sensitive to ionic radii as well as the ratio of the two helicates used in the crystallization.
Collapse
Affiliation(s)
- King‐Him Yim
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Chi‐Tung Yeung
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Melody Yee‐Man Wong
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Michael R. Probert
- ChemistrySchool of Natural and Environmental SciencesNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Ga‐Lai Law
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518000P. R. China
| |
Collapse
|
2
|
Li Z, Shen J, Jiang Q, Shen S, Zhou J, Zeng H. Directionally aligned crown ethers as superactive organocatalysts for transition metal ion-free arylation of unactivated arenes. Chem Asian J 2022; 17:e202200303. [PMID: 35560810 DOI: 10.1002/asia.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Indexed: 11/08/2022]
Abstract
When one-dimensionally aligned to the same side, multiple non-covalently associated crown ether groups could act as a whole to yield a higher catalytic activity than an individual poorly active crown ether group, delivering the lowest catalyst loading of 1 - 2 mol% among all hitherto known organocatalysts for catalyzing direct arylation of unactivated arenes with haloarenes.
Collapse
Affiliation(s)
- Zhaojie Li
- Nanjing University, School of Medicine, CHINA
| | - Jie Shen
- Hainan University, Department of Chemistry, CHINA
| | - Qing Jiang
- Nanjing University, School of Medicine, CHINA
| | - Sheng Shen
- Nanjing University, School of Medicine, CHINA
| | - Jing Zhou
- Nanjing University, Medical School, 22 Hankou Road, 210093, Nanjing, CHINA
| | | |
Collapse
|
3
|
Norjmaa G, Maréchal J, Ujaque G. Origin of the Rate Acceleration in the C-C Reductive Elimination from Pt(IV)-complex in a [Ga 4 L 6 ] 12- Supramolecular Metallocage. Chemistry 2021; 27:15973-15980. [PMID: 34545974 PMCID: PMC9293218 DOI: 10.1002/chem.202102250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/29/2022]
Abstract
The reductive elimination on [(Me3 P)2 Pt(MeOH)(CH3 )3 ]+ , 2P, complex performed in MeOH solution and inside a [Ga4 L6 ]12- metallocage are computationally analysed by mean of QM and MD simulations and compared with the mechanism of gold parent systems previously reported [Et3 PAu(MeOH)(CH3 )2 ]+ , 2Au. The comparative analysis between the encapsulated Au(III) and Pt(IV)-counterparts shows that there are no additional solvent MeOH molecules inside the cavity of the metallocage for both systems. The Gibbs energy barriers for the 2P reductive elimination calculated at DFT level are in good agreement with the experimental values for both environments. The effect of microsolvation and encapsulation on the rate acceleration are evaluated and shows that the latter is far more relevant, conversely to 2Au. Energy decomposition analysis indicates that the encapsulation is the main responsible for most of the energy barrier reduction. Microsolvation and encapsulation effects are not equally contributing for both metal systems and consequently, the reasons of the rate acceleration are not the same for both metallic systems despite the similarity between them.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| |
Collapse
|
4
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self‐Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lu Tong
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
5
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self-Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021; 60:9852-9858. [PMID: 33651476 DOI: 10.1002/anie.202100655] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Indexed: 12/24/2022]
Abstract
Condensation of an inherently C3 -symmetric polychlorotriphenylmethyl (PTM) radical trisaldehyde with tris(2-aminoethyl)amine (TREN) yields a [4+4] tetrahedral radical cage as a racemic pair of homochiral enantiomers in 75 % isolated yield. The structure was characterized by X-ray crystallography, confirming the homochirality of each cage framework. The homochirality results from intramolecular [CH⋅⋅⋅π] and hydrogen-bonding interactions within the cage framework. The four PTM radicals in a cage undergo weak through-space coupling. Magnetic measurements demonstrated that each cage bears 3.58 spins.
Collapse
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
6
|
Music A, Baumann AN, Boser F, Müller N, Matz F, Jagau TC, Didier D. Photocatalyzed Transition-Metal-Free Oxidative Cross-Coupling Reactions of Tetraorganoborates*. Chemistry 2021; 27:4322-4326. [PMID: 33306228 PMCID: PMC7986674 DOI: 10.1002/chem.202005282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 01/10/2023]
Abstract
Readily accessible tetraorganoborate salts undergo selective coupling reactions under blue light irradiation in the presence of catalytic amounts of transition‐metal‐free acridinium photocatalysts to furnish unsymmetrical biaryls, heterobiaryls and arylated olefins. This represents an interesting conceptual approach to forge C−C bonds between aryl, heteroaryl and alkenyl groups under smooth photochemical conditions. Computational studies were conducted to investigate the mechanism of the transformation.
Collapse
Affiliation(s)
- Arif Music
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Andreas N Baumann
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Florian Boser
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Nicolas Müller
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Florian Matz
- Quantum Chemistry and Physical Chemistry Section, KU Leuven, Celestijnenlaan 200f, box 2404, 3001, Leuven, Belgium
| | - Thomas C Jagau
- Quantum Chemistry and Physical Chemistry Section, KU Leuven, Celestijnenlaan 200f, box 2404, 3001, Leuven, Belgium
| | - Dorian Didier
- Department Chemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
7
|
Plessius R, Deij V, Reek JNH, van der Vlugt JI. Redox-Active Supramolecular Heteroleptic M 4 L 2 L' 2 Assemblies with Tunable Interior Binding Site. Chemistry 2020; 26:13241-13248. [PMID: 32428350 PMCID: PMC7693204 DOI: 10.1002/chem.202001416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Three Pt4 L2 L'2 heteroleptic rectangles (1-3), containing ditopic redox-active bis-pyridine functionalized perylene bisimide (PBI) ligands PBI-pyr2 (L) are reported. Co-ligand L' is a dicarboxylate spacer of varying length, leading to modified overall size of the assemblies. 1 H NMR spectroscopy reveals a trend in the splitting and upfield chemical shift of the PBI-hydrogens in the rectangles with respect to free PBI, most pronounced with the largest strut length (3) and least with the smallest strut length (1). This is attributed to increased rotational freedom of the PBI-pyr2 ligand over its longitudinal axis (Npy -Npy ), due to increased distance between the PBI-surfaces, which is corroborated by VT-NMR measurements and DFT calculations. The intramolecular motion entails desymmetrization of the two PBI-ligands, in line with cyclic voltammetry (CV) data. The first (overall two-electron) reduction event and re-oxidation for 1 display a subtle peak-to-peak splitting of 60 mV, whilst increased splitting of this event is observed for 2 and 3. The binding of pyrene in 1 is probed to establish proof of concept of host-guest chemistry enabled by the two PBI-motifs. Fitting the binding curve obtained by 1 H NMR titration with a 1:1 complex formation model led to a binding constant of 964±55 m-1 . Pyrene binding is shown to directly influence the redox-chemistry of 1, resulting in a cathodic and anodic shift of approximately 46 mV on the first and second reduction event, respectively.
Collapse
Affiliation(s)
- Raoul Plessius
- van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Vera Deij
- van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Jarl Ivar van der Vlugt
- van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Current address: Institute of ChemistryCarl von Ossietzky University OldenburgCarl-von-Ossietzky-Strasse 9–1126129OldenburgGermany
| |
Collapse
|
8
|
Confinement Self-Assembly of Metal-Organic Cages within Mesoporous Carbon for One-Pot Sequential Reactions. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Gerleve C, Studer A. Transition-Metal-Free Oxidative Cross-Coupling of Tetraarylborates to Biaryls Using Organic Oxidants. Angew Chem Int Ed Engl 2020; 59:15468-15473. [PMID: 32159264 PMCID: PMC7496537 DOI: 10.1002/anie.202002595] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Readily prepared tetraarylborates undergo selective (cross)-coupling through oxidation with Bobbitt's salt to give symmetric and unsymmetric biaryls. The organic oxoammonium salt can be used either as a stoichiometric oxidant or as a catalyst in combination with in situ generated NO2 and molecular oxygen as the terminal oxidant. For selected cases, oxidative coupling is also possible with NO2 /O2 without any additional nitroxide-based cocatalyst. Transition-metal-free catalytic oxidative ligand cross-coupling of tetraarylborates is unprecedented and the introduced method provides access to various biaryl and heterobiaryl systems.
Collapse
Affiliation(s)
- Carolin Gerleve
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
10
|
Gerleve C, Studer A. Übergangsmetallfreie oxidative Kreuzkupplung von Tetraarylboraten zu Biarylen mit organischen Oxidationsmitteln. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carolin Gerleve
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
11
|
Norjmaa G, Maréchal J, Ujaque G. Reaction Rate Inside the Cavity of [Ga
4
L
6
]
12−
Supramolecular Metallocage is Regulated by the Encapsulated Solvent. Chemistry 2020; 26:6988-6992. [PMID: 32125031 DOI: 10.1002/chem.201905608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Jean‐Didier Maréchal
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Gregori Ujaque
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| |
Collapse
|
12
|
Harada K, Sekiya R, Haino T. A Regulable Internal Cavity inside a Resorcinarene-Based Hemicarcerand. Chemistry 2020; 26:5810-5817. [PMID: 32011768 DOI: 10.1002/chem.201905805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Indexed: 01/29/2023]
Abstract
Covalent organic capsules, such as carcerands and hemicarcerands, are an interesting class of molecular hosts. These container molecules have confined spaces capable of hosting small molecules, although the fact that the size of the inner cavities cannot be changed substantially limits the scope of their applications. The title covalently linked container was produced by metal-directed dimerization of a resorcinarene-based cavitand having four 2,2'-bipyridyl arms on the wide rim followed by olefin metathesis at the vertices of the resulting capsule with a second-generation Grubbs catalyst. The covalently linked bipyridyl arms permit expansion of the inner cavity by demetalation. This structural change influences the molecular recognition properties; the metal-coordinated capsule recognizes only 4,4'-diacetoxybiphenyl, whereas the metal-free counterpart can encapsulate not only 4,4'-diacetoxybiphenyl, but also 2,5-disubstituted-1,4-bis(4-acetoxyphenylethynyl)benzene, which is 9.4 Å longer than the former guest. Molecular mechanics calculations predict that the capsule expands the internal cavity to encapsulate the long guest by unfolding the folded conformation of the alkyl chains, which demonstrates the flexible and regulable nature of the cavity. Guest competition experiments show that the preferred guest can be switched by metalation and demetalation. This external-stimuli-responsive guest exchange can be utilized for the development of functional supramolecular systems controlling the uptake, transport, and release of chemicals.
Collapse
Affiliation(s)
- Kentaro Harada
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
13
|
Zhu Z, Lin Y, Yu H, Li X, Zheng S. Inorganic–Organic Hybrid Polyoxoniobates: Polyoxoniobate Metal Complex Cage and Cage Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zeng‐Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Ya‐Yun Lin
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Hao Yu
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
14
|
Zhu ZK, Lin YY, Yu H, Li XX, Zheng ST. Inorganic-Organic Hybrid Polyoxoniobates: Polyoxoniobate Metal Complex Cage and Cage Framework. Angew Chem Int Ed Engl 2019; 58:16864-16868. [PMID: 31613421 DOI: 10.1002/anie.201910477] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/07/2022]
Abstract
The combination of polyoxoniobates (PONbs) with 3d metal ions, azoles, and organoamines is a general synthetic procedure for making unprecedented PONb metal complex cage materials, including discrete molecular cages and extended cage frameworks. By this method, the first two PONb metal complex cages K4 @{[Cu29 (OH)7 (H2 O)2 (en)8 (trz)21 ][Nb24 O67 (OH)2 (H2 O)3 ]4 } and [Cu(en)2 ]@{[Cu2 (en)2 (trz)2 ]6 (Nb68 O188 )} have been made. The former exhibits a huge tetrahedral cage with more than 120 metal centers, which is the largest inorganic-organic hybrid PONb known to date. The later shows a large cubic cage, which can act as building blocks for cage-based extended assembly to form a 3D cage framework {[Cu(en)2 ]@{[Cu2 (trz)2 (en)2 ]6 [H10 Nb68 O188 ]}}. These materials exhibit visible-light-driven photocatalytic H2 evolution activity and high vapor adsorption capacity. The results hold promise for developing both novel cage materials and largely unexplored inorganic-organic hybrid PONb chemistry.
Collapse
Affiliation(s)
- Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ya-Yun Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Hao Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|