1
|
Fan Y, Kang DW, Labalme S, Li J, Lin W. Enhanced Energy Transfer in A π-Conjugated Covalent Organic Framework Facilitates Excited-State Nickel Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218908. [PMID: 36652347 DOI: 10.1002/anie.202218908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL-60637, USA
| |
Collapse
|
2
|
Xu J, Zhang H, Yu F, Cao Y, Liao M, Dong X, Wang Y. Realizing All‐Climate Li‐S Batteries by Using a Porous Sub‐Nano Aromatic Framework. Angew Chem Int Ed Engl 2022; 61:e202211933. [DOI: 10.1002/anie.202211933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jie Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
- School of Materials Science and Engineering Anhui University of Technology Maanshan 243002 China
| | - Hui Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Fengtao Yu
- Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang 330013 China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Mochou Liao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Xiaoli Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| |
Collapse
|
3
|
Yan Q, Liang H, Wang S, Hu H, Su X, Xiao S, Xu H, Jing X, Lu F, Gao Y. Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO 2 to Epoxides. Molecules 2022; 27:6204. [PMID: 36234750 PMCID: PMC9570866 DOI: 10.3390/molecules27196204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming CO2 into value-added chemicals has been an important subject in recent years. The development of a novel heterogeneous catalyst for highly effective CO2 conversion still remains a great challenge. As an emerging class of porous organic polymers, covalent organic frameworks (COFs) have exhibited superior potential as catalysts for various chemical reactions, due to their unique structure and properties. In this study, a layered two-dimensional (2D) COF, IM4F-Py-COF, was prepared through a three-component condensation reaction. Benzimidazole moiety, as an ionic liquid precursor, was integrated onto the skeleton of the COF using a benzimidazole-containing building unit. Ionization of the benzimidazole framework was then achieved through quaternization with 1-bromobutane to produce an ionic liquid-immobilized COF, i.e., BMIM4F-Py-COF. The resulting ionic COF shows excellent catalytic activity in promoting the chemical fixation of CO2 via reaction with epoxides under solvent-free and co-catalyst-free conditions. High porosity, the one-dimensional (1D) open-channel structure of the COF and the high catalytic activity of ionic liquid may contribute to the excellent catalytic performance. Moreover, the COF catalyst could be reused at least five times without significant loss of its catalytic activity.
Collapse
Affiliation(s)
- Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hao Liang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China
| | - Xuechao Jing
- Liaocheng Luxi Polycarbonate Co., Ltd., Liaocheng 252000, China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
4
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022; 61:e202208086. [DOI: 10.1002/anie.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guoxing Jiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wenwu Zou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhaoyuan Ou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Weifeng Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
5
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoxing Jiang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Wenwu Zou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhaoyuan Ou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Longhai Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Weifeng Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Xiujun Wang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Huiyu Song
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhiming Cui
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhenxing Liang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Li Du
- South China University of Technology 381 Wushan Road Tianhe District Guangzhou CHINA
| |
Collapse
|
6
|
Rasheed T, Khan S, Ahmad T, Ullah N. Covalent Organic Frameworks-Based Membranes as Promising Modalities from Preparation to Separation Applications: An Overview. CHEM REC 2022; 22:e202200062. [PMID: 35641392 DOI: 10.1002/tcr.202200062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Indexed: 12/21/2022]
Abstract
Covalent organic frameworks (COFs) are a promising class of porous crystalline materials made up of covalently connected and periodically protracted network topologies through organic linkers. The tailorability of organic linker and intrinsic structures endow COFs with a tunable porosity and structure, low density, facilely-tailored functionality, and large surface area, attracting increasing amount of interests in variety of research areas of membrane separations. COF-based membranes have spawned a slew of new research projects, ranging from fabrication methodologies to separation applications. Herein, we tried to emphasis the major developments in the synthetic approaches of COFs based membranes for a variety of separation applications such as, separation of gaseous mixtures, water treatment as well as separation of isomeric and chiral organic compounds. The proposed methods for fabricating COF-based continuous membranes and columns for real world applications are also thoroughly explored. Finally, a viewpoint on the future directions and remaining challenges for COF research in the area of separation is provided.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
7
|
Li C, Li D, Zhang W, Li H, Yu G. Towards High‐Performance Resistive Switching Behavior through Embedding a D‐A System into 2D Imine‐Linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dong Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
8
|
Zhu J, Wu S, Hou X, Wu J. 1,6‐Anthrazoline‐Linked π‐Conjugated Macrocycles and Two‐Dimensional Polymer via Friedländer Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Zhu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shaofei Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xudong Hou
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| |
Collapse
|
9
|
Zhu J, Wu S, Hou X, Wu J. 1,6-Anthrazoline-Linked π-Conjugated Macrocycles and Two-Dimensional Polymer via Friedländer Synthesis. Angew Chem Int Ed Engl 2021; 60:25323-25327. [PMID: 34562050 DOI: 10.1002/anie.202112409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 11/06/2022]
Abstract
Synthesis of π-conjugated crystalline two-dimensional (2D) polymers remains largely unexplored due to limited synthetic methodology. Herein, we report the preparation of a 1,6-anthrazoline (AZ)-linked crystalline 2D polymer AZP via acid mediated Friedländer synthesis. The feasibility was examined first by two model reactions, followed by synthesis of three AZ-based macrocycles MCn (n=5-7), in which hexagonal MC6 was isolated as the major product. The favorable macrocycle formation could be largely attributed to the dynamic feature of Friedländer synthesis, which involves both imine condensation and aldol condensation. The structure and crystallinity of AZP were confirmed by experiments and simulation. The skeletons of the macrocycles and polymer consist of all-sp2 hybridized C/N atoms and are thus π-conjugated and electro-active. Our studies provide a rational way to access kinetically stable 2D crystalline polymers by combination of different dynamic covalent chemistries.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
10
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Liu M, Wen Y, Lu L, Kang Q, Xie Z, Chen Y, Tian X, Jin H, Liu J. A Cost‐Effective Iron Based Covalent Organic Framework and Its Composite Electrocatalyst for Active and Stable Oxygen Reduction Reaction in Alkaline Solution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Muye Liu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Yue Wen
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Luhua Lu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
- Zhejiang institute China University of Geosciences Wuhan Hangzhou 6 Heting Street 311305 P. R. China
| | - Qi Kang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Zhicheng Xie
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Ying Chen
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Xiaocong Tian
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Hongyun Jin
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials College of Chemistry and Chemical Engineering Inner Mongolia University for Nationalities Tongliao 536 Huolinhe Street West 028000 P. R. China
| |
Collapse
|
12
|
Li C, Li D, Zhang W, Li H, Yu G. Towards High-Performance Resistive Switching Behavior through Embedding a D-A System into 2D Imine-Linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:27135-27143. [PMID: 34585820 DOI: 10.1002/anie.202112924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/22/2022]
Abstract
Developing new materials for the fabrication of resistive random-access memory is of great significance in this period of big data. Herein, we present a novel design strategy of embedding donor (D) and acceptor (A) fragments into imine-linked frameworks to construct resistive switching covalent organic frameworks (COFs) for high-performance memristors. Two D-A-type two-dimensional COFs, COF-BT-TT and COF-TT-TVT, were designed and synthesized using a conventional solvothermal approach, and high-quality thin films of these materials deposited on ITO substrate exhibited great potential as an active layer for memristors. Rewritable memristors based on 100 nm thick COF-TT-BT and COF-TT-TVT films showed a high ON/OFF current ratio (ca. 105 and 104 ) and low driving voltage (1.30 and 1.60 V). The cycle period and retention time for COF-TT-BT-based rewritable devices were as high as 319 cycles and 3.3×104 s at a constant voltage of 0.1 V (160 cycles and 1.2×104 s for the COF-TT-TVT memristor).
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds*. Angew Chem Int Ed Engl 2021; 60:17455-17463. [PMID: 33905140 PMCID: PMC8362030 DOI: 10.1002/anie.202102982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m2 g-1 and 1.84 cm3 g-1 . Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97-2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Eva Köster
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Julian J. Holstein
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Niklas Keller
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Guido H. Clever
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Thomas Bein
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Florian Beuerle
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
14
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoretikuläre Kristallisation von hochporösen kubischen kovalentorganischen Käfigverbindungen**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Niklas Keller
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Thomas Bein
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
15
|
Zhao J, Ren J, Zhang G, Zhao Z, Liu S, Zhang W, Chen L. Donor-Acceptor Type Covalent Organic Frameworks. Chemistry 2021; 27:10781-10797. [PMID: 34002911 DOI: 10.1002/chem.202101135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Intermolecular charge transfer (ICT) effect has been widely studied in both small molecules and linear polymers. Covalently-bonded donor-acceptor pairs with tunable bandgaps and photoelectric properties endow these materials with potential applications in optoelectronics, fluorescent bioimaging, and sensors, etc. However, owing to the lack of charge transfer pathway or effective separation of charge carriers, unfavorable charge recombination gives rise to inevitable energy loss. Covalent organic frameworks (COFs) can be mediated with various geometry- and property-tailored building blocks, where donor (D) and acceptor (A) segments are connected by covalent bonds and can be finely arranged to form highly ordered networks (namely D-A COFs). The unique structural features of D-A COFs render the formation of segregated D-A stacks, thus provides pathways and channels for effective charge carriers transport. This review highlights the significant progress on D-A COFs over the past decade with emphasis on design principles, growing structural diversities, and promising application potentials.
Collapse
Affiliation(s)
- Jinwei Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Junyu Ren
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ziqiang Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China.,Institute of Molecules Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyong Liu
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Wandong Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
16
|
Yang J, Acharjya A, Ye M, Rabeah J, Li S, Kochovski Z, Youk S, Roeser J, Grüneberg J, Penschke C, Schwarze M, Wang T, Lu Y, Krol R, Oschatz M, Schomäcker R, Saalfrank P, Thomas A. Protonated Imine‐Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin Yang
- Department of Chemistry/ Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Amitava Acharjya
- Department of Chemistry/ Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Meng‐Yang Ye
- Department of Chemistry/ Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Shuang Li
- Department of Chemistry/ Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Zdravko Kochovski
- Institute of Electrochemical Energy Storage Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Sol Youk
- Department of Colloid Chemistry Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jérôme Roeser
- Department of Chemistry/ Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Julia Grüneberg
- Department of Chemistry/ Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Christopher Penschke
- Theoretical Chemistry Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| | - Michael Schwarze
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Tianyi Wang
- Institute for Solar Fuels Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Yan Lu
- Institute of Electrochemical Energy Storage Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Roel Krol
- Institute for Solar Fuels Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Martin Oschatz
- Department of Colloid Chemistry Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Reinhard Schomäcker
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Peter Saalfrank
- Theoretical Chemistry Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| | - Arne Thomas
- Department of Chemistry/ Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| |
Collapse
|
17
|
Yang J, Acharjya A, Ye MY, Rabeah J, Li S, Kochovski Z, Youk S, Roeser J, Grüneberg J, Penschke C, Schwarze M, Wang T, Lu Y, van de Krol R, Oschatz M, Schomäcker R, Saalfrank P, Thomas A. Protonated Imine-Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 60:19797-19803. [PMID: 34043858 PMCID: PMC8457210 DOI: 10.1002/anie.202104870] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Indexed: 11/30/2022]
Abstract
Covalent organic frameworks (COFs) have emerged as an important class of organic semiconductors and photocatalysts for the hydrogen evolution reaction (HER)from water. To optimize their photocatalytic activity, typically the organic moieties constituting the frameworks are considered and the most suitable combinations of them are searched for. However, the effect of the covalent linkage between these moieties on the photocatalytic performance has rarely been studied. Herein, we demonstrate that donor‐acceptor (D‐A) type imine‐linked COFs can produce hydrogen with a rate as high as 20.7 mmol g−1 h−1 under visible light irradiation, upon protonation of their imine linkages. A significant red‐shift in light absorbance, largely improved charge separation efficiency, and an increase in hydrophilicity triggered by protonation of the Schiff‐base moieties in the imine‐linked COFs, are responsible for the improved photocatalytic performance.
Collapse
Affiliation(s)
- Jin Yang
- Department of Chemistry/, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Amitava Acharjya
- Department of Chemistry/, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Meng-Yang Ye
- Department of Chemistry/, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Shuang Li
- Department of Chemistry/, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Zdravko Kochovski
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Sol Youk
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jérôme Roeser
- Department of Chemistry/, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Julia Grüneberg
- Department of Chemistry/, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Christopher Penschke
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Michael Schwarze
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Tianyi Wang
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Yan Lu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Roel van de Krol
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Martin Oschatz
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Reinhard Schomäcker
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Peter Saalfrank
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Arne Thomas
- Department of Chemistry/, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
18
|
Lan ZA, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang X. A Fully Coplanar Donor-Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angew Chem Int Ed Engl 2021; 60:16355-16359. [PMID: 33945196 DOI: 10.1002/anie.202103992] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Charge generation and separation are regarded as the major constraints limiting the photocatalytic activity of polymeric photocatalysts. Herein, two new linear polyarylether-based polymers (PAE-CPs) with distinct linking patterns between their donor and acceptor motifs were tailor-made to investigate the influence of different linking patterns on the charge generation and separation process. Theoretical and experimental results revealed that compared to the traditional single-stranded linker, the double-stranded linking pattern strengthens donor-acceptor interactions in PAE-CPs and generates a coplanar structure, facilitating charge generation and separation, and enabling red-shifted light absorption. With these prominent advantages, the PAE-CP interlinked with a double-stranded linker exhibits markedly enhanced photocatalytic activity compared to that of its single-strand-linked analogue. Such findings can facilitate the rational design and modification of organic semiconductors for charge-induced reactions.
Collapse
Affiliation(s)
- Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xu Chi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
19
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Lan Z, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang X. A Fully Coplanar Donor–Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi‐An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xu Chi
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| |
Collapse
|
21
|
Liu S, Tian M, Bu X, Tian H, Yang X. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry 2021; 27:7738-7744. [PMID: 33788327 DOI: 10.1002/chem.202100398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.
Collapse
Affiliation(s)
- Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Miao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
22
|
Li J, Wang J, Wu Z, Tao S, Jiang D. Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Jing Wang
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Zhenzhen Wu
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Shanshan Tao
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
23
|
Li J, Wang J, Wu Z, Tao S, Jiang D. Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angew Chem Int Ed Engl 2021; 60:12918-12923. [DOI: 10.1002/anie.202101400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Jing Wang
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Zhenzhen Wu
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Shanshan Tao
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
24
|
He J, Jiang X, Xu F, Li C, Long Z, Chen H, Hou X. Low Power, Low Temperature and Atmospheric Pressure Plasma‐Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan He
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| | - Xue Jiang
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu Sichuan 610066 China
| | - Fujian Xu
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Environment Southwest Minzu University Chengdu Sichuan 610041 China
| | - Chenghui Li
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Zhou Long
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Hanjiao Chen
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Xiandeng Hou
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
25
|
Mi Z, Zhou T, Weng W, Unruangsri J, Hu K, Yang W, Wang C, Zhang KAI, Guo J. Covalent Organic Frameworks Enabling Site Isolation of Viologen‐Derived Electron‐Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhen Mi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Weijun Weng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junjuda Unruangsri
- Department of Chemistry Chulalongkorn University Phayathai Road Bangkok 10330 Thailand
| | - Ke Hu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Kai A. I. Zhang
- Department of Materials Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
26
|
Mi Z, Zhou T, Weng W, Unruangsri J, Hu K, Yang W, Wang C, Zhang KAI, Guo J. Covalent Organic Frameworks Enabling Site Isolation of Viologen-Derived Electron-Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 60:9642-9649. [PMID: 33484039 DOI: 10.1002/anie.202016618] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Electron transfer is the rate-limiting step in photocatalytic water splitting. Viologen and its derivatives are able to act as electron-transfer mediators (ETMs) to facilitate the rapid electron transfer from photosensitizers to active sites. Nevertheless, the electron-transfer ability often suffers from the formation of a stable dipole structure through the coupling between cationic-radical-containing viologen-derived ETMs, by which the electron-transfer process becomes restricted. Herein, cyclic diquats, a kind of viologen-derived ETM, are integrated into a 2,2'-bipyridine-based covalent organic framework (COF) through a post-quaternization reaction. The content and distribution of embedded diquat-ETMs are elaborately controlled, leading to the favorable site-isolated arrangement. The resulting materials integrate the photosensitizing units and ETMs into one system, exhibiting the enhanced hydrogen evolution rate (34600 μmol h-1 g-1 ) and sustained performances when compared to a single-module COF and a COF/ETM mixture. The integration strategy applied in a 2D COF platform promotes the consecutive electron transfer in photochemical processes through the multi-component cooperation.
Collapse
Affiliation(s)
- Zhen Mi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Weijun Weng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Junjuda Unruangsri
- Department of Chemistry, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Ke Hu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
27
|
He J, Jiang X, Xu F, Li C, Long Z, Chen H, Hou X. Low Power, Low Temperature and Atmospheric Pressure Plasma‐Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:9984-9989. [DOI: 10.1002/anie.202102051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Juan He
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| | - Xue Jiang
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu Sichuan 610066 China
| | - Fujian Xu
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- College of Chemistry and Environment Southwest Minzu University Chengdu Sichuan 610041 China
| | - Chenghui Li
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Zhou Long
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Hanjiao Chen
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
| | - Xiandeng Hou
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610064 China
- Key Lab of Green Chem & Tech of MOE College of Chemistry Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
28
|
Lu M, Zhang M, Liu C, Liu J, Shang L, Wang M, Chang J, Li S, Lan Y. Stable Dioxin‐Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photo‐Coupled Electrocatalysts for CO
2
Reduction. Angew Chem Int Ed Engl 2021; 60:4864-4871. [DOI: 10.1002/anie.202011722] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Lu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Mi Zhang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Chun‐Guang Liu
- Department of Chemistry Faculty of Science Beihua University Jilin City 132013 P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Lin‐Jie Shang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Min Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Jia‐Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Shun‐Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Ya‐Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| |
Collapse
|
29
|
Lu M, Zhang M, Liu C, Liu J, Shang L, Wang M, Chang J, Li S, Lan Y. Stable Dioxin‐Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photo‐Coupled Electrocatalysts for CO
2
Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011722] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng Lu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Mi Zhang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Chun‐Guang Liu
- Department of Chemistry Faculty of Science Beihua University Jilin City 132013 P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Lin‐Jie Shang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Min Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Jia‐Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Shun‐Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| | - Ya‐Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No. 1, Wenyuan Road Nanjing 210023 China
| |
Collapse
|
30
|
Zhong H, Gao J, Sa R, Yang S, Wu Z, Wang R. Carbon Dioxide Conversion Upgraded by Host-guest Cooperation between Nitrogen-Rich Covalent Organic Framework and Imidazolium-Based Ionic Polymer. CHEMSUSCHEM 2020; 13:6323-6329. [PMID: 32710471 DOI: 10.1002/cssc.202001658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The chemical conversion of CO2 into value-added chemicals is one promising approach for CO2 utilization. It is crucial to explore highly efficient catalysts containing task-specific components for CO2 fixation. Here, a host-guest catalytic system was developed by integrating nitrogen-rich covalent organic framework (TT-COF) and imidazolium-based ionic polymer (ImIP), which serve as hydrogen-bonding donor and nucleophilic agent, respectively, for cooperatively facilitating the activation of the epoxides and subsequent CO2 cycloaddition. The catalytic activity of the host-guest system was remarkably superior to those of ImIP, TT-COF, and their physical mixture. Furthermore, selective adsorption for CO2 over N2 rendered this catalytic system effective for the cycloaddition reaction of the simulated flue gas. The protocols for the unification of two catalytically active components provide new opportunities for the development of composite systems in multiple applications.
Collapse
Affiliation(s)
- Hong Zhong
- Institute of Oceanography, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Jinwei Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Rongjian Sa
- Institute of Oceanography, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
| | - Shuailong Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Zhicheng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| |
Collapse
|
31
|
Guo X, Li Y, Zhang M, Cao K, Tian Y, Qi Y, Li S, Li K, Yu X, Ma L. Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasi‐3D Topologies for Rapid I
2
Adsorption. Angew Chem Int Ed Engl 2020; 59:22697-22705. [DOI: 10.1002/anie.202010829] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Xinghua Guo
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Meicheng Zhang
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kecheng Cao
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Yin Tian
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Yue Qi
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Shoujian Li
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kun Li
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoqi Yu
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Lijian Ma
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
32
|
Guo X, Li Y, Zhang M, Cao K, Tian Y, Qi Y, Li S, Li K, Yu X, Ma L. Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasi‐3D Topologies for Rapid I
2
Adsorption. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinghua Guo
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Meicheng Zhang
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kecheng Cao
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Yin Tian
- School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Yue Qi
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Shoujian Li
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kun Li
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoqi Yu
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Lijian Ma
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education No. 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
33
|
Liu Y, Dikhtiarenko A, Xu N, Sun J, Tang J, Wang K, Xu B, Tong Q, Heeres HJ, He S, Gascon J, Fan Y. Triphenylphosphine-Based Covalent Organic Frameworks and Heterogeneous Rh-P-COFs Catalysts. Chemistry 2020; 26:12134-12139. [PMID: 32488940 PMCID: PMC7540510 DOI: 10.1002/chem.202002150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/25/2022]
Abstract
The synthesis of phosphine-based functional covalent organic frameworks (COFs) has attracted great attention recently. Herein, we present two examples of triphenylphosphine-based COFs (termed P-COFs) with well-defined crystalline structures, high specific surface areas, and good thermal stability. Furthermore, rhodium catalysts with these P-COFs as support material show high turnover frequency for the hydroformylation of olefins, as well as excellent recycling performance. This work not only extends the phosphine-based COF family, but also demonstrates their application in immobilizing homogeneous metal-based (e.g., Rh-phosphine) catalysts for application in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yubing Liu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Alla Dikhtiarenko
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Naizhang Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jiawei Sun
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jie Tang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Kaiqiang Wang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Bolian Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Qing Tong
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Hero Jan Heeres
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Songbo He
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Jorge Gascon
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| |
Collapse
|
34
|
Luo R, Liu X, Chen M, Liu B, Fang Y. Recent Advances on Imidazolium-Functionalized Organic Cationic Polymers for CO 2 Adsorption and Simultaneous Conversion into Cyclic Carbonates. CHEMSUSCHEM 2020; 13:3945-3966. [PMID: 32478431 DOI: 10.1002/cssc.202001079] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The cycloaddition reaction of CO2 with various epoxides to generate cyclic carbonates is one of the most promising and efficient approaches for CO2 fixation. Typical imidazolium-based ionic liquids possessing electrophilic cations and nucleophilic halogen anions have been identified as excellent and environmentally friendly candidates for synergistically activating epoxides to convert CO2 . Therefore, the feasible construction of a series of imidazolium-functionalized organic cationic polymers can bridge the gap between homogeneous and heterogeneous catalysis, thereby obtaining highly selective CO2 adsorption and simultaneous conversion ability. This Review describes the recent advancements made with regard to the design and synthesis of this type of polymeric networks having imidazolium functionality. They are considered as an outstanding heterogeneous catalyst for the cycloaddition of CO2 to epoxides. Based on the perspective from the design of building blocks to the synthesis of cationic polymers, the focus mainly lies on how to introduce imidazole units into the material backbone via a covalent linking approach and how to incorporate other active sites capable of activating CO2 and/or epoxides into such polymeric materials.
Collapse
Affiliation(s)
- Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Baoyu Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
35
|
Guan Q, Zhou L, Lv F, Li W, Li Y, Dong Y. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO
3
for Synergistic Tumor Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Le‐Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Fan‐Hong Lv
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Wen‐Yan Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yan‐An Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yu‐Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
36
|
Guan Q, Zhou L, Lv F, Li W, Li Y, Dong Y. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO
3
for Synergistic Tumor Therapy. Angew Chem Int Ed Engl 2020; 59:18042-18047. [DOI: 10.1002/anie.202008055] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Le‐Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Fan‐Hong Lv
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Wen‐Yan Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yan‐An Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yu‐Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
37
|
Liang L, Qiu Y, Wang WD, Han J, Luo Y, Yu W, Yin G, Wang Z, Zhang L, Ni J, Niu J, Sun J, Ma T, Wang W. Non‐Interpenetrated Single‐Crystal Covalent Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Liang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Jing Han
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Yi Luo
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Guan‐Lin Yin
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Zhi‐Peng Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Lei Zhang
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Jianwei Ni
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Jing Niu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Tianqiong Ma
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
38
|
Liang L, Qiu Y, Wang WD, Han J, Luo Y, Yu W, Yin GL, Wang ZP, Zhang L, Ni J, Niu J, Sun J, Ma T, Wang W. Non-Interpenetrated Single-Crystal Covalent Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:17991-17995. [PMID: 32648325 DOI: 10.1002/anie.202007230] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/06/2022]
Abstract
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state 2 H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yi Luo
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Guan-Lin Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Lei Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Jianwei Ni
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jing Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Tianqiong Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.,College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
39
|
Jin E, Geng K, Lee KH, Jiang W, Li J, Jiang Q, Irle S, Jiang D. Topology‐Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Enquan Jin
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Keyu Geng
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ka Hung Lee
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
| | - Weiming Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Juan Li
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qiuhong Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Stephan Irle
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
- Bredesen Centre for Interdisciplinary Research and Graduate Education University of Tennessee Knoxville TN 37996 USA
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
40
|
Jin E, Geng K, Lee KH, Jiang W, Li J, Jiang Q, Irle S, Jiang D. Topology‐Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:12162-12169. [DOI: 10.1002/anie.202004728] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Enquan Jin
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Keyu Geng
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ka Hung Lee
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
| | - Weiming Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Juan Li
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qiuhong Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Stephan Irle
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
- Bredesen Centre for Interdisciplinary Research and Graduate Education University of Tennessee Knoxville TN 37996 USA
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
41
|
Gao C, Li J, Yin S, Sun J, Wang C. Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. J Am Chem Soc 2020; 142:3718-3723. [DOI: 10.1021/jacs.9b13824] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Gao
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Sheng Yin
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Cheng Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|