1
|
Eltemur D, Robatscher P, Oberhuber M, Ceccon A. Improved Detection and Quantification of Cyclopropane Fatty Acids via Homonuclear Decoupling Double Irradiation NMR Methods. ACS OMEGA 2023; 8:41835-41843. [PMID: 37970028 PMCID: PMC10634279 DOI: 10.1021/acsomega.3c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Over the years, NMR spectroscopy has become a powerful analytical tool for the identification and quantification of a variety of natural compounds in a broad range of food matrices. Furthermore, NMR can be useful for characterizing food matrices in terms of quality and authenticity, also allowing for the identification of counterfeits. Although NMR requires minimal sample preparation, this technique suffers from low intrinsic sensitivity relative to complementary techniques; thus, the detection of adulterants or markers for authenticity at low concentrations remains challenging. Here, we present a strategy to overcome this limitation by the introduction of a simple band-selective homonuclear decoupling sequence that consists of double irradiation on 1H during NMR signal acquisition. The utility of the proposed method is tested on dihydrosterculic acid (DHSA), one of the cyclopropane fatty acids (CPFAs) shown to be a powerful molecular marker for authentication of milk products. A quantitative description of how the proposed NMR scheme allows sensitivity enhancement yet accurate quantification of DHSA is provided.
Collapse
Affiliation(s)
- Dilek Eltemur
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
- Faculty
of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, Bozen-Bolzano 39100, Italy
| | - Peter Robatscher
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
| | - Michael Oberhuber
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
| | - Alberto Ceccon
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
| |
Collapse
|
2
|
Ghini V, Meoni G, Vignoli A, Di Cesare F, Tenori L, Turano P, Luchinat C. Fingerprinting and profiling in metabolomics of biosamples. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:105-135. [PMID: 38065666 DOI: 10.1016/j.pnmrs.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.
Collapse
Affiliation(s)
- Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy; Giotto Biotech S.r.l., Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Preikschas P, Martín AJ, Yeo BS, Pérez-Ramírez J. NMR-based quantification of liquid products in CO 2 electroreduction on phosphate-derived nickel catalysts. Commun Chem 2023; 6:147. [PMID: 37430001 PMCID: PMC10333308 DOI: 10.1038/s42004-023-00948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Recently discovered phosphate-derived Ni catalysts have opened a new pathway towards multicarbon products via CO2 electroreduction. However, understanding the influence of basic parameters such as electrode potential, pH, and buffer capacity is needed for optimized C3+ product formation. To this end, rigorous catalyst evaluation and sensitive analytical tools are required to identify potential new products and minimize increasing quantification errors linked to long-chain carbon compounds. Herein, we contribute to enhance testing accuracy by presenting sensitive 1H NMR spectroscopy protocols for liquid product assessment featuring optimized water suppression and reduced experiment time. When combined with an automated NMR data processing routine, samples containing up to 12 products can be quantified within 15 min with low quantification limits equivalent to Faradaic efficiencies of 0.1%. These developments disclosed performance trends in carbon product formation and the detection of four hitherto unreported compounds: acetate, ethylene glycol, hydroxyacetone, and i-propanol.
Collapse
Affiliation(s)
- Phil Preikschas
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Antonio J Martín
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Boon Siang Yeo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
4
|
Lehr M, Paschelke T, Trumpf E, Vogt A, Näther C, Sönnichsen FD, McConnell AJ. A Paramagnetic NMR Spectroscopy Toolbox for the Characterisation of Paramagnetic/Spin-Crossover Coordination Complexes and Metal-Organic Cages. Angew Chem Int Ed Engl 2020; 59:19344-19351. [PMID: 33448544 PMCID: PMC7590057 DOI: 10.1002/anie.202008439] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 12/14/2022]
Abstract
The large paramagnetic shifts and short relaxation times resulting from the presence of a paramagnetic centre complicate NMR data acquisition and interpretation in solution. As a result, NMR analysis of paramagnetic complexes is limited in comparison to diamagnetic compounds and often relies on theoretical models. We report a toolbox of 1D (1H, proton-coupled 13C, selective 1H-decoupling 13C, steady-state NOE) and 2D (COSY, NOESY, HMQC) paramagnetic NMR methods that enables unprecedented structural characterisation and in some cases, provides more structural information than would be observable for a diamagnetic analogue. We demonstrate the toolbox's broad versatility for fields from coordination chemistry and spin-crossover complexes to supramolecular chemistry through the characterisation of CoII and high-spin FeII mononuclear complexes as well as a Co4L6 cage.
Collapse
Affiliation(s)
- Marc Lehr
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Tobias Paschelke
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Eicke Trumpf
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Anna‐Marlene Vogt
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Christian Näther
- Institute of Inorganic ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Straße 2Kiel24118Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| | - Anna J. McConnell
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 4Kiel24098Germany
| |
Collapse
|
5
|
Lehr M, Paschelke T, Trumpf E, Vogt A, Näther C, Sönnichsen FD, McConnell AJ. Ein Methodenrepertoire für die paramagnetische NMR‐Spektroskopie zur Charakterisierung von paramagnetischen/Spin‐Crossover‐ Komplexen und Metall‐organischen Käfigverbindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marc Lehr
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Tobias Paschelke
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Eicke Trumpf
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Anna‐Marlene Vogt
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Christian Näther
- Institut für Anorganische Chemie Christian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2 Kiel 24118 Deutschland
| | - Frank D. Sönnichsen
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| | - Anna J. McConnell
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Deutschland
| |
Collapse
|
6
|
Meier S. Mechanism and malleability of glucose dehydration to HMF: entry points and water-induced diversions. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02567g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A water-enabled reaction to a polyester building block is found to widely occur in the conversion of glucose to HMF.
Collapse
Affiliation(s)
- Sebastian Meier
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs Lyngby
- Denmark
| |
Collapse
|