1
|
Guo X, Sheng W, Pan H, Guo L, Zuo H, Wu Z, Ling S, Jiang X, Chen Z, Jiao L, Hao E. Tuning Shortwave-Infrared J-aggregates of Aromatic Ring-Fused Aza-BODIPYs by Peripheral Substituents for Combined Photothermal and Photodynamic Therapies at Ultralow Laser Power. Angew Chem Int Ed Engl 2024; 63:e202319875. [PMID: 38225205 DOI: 10.1002/anie.202319875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105 M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.
Collapse
Affiliation(s)
- Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Wanle Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Luying Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Huiquan Zuo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
2
|
He T, Lv S, Wei D, Feng R, Yang J, Yan Y, Liu L, Wu L. Photothermal Conversion of Hydrogel-Based Biomaterial. CHEM REC 2023; 23:e202300184. [PMID: 37495934 DOI: 10.1002/tcr.202300184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/08/2023] [Indexed: 07/28/2023]
Abstract
Traditional energy from fossil fuels like petroleum and coal is limited and contributes to global environmental pollution and climate change. Developing sustainable and eco-friendly energy is crucial for addressing significant challenges such as climate change, energy dilemma and achieving the long-term development of human society. Biomass hydrogels, which are easily synthesized and modified, have diverse sources and can be designed for different applications. They are being extensively researched for their applications in artificial intelligence, flexible sensing, biomedicine, and food packaging. The article summarizes recent advances in the preparation and applications of biomass-based photothermal conversion hydrogels, discussing the light source, photothermal agents, matrix, and preparation methods in detail. It also explores the use of these hydrogels in seawater desalination, photothermal therapy, antibacterial agents, and light-activated materials, offering new ideas for developing sustainable, efficient, and advanced photothermal conversion biomass hydrogel materials. The article concludes with suggestions for future research, highlighting the challenges and prospects in this field and paving the way for developing of long-lasting, efficient energy materials.
Collapse
Affiliation(s)
- Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China, 710021
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China, 710021
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China, 710021
| | - Rui Feng
- Polypropylene Project Preparation Company, Huating Coal Corporation, Dongyi Road 3, Huating, China, 744103
| | - Juhui Yang
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China, 710021
| | - Yihan Yan
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China, 710021
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China, 710021
| | - Lei Wu
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China, 710021
| |
Collapse
|
3
|
Xu W, Leskinen J, Sahlström T, Happonen E, Tarvainen T, Lehto VP. Assembly of fluorophore J-aggregates with nanospacer onto mesoporous nanoparticles for enhanced photoacoustic imaging. PHOTOACOUSTICS 2023; 33:100552. [PMID: 38021288 PMCID: PMC10658600 DOI: 10.1016/j.pacs.2023.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023]
Abstract
Many fluorophores, such as indocyanine green (ICG), have poor photostability and low photothermal efficiency hindering their wide application in photoacoustic (PA) tomography. In the present study, a supramolecular assembly approach was used to develop the hybrid nanoparticles (Hy NPs) of ICG and porous silicon (PSi) as a novel contrast agent for PA tomography. ICG was assembled on the PSi NPs to form J-aggregates within 30 min. The Hy NPs presented a red-shifted absorption, improved photothermal stability, and enhanced PA performance. Furthermore, 1-dodecene (DOC) was assembled into the NPs as a 'nanospacer', which enhanced non-radiative decay for increased thermal release. Compared to the Hy NPs, adding DOC into the Hy NPs (DOC-Hy) increased the PA signal by 83%. Finally, the DOC-Hy was detectable in PA tomography at 1.5 cm depth in tissue phantom even though its concentration was as low as 6.25 µg/mL, indicating the potential for deep tissue PA imaging.
Collapse
Affiliation(s)
- Wujun Xu
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jarkko Leskinen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Teemu Sahlström
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Emilia Happonen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tanja Tarvainen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
4
|
Yang Z, Li D, Yang K, Chen L, Wang J, Zhu X, Chen B. Optimized Water Supply in a Solar Evaporator for Simultaneous Freshwater Production and Salt Recycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13047-13055. [PMID: 37607016 DOI: 10.1021/acs.est.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Solar desalination has shown great potential in alleviating global water scarcity. However, the trade-off between energy efficiency and salt rejection remains a challenge, restricting its practical applications. In this study, we report a three-dimensional nitrocellulose membrane-based evaporator featuring a high evaporation rate (1.5 kg m-2 h-1) and efficient salt precipitation at the edges. Additionally, the salt is isolated from the photothermal area of the evaporator and falls automatically with a salt recovery rate of 97 g m-2 h-1 in brine with 10 wt % salt content. The distinctive performance is attributed to the precise water supply control, which was adjusted by changing the resistance force and driven force in the evaporator. With a high evaporation rate, stable performance, and specific salt recovery ability, this solar evaporation structure holds great potential in water desalination and resource recovery.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Dawei Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kaijie Yang
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lei Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
5
|
Thomson L, Ginesi RE, Osborne DD, Draper ER, Adams DJ. Photothermal Perylene Bisimide Hydrogels. Chemistry 2023; 29:e202300663. [PMID: 37074872 PMCID: PMC10946608 DOI: 10.1002/chem.202300663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Gels formed using a perylene bisimide (PBI) as a low molecular weight gelator can show the photothermal effect. Formation of the PBI radical anion results in new absorption bands forming, meaning that subsequent irradiation with a wavelength of light overlapping with the new absorption band leads to heating of the gel. This approach can be used to heat the gel, as well as the surrounding milieu. We show how we can use electrochemical methods as well as multicomponent systems to form the radical anion without the need for UV light, and how we can use the photothermal effect to induce phase transitions in the solutions above the gels by exploiting photothermal behavior.
Collapse
Affiliation(s)
- Lisa Thomson
- School of ChemistryUniversity of GlagsowG12 8QQGlasgowUK
| | | | | | | | - Dave J. Adams
- School of ChemistryUniversity of GlagsowG12 8QQGlasgowUK
| |
Collapse
|
6
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
8
|
Wang Z, Zhao S, Xiao S, Liu S, Yao R, Li Y, Wang Y, Li Y, Tan H. Heteropoly Blue/Carbon Nanotubes Nanocomposites as High-Performance Photothermal Conversion Materials. Chemistry 2023; 29:e202203419. [PMID: 36396601 DOI: 10.1002/chem.202203419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
To realize the direct and full use of the widely distributed solar energy, developing novel materials with superb photothermal conversion capability is essential. Although heteropoly blue has intrinsic outstanding solar absorption and photothermal conversion properties, its spectral absorption in the infrared region is weak. Here, composites of heteropoly blue and carbon nanotubes (HPB/CNTs) are synthesized depending on electrostatic interactions by facile microwave sonication and freeze-drying. The doped CNTs can dramatically improve the spectral absorption performance of HPB ontology in the infrared region. As a result, the light absorption of the optimized HPB/CNTs (20 %) reaches more than 95 % in the range of 200-2400 nm, showing promising prospects as high-performance photothermal conversion material in the applications of solar desalination and wastewater treatment.
Collapse
Affiliation(s)
- Zhilin Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Songying Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Shanshan Xiao
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun, Jilin, 130118, P. R. China
| | - Shanping Liu
- ICGM, Univ. Montpellier CNRS, ENSCM, Montpellier, France
| | - Ruiqi Yao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yingqi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yonghui Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
9
|
Liu H, Li W, Wu H, Huang Y, Hou Y, Wu Q, Wu J. Effect of Counterions on the Physicomechanical Properties of Copper-Nitrogen-Coordinated Metallosupramolecular Elastomers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57281-57289. [PMID: 36513055 DOI: 10.1021/acsami.2c18631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metallosupramolecular elastomers have attracted much attention due to their excellent mechanical properties, flexible tailoring of performance, and responsiveness to photo and thermal stimuli. The physicomechanical properties of metallosupramolecular elastomers are highly dependent on metal salts and ligand units; however, the role of counterions lacks practical exploration. To this end, we synthesized a simple acrylate copolymer model and introduced copper salts with different counterions to construct dynamic copper-nitrogen coordination cross-linked networks. This approach generated a series of elastomers with a tensile strength of over 10 MPa and a laser self-healing efficiency of over 90% within 2 min. In particular, we studied the effects of counterions on the thermodynamic, viscoelastic, mechanical, photothermal, and self-healing properties of the materials. Therefore, this work can provide instruction for the preparation and performance tailoring of metallosupramolecular elastomers.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weihang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Haitao Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yue Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yujia Hou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Zeng X, Wang Y, Huang YS, Han J, Sun W, Butt HJ, Liang XJ, Wu S. Amphiphilic Metallodrug Assemblies with Red-Light-Enhanced Cellular Internalization and Tumor Penetration for Anticancer Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205461. [PMID: 36366920 DOI: 10.1002/smll.202205461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Metallodrugs are widely used in cancer treatment. The modification of metallodrugs with polyethylene glycol (PEGylation) prolongs blood circulation and improves drug accumulation in tumors; it represents a general strategy for drug delivery. However, PEGylation hinders cellular internalization and tumor penetration, which reduce therapeutic efficacy. Herein, the red-light-enhanced cellular internalization and tumor penetration of a PEGylated anticancer agent, PEGylated Ru complex (Ru-PEG), are reported upon. Ru-PEG contains a red-light-cleavable PEG ligand, anticancer Ru complex moiety, and fluorescent pyrene group for imaging and self-assembly. Ru-PEG self-assembles into vesicles that circulate in the bloodstream and accumulate in the tumors. Red-light irradiation induces dePEGylation and changes the Ru-PEG vesicles to large compound micelles with smaller diameters and higher zeta potentials, which enhance tumor penetration and cellular internalization. Red-light irradiation also generates intracellular 1 O2 , which induces the death of cancer cells. This work presents a new strategy to enhance the cellular internalization and tumor penetration of anticancer agents for efficient phototherapy.
Collapse
Affiliation(s)
- Xiaolong Zeng
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yufei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Shuai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jianxiong Han
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian, 116024, China
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Qiao Q, Liu W, Zhang Y, Chen J, Wang G, Tao Y, Miao L, Jiang W, An K, Xu Z. In Situ Real‐Time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Self‐Assemblies by Super‐Resolution Imaging. Angew Chem Int Ed Engl 2022; 61:e202208678. [DOI: 10.1002/anie.202208678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yinchan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kai An
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
12
|
Qiao Q, Liu W, Zhang Y, Chen J, Wang G, Tao Y, Miao L, Jiang W, An K, Xu Z. In Situ Real‐time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Self‐assemblies by Super‐Resolution Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qinglong Qiao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Wenjuan Liu
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Yinchan Zhang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Jie Chen
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Guangying Wang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Yi Tao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Lu Miao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Wenchao Jiang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Kai An
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics Department of Biotechnology Department of Biological Technology 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
13
|
Hu H, Wang H, Yang Y, Xu JF, Zhang X. A Bacteria-Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angew Chem Int Ed Engl 2022; 61:e202200799. [PMID: 35332634 DOI: 10.1002/anie.202200799] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
We report a cationic porphyrin 5,10,15,20-tetrakis-(4-N-methylpyridyl)-porphyrin (TMPyP) that can respond to specific bacteria, followed by adaptable photodynamic/photothermal therapy processes. TMPyP could be reduced to phlorin by facultative anaerobes with a strong reducing ability such as E. coli and S. typhimurium in hypoxic environments, possessing strong NIR absorption and remarkable photothermal conversion capacity, thus demonstrating excellent antimicrobial activity (>99 %) by photothermal therapy. While in an aerobic environment with aerobic bacteria, TMPyP functioned as a typical photosensitizer that killed bacteria effectively (>99.9 %) by photodynamic therapy. By forming a host-guest complex with cucurbit[7]uril, the biocompatibility of TMPyP significantly improved. This kind of bacteria-responsive porphyrin shows specificity and adaptivity in antimicrobial treatment and holds potential in non-invasive treatments of bacterial infections.
Collapse
Affiliation(s)
- Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Zhao Y, Wu F, Wei J, Sun H, Yuan Y, Bao H, Li F, Zhang Z, Han S, Niu W. Designer Gold-Framed Palladium Nanocubes for Plasmon-Enhanced Electrocatalytic Oxidation of Ethanol. Chemistry 2022; 28:e202200494. [PMID: 35319121 DOI: 10.1002/chem.202200494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 02/05/2023]
Abstract
Surface plasmon of coinage metal nanostructures has been employed as a powerful route in boosting the performances in heterogenous catalysis. Development of efficient plasmonic nanocatalysts with high catalytic performance and efficient light harvesting properties is of vital importance. Herein, we rationally designed and synthesized a plasmonic nanocatalyst composed of Au-framed Pd nanocubes by an Ag(I)-assisted seed-mediated growth method. In the synthesis, the incorporation of Ag(I) suppresses the reduction of Au on the {100} surface of cubic Pd seeds and leads to the formation of Au nanoframes on the Pd nanocubes. The unique Au-framed Pd nanocubes can integrate the superior electrocatalytic of Pd and the outstanding plasmonic properties of Au. Thus, these nanostructures were employed as plasmonic nanocatalysts for plasmon-enhanced electrocatalytic oxidation of ethanol with improved stability.
Collapse
Affiliation(s)
- Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Jinping Wei
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Hongda Sun
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Haibo Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| |
Collapse
|
15
|
|
16
|
Hu H, Wang H, Yang Y, Xu J, Zhang X. A Bacteria‐Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
17
|
Zeng L, Huang L, Wang Z, Wei J, Huang K, Lin W, Duan C, Han G. Self‐Assembled Metal–Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Le Zeng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Zhonghe Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
18
|
Zeng L, Huang L, Wang Z, Wei J, Huang K, Lin W, Duan C, Han G. Self-Assembled Metal-Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angew Chem Int Ed Engl 2021; 60:23569-23573. [PMID: 34347334 DOI: 10.1002/anie.202108076] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Indexed: 01/13/2023]
Abstract
Organic self-assembled co-crystals have garnered considerable attention due to their facile synthesis and intriguing properties, but supramolecular interactions restrict their stability in aqueous solution, which is especially important for biological applications. Herein, we report on the first biological application of aqueous dispersible self-assembled organic co-crystals via the construction of metal-organic framework (MOF) -stabilized co-crystals. In particular, we built an electron-deficient MOF with naphthalene diimide (NDI) as the ligand and biocompatible Ca2+ as the metal nodes. An electron donor molecule, pyrene, was encapsulated to form the host-guest MOF self-assembled co-crystal. We observed that such MOF structure leads to uniquely high-density ordered arrangement and the close intermolecular distance (3.47 Å) of the charge transfer pairs. Hence, the concomitant superior charge transfer interaction between pyrene/NDI can be attained and the resultant photothermal conversion efficiency of Py@Ca-NDI in aqueous solution can thus reach up to 41.8 %, which, to the best of our knowledge, is the highest value among the reported organic co-crystal materials; it is also much higher than that of the FDA approved photothermal agent ICG as well as most of the reported MOFs. Based on this realization, as a proof of concept, we demonstrated that such a self-assembled organic co-crystal platform can be used in biological applications that are exemplified via highly effective long wavelength light photothermal therapy.
Collapse
Affiliation(s)
- Le Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
19
|
Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021; 177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Photomedicine has long been used for treating cancerous diseases. With advances in chemical and material sciences, various types of light-activated photosensitizers (PSs) have been developed for effective photodynamic therapy (PDT) and photothermal therapy (PTT). However, conventional organic/inorganic materials-based PSs lack disease recognition capability and show limited therapeutic effects in addition to side effects. Recently, intelligent dynamic nanoassemblies that are activated in a tumor environment have been extensively researched to target diseased tissues more effectively, for increasing therapeutic effectiveness while minimizing side effects. This paper presents the latest dynamic nanoassemblies for effective PDT or PTT and combination phototherapies, including immunotherapy and image-guided therapy. Dynamic self-assembly exhibits great potential for clinical translation in diagnosis and treatment through its integrated versatility. Nanoassemblies based on multidisciplinary technology are a promising technique for treating incurable cancerous diseases in the future.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea.
| |
Collapse
|
20
|
Zhou R, Ohulchanskyy TY, Xu H, Ziniuk R, Qu J. Catalase Nanocrystals Loaded with Methylene Blue as Oxygen Self-Supplied, Imaging-Guided Platform for Photodynamic Therapy of Hypoxic Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103569. [PMID: 34532978 DOI: 10.1002/smll.202103569] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) is a well-known method for cancer therapy in the clinic. However, the inherent hypoxia microenvironment of solid tumors enormously restricts the PDT efficiency. Herein, catalase nanocrystals (CatCry) are introduced as in situ oxygen (O2 )-generating system to relieve tumor hypoxia and enhance PDT efficiency for solid tumors. After loading with photosensitizer methylene blue (MB), a PDT drug platform (CatCry-MB) emerges, allowing for significant increasing PDT efficiency instigated by three factors. First, the high stability and recyclable catalytic activity of CatCry enable a long-term endogenous H2 O2 decomposition for continuous O2 supply for sustained relief of tumor hypoxia. Second, both the produced O2 and loaded MB are confined within CatCry nanoporous structure, shortening the diffusion distance between O2 and MB to maximize the production of singlet oxygen (1 O2 ). Third, the MB molecules are uniformly dispersed within CatCry lattice, avoiding MB aggregation and causing more MB molecules be activated to produce more 1 O2 . With the three complementary mechanisms, tumor hypoxia is eradicated and the resulted enhancement in PDT efficiency is demonstrated in vitro and in vivo. The proposed approach opens up a new venue for the development of other O2 -dependent tumor treatments, such as chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Renbin Zhou
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Xu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Roman Ziniuk
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
21
|
Hong H, Zou Q, Liu Y, Wang S, Shen G, Yan X. Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward In Vitro Synergistic Anticancer Therapy. ChemMedChem 2021; 16:2381-2385. [PMID: 33908190 DOI: 10.1002/cmdc.202100236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 01/07/2023]
Abstract
Therapeutic peptides have attracted significant attention in clinical applications due to their advantages in biological origination and good biocompatibility. However, the therapeutic performance of peptides is usually hindered by their short half-lives in blood and inferior activity. Herein, supramolecular nanodrugs of therapeutic peptides are constructed by covalent assembly of chemotherapeutic peptides through genipin cross-linking. The resulting nanodrugs have intense absorbance in the near-infrared region and high photothermal conversion efficiencies, leading to the possibility of photothermal therapy. The combination of photothermal therapy and chemotherapy using the nanodrugs shows synergistic therapeutic effects on cancer cells. Hence, covalent assembly not only maintains the chemotherapeutic activities of the peptides but also triggers supramolecular photothermal effects, demonstrating that the covalent assembly of therapeutic peptides through genipin cross-linking is an efficient approach in constructing supramolecular nanodrugs toward synergistic anticancer therapy.
Collapse
Affiliation(s)
- Huadong Hong
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs Institute of Synthesis and Application of Medical Materials Department of Pharmacy, Wannan Medical College Jinghu, Wuhu, 241001, Anhui, China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Advanced Pharmaceuticals and Medical Materials School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaozhen Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs Institute of Synthesis and Application of Medical Materials Department of Pharmacy, Wannan Medical College Jinghu, Wuhu, 241001, Anhui, China
| | - Guizhi Shen
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211135, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
22
|
Shi M, Fu Z, Pan W, Chen Y, Wang K, Zhou P, Li N, Tang B. A Protein‐Binding Molecular Photothermal Agent for Tumor Ablation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Zhongliang Fu
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
23
|
Shi M, Fu Z, Pan W, Chen Y, Wang K, Zhou P, Li N, Tang B. A Protein-Binding Molecular Photothermal Agent for Tumor Ablation. Angew Chem Int Ed Engl 2021; 60:13564-13568. [PMID: 33783939 DOI: 10.1002/anie.202101009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Photothermal therapy usually requires a high power density to activate photothermal agent for effective treatment, which inevitably leads to damage to normal tissues and inflammation in tumor tissues. Herein, we rationally design a protein-binding strategy to build a molecular photothermal agent for photothermal ablation of tumor. The synthesized photothermal agent can covalently bind to the thiol groups on the intracellular proteins. The heat generated by the photothermal agent directly destroyed the bioactive proteins in the cells, effectively reducing the heat loss and the molecular leakage. Under a low power density of 0.2 W cm-2 , the temperature produced by the photothermal agent was sufficient to induce apoptosis. In vitro and in vivo experiments showed that the therapeutic effect of photothermal therapy can be efficiently improved with the protein-binding strategy.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhongliang Fu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
24
|
Xu X, Fei J, Xu Y, Li G, Dong W, Xue H, Li J. Boric Acid‐Fueled ATP Synthesis by F
o
F
1
ATP Synthase Reconstituted in a Supramolecular Architecture. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| | - Youqian Xu
- Third Military Medical University 400038 Chongqing China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
| | - Weiguang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| |
Collapse
|
25
|
Li Y, Männel MJ, Hauck N, Patel HP, Auernhammer GK, Chae S, Fery A, Li J, Thiele J. Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Li
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Max J. Männel
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Himanshu P. Patel
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | | | - Soosang Chae
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
- Technische Universität Dresden 01069 Dresden Germany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Colloids, Interface and Chemical, Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| |
Collapse
|
26
|
Li Y, Männel MJ, Hauck N, Patel HP, Auernhammer GK, Chae S, Fery A, Li J, Thiele J. Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics. Angew Chem Int Ed Engl 2021; 60:6724-6732. [PMID: 33283395 PMCID: PMC7986802 DOI: 10.1002/anie.202015340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 01/03/2023]
Abstract
As low-molecular-weight hydrogelators, dipeptide hydrogel materials are suited for embedding multiple organic molecules and inorganic nanoparticles. Herein, a simple but precisely controllable method is presented that enables the fabrication of dipeptide-based hydrogels by supramolecular assembly inside microfluidic channels. Water-soluble quantum dots (QDs) as well as premixed porphyrins and a dipeptide in dimethyl sulfoxide (DMSO) were injected into a Y-shaped microfluidic junction. At the DMSO/water interface, the confined fabrication of a dipeptide-based hydrogel was initiated. Thereafter, the as-formed hydrogel flowed along a meandering microchannel in a continuous fashion, gradually completing gelation and QD entrapment. In contrast to hydrogelation in conventional test tubes, microfluidically controlled hydrogelation led to a tailored dipeptide hydrogel regarding material morphology and nanoparticle distribution.
Collapse
Affiliation(s)
- Yue Li
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Max J. Männel
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Himanshu P. Patel
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | | | - Soosang Chae
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
- Technische Universität Dresden01069DresdenGermany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Colloids, Interface and Chemical, ThermodynamicsInstitute of ChemistryChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| |
Collapse
|
27
|
Cai L, Hu C, Liu S, Zhou Y, Liu Z, Pang M. Covalent Organic Framework-Titanium Oxide Nanocomposite for Enhanced Sonodynamic Therapy. Bioconjug Chem 2021; 32:661-666. [PMID: 33710853 DOI: 10.1021/acs.bioconjchem.1c00039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sonodynamic therapy (SDT) has attracted wide attention for its high tissue-penetration depth capacity. However, developing new kinds of sonosensitizers that are capable of generating large amounts of reactive oxygen species (ROS) still remains a challenge. Herein, covalent organic framework-titanium oxide nanoparticles (COF-TiO2 NPs) were successfully synthesized by using COF as a template. Under ultrasound (US) irradiation, large quantities of ROS can be generated, and compared with pure TiO2 NPs, the SDT performance of COF-TiO2 nanoparticles was significantly improved due to the narrower band gap. Both in vitro and in vivo experiments demonstrated the great tumor inhibitory effect via COF-TiO2-mediated SDT. This work broadens the biomedical applications of COF-based composites.
Collapse
Affiliation(s)
- Lihan Cai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunling Hu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
28
|
Xu X, Fei J, Xu Y, Li G, Dong W, Xue H, Li J. Boric Acid-Fueled ATP Synthesis by F o F 1 ATP Synthase Reconstituted in a Supramolecular Architecture. Angew Chem Int Ed Engl 2021; 60:7617-7620. [PMID: 33369011 DOI: 10.1002/anie.202016253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Significant strides toward producing biochemical fuels have been achieved by mimicking natural oxidative and photosynthetic phosphorylation. Here, different from these strategies, we explore boric acid as a fuel for tuneable synthesis of energy-storing molecules in a cell-like supramolecular architecture. Specifically, a proton locked in boric acid is released in a modulated fashion by the choice of polyols. As a consequence, controlled proton gradients across the lipid membrane are established to drive ATP synthase embedded in the biomimetic architecture, which facilitates tuneable ATP production. This strategy paves a unique route to achieve highly efficient bioenergy conversion, holding broad applications in synthesis and devices that require biochemical fuels.
Collapse
Affiliation(s)
- Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Youqian Xu
- Third Military Medical University, 400038, Chongqing, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Weiguang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
29
|
Zhang L, Wu Y, Yin X, Zhu Z, Rojalin T, Xiao W, Zhang D, Huang Y, Li L, Baehr CM, Yu X, Ajena Y, Li Y, Wang L, Lam KS. Tumor Receptor-Mediated In Vivo Modulation of the Morphology, Phototherapeutic Properties, and Pharmacokinetics of Smart Nanomaterials. ACS NANO 2021; 15:468-479. [PMID: 33332957 DOI: 10.1021/acsnano.0c05065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To be clinically efficacious, nanotherapeutic drugs need to reach disease tissues reliably and cause limited side effects to normal organs and tissues. Here, we report a proof-of-concept study on the development of a smart peptidic nanophototherapeutic agent in line with clinical requirements, which can transform its morphology from nanoparticles to nanofibrils at the tumor sites. This in vivo receptor-mediated transformation process resulted in the formation and prolonged tumor-retention of highly ordered (J-aggregate type of photosensitizer) photosensitive peptide nanofibrillar network with greatly enhanced photothermal and photodynamic properties. This strategy of "multiple daily low-intensity laser radiation after each intravenous injection of significantly low-dose of nanomaterials" demonstrated effective elimination of 4T1 orthotopic syngeneic breast cancer in mice. The technology for nanomaterial modulation based on living cell surface receptors, in this case tumor-associated α3β1 integrin, has great potential for clinical translation and is expected to improve the therapeutic efficacy against many cancers.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Yi Wu
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingbin Yin
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Zheng Zhu
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Tatu Rojalin
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Wenwu Xiao
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Dalin Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Yanyu Huang
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Longmeng Li
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Christopher M Baehr
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Xingjian Yu
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Yousif Ajena
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Yuanpei Li
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California 95817, United States
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
30
|
Li H, Wen H, Zhang Z, Song N, Kwok RTK, Lam JWY, Wang L, Wang D, Tang BZ. Reverse Thinking of the Aggregation‐Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Haoxuan Li
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Haifei Wen
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Zhijun Zhang
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Nan Song
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Lei Wang
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Dong Wang
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| |
Collapse
|
31
|
Wu Q, Zhu Y, Fang X, Hao X, Jiao L, Hao E, Zhang W. Conjugated BODIPY Oligomers with Controllable Near-Infrared Absorptions as Promising Phototheranostic Agents through Excited-State Intramolecular Rotations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47208-47219. [PMID: 33035047 DOI: 10.1021/acsami.0c11701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated molecules with coplanar strong donor and acceptor (D-A) units have been widely used in the design of near-infrared (NIR) photothermal agents to increase an absorption band through intramolecular charge transfer and to control intramolecular motions in aggregated states. However, such conjugated D-A systems have strong dipolar moments and intermolecular interactions, which may inhibit other channels of photothermal conversion and are often susceptible to nucleophiles, especially in the presence of light irradiation. Now, we report a molecular guideline to develop novel NIR organic photothermal nanoagents based on conjugated boron dipyrromethene (BODIPY) oligomers. This oligomerization is helpful not only for their tunable NIR absorptions in the ground state with distinctly redshifted absorption maxima up to 1002 nm and high extinction coefficients but also for their highly efficient photothermal conversion because of the possible motion of the BODIPY motifs around the ethene linked group in the excited state. These oligomers were fabricated as ultra-photostable nanoagents for multiple imaging-guided phototherapies, which efficiently accumulated in tumors, and gave complete tumor ablation with NIR laser irradiation. This strategy of "ground-state conjugation, excited-state rotation" provides a novel guideline to develop advanced theranostic molecules with NIR absorption.
Collapse
Affiliation(s)
- Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yucheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingbao Fang
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiangyu Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
32
|
Chen T, Huang R, Liang J, Zhou B, Guo XL, Shen XC, Jiang BP. Natural Polyphenol-Vanadium Oxide Nanozymes for Synergistic Chemodynamic/Photothermal Therapy. Chemistry 2020; 26:15159-15169. [PMID: 32737907 DOI: 10.1002/chem.202002335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/12/2020] [Indexed: 01/02/2023]
Abstract
The selection of suitable nanozymes with easy synthesis, tumor specificity, multifunction, and high therapeutics is meaningful for tumor therapy. Herein, a facile one-step assembly approach was employed to successfully prepare a novel kind of natural polyphenol tannic acid (TA) hybrid with mixed valence vanadium oxide nanosheets (TA@VOx NSs). In this system, VOx is assembled with TA through metal-phenolic coordination interaction to both introduce superior peroxidase-like activity and high near infrared (NIR) absorption owing to partial reduction of vanadium from V5+ to V4+ . The presence of mixed valence vanadium oxide in TA@VOx NSs is proved to be the key for the catalytic reaction of hydrogen peroxide (H2 O2 ) to . OH, and the corresponding catalytic mechanism of H2 O2 by TA@VOx NSs is proposed. Benefitting from such peroxidase-like activity of TA@VOx NSs, the overproduced H2 O2 of the tumor microenvironment allows the realization of tumor-specific chemodynamic therapy (CDT). As a valid supplement to CDT, the NIR absorption enables TA@VOx NSs to have NIR light-mediated conversion ability for photothermal therapy (PTT) of cancers. Furthermore, in vitro and in vivo experiments confirmed that TA@VOx NSs can effectively inhibit the growth of tumors by synergistic CDT/PTT. These results offer a promising way to develop novel vanadium oxide-based nanozymes for enhanced synergistic tumor-specific treatment.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Rongtao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jiawei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bo Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiao-Lu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
33
|
Reverse Thinking of the Aggregation‐Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angew Chem Int Ed Engl 2020; 59:20371-20375. [DOI: 10.1002/anie.202008292] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Indexed: 11/07/2022]
|
34
|
Wang X, Yang L, Yang P, Guo W, Zhang QP, Liu X, Li Y. Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9797-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
He S, Jiang Y, Li J, Pu K. Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shasha He
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
36
|
He S, Jiang Y, Li J, Pu K. Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angew Chem Int Ed Engl 2020; 59:10633-10638. [DOI: 10.1002/anie.202003004] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Shasha He
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
37
|
Su M, Yan X, Guo X, Li Q, Zhang Y, Li C. Two Orthogonal Halogen-Bonding Interactions Directed 2D Crystalline Supramolecular J-Dimer Lamellae. Chemistry 2020; 26:4505-4509. [PMID: 32077546 DOI: 10.1002/chem.202000462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Dye assemblies exhibit fascinating properties and performances, both of which depend critically on the mutual packing arrangement of dyes and on the supramolecular architecture. Herein, we engineered, for the first time, an intriguing chlorosome-mimetic 2D crystalline J-dimer lamellar structure based on halogenated dyes in aqueous media by employing two distinct orthogonal halogen-bonding (XB) interactions. As the only building motif, antiparallel J-dimer was formed and stabilized by single π-stacking and dual halogen⋅⋅⋅π interactions. With two substituted halogen atoms acting as XB donors and the other two acting as acceptors, the constituent J-dimer units were linked by quadruple highly-directional halogen⋅⋅⋅halogen interactions in a staggered manner, resulting in unique 2D lamellar dye assemblies. This work champions and advances halogen-bonding as a remarkably potent tool for engineering dye aggregates with a controlled molecular packing arrangement and supramolecular architecture.
Collapse
Affiliation(s)
- Meihui Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaosa Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xia Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Quanwen Li
- School of Materials Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Yushi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|