1
|
He W, Yuan Y, Wu M, Li X, Shen Y, Qu Z, Chen Y. Multicolor Chromism from a Single Chromophore through Synergistic Coupling of Mechanochromic and Photochromic Subunits. Angew Chem Int Ed Engl 2023; 62:e202218785. [PMID: 36642693 DOI: 10.1002/anie.202218785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
We report a versatile mechanophore exhibiting a vividly detectable, light-regulable multicolor mechanochromism. Such optical features rely on the synergistic coupling of mechanochromic bis-rhodamine (Rh) and photochromic bisthienylethene (BTE). Poly(methyl acrylate)s incorporating this bis-mechanophore can be mechanically activated under sonication. The relative distribution of the two distinctly colored and fluorescent Rh ring-opening products is altered with different magnitudes of applied force. Orthogonal use of the photochromic reaction of the BTE core can strengthen the mechanochromism and gate the mechanofluorescence in polymers. Due to increased conjugation offered by the BTE linker, both force- and light-induced optical signals display high contrast. Combined DFT simulated and experimental results reveal that the three subunits (two Rhs and one BTE) in this chromophore are activated sequentially, thus generating switchable three-colored forms and gradient optical responses.
Collapse
Affiliation(s)
- Weiye He
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yuan Yuan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Mengjiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinxin Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yanbing Shen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Zhiyu Qu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yulan Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Hwang S, Grätz S, Borchardt L. A guide to direct mechanocatalysis. Chem Commun (Camb) 2022; 58:1661-1671. [PMID: 35023515 PMCID: PMC8812528 DOI: 10.1039/d1cc05697b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Direct mechanocatalysis (DM) describes solvent-free catalytic reactions that are initiated by mechanical forces in mechanochemical reactors such as ball mills. The distinctive feature of DM is that the milling materials, e.g. the milling balls themselves are the catalyst of the reaction. In this article we follow the historical evolution of this novel concept and give a guide to this emerging, powerful synthesis tool. Within this perspective we seek to highlight the impact of the relevant milling parameters, the nature of the catalyst and potential additives, the scope of reactions that are currently accessible by this method, and the thus far raised hypotheses on the underlying mechanisms of direct mechanochemical transformations.
Collapse
Affiliation(s)
- Suhmi Hwang
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Sven Grätz
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Lars Borchardt
- Professur für Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
3
|
Jung S, Yoon HJ. Mechanical Force for the Transformation of Aziridine into Imine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sangmin Jung
- Department of Chemistry Korea University Seoul 02841 South Korea
| | - Hyo Jae Yoon
- Department of Chemistry Korea University Seoul 02841 South Korea
| |
Collapse
|
4
|
Jung S, Yoon HJ. Mechanical Force for the Transformation of Aziridine into Imine. Angew Chem Int Ed Engl 2021; 60:23564-23568. [PMID: 34499388 DOI: 10.1002/anie.202109358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Indexed: 11/07/2022]
Abstract
Force-selective mechanochemical reactions may be important for applications in polymer mechanochemistry, yet it is difficult to achieve such reactions. This paper reports that cis-N-phthalimidoaziridine incorporated into a macromolecular backbone undergoes migration of N-phthalimido group to afford imine under mechanochemical condition and not thermal one. The imine is further hydrolyzed by water bifurcating into amine and aldehyde. These structural transformations are confirmed by 1 H NMR and FT-IR spectroscopic analyses. Computational simulations are conducted for the aziridine mechanophore to propose the mechanism of reaction and define the substrate scope of reaction.
Collapse
Affiliation(s)
- Sangmin Jung
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|