1
|
Zheng X, Chen S, Li J, Wu H, Zhang C, Zhang D, Chen X, Gao Y, He F, Hui L, Liu H, Jiu T, Wang N, Li G, Xu J, Xue Y, Huang C, Chen C, Guo Y, Lu TB, Wang D, Mao L, Zhang J, Zhang Y, Chi L, Guo W, Bu XH, Zhang H, Dai L, Zhao Y, Li Y. Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research. ACS NANO 2023. [PMID: 37471703 DOI: 10.1021/acsnano.3c03849] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Graphdiyne (GDY), a rising star of carbon allotropes, features a two-dimensional all-carbon network with the cohybridization of sp and sp2 carbon atoms and represents a trend and research direction in the development of carbon materials. The sp/sp2-hybridized structure of GDY endows it with numerous advantages and advancements in controlled growth, assembly, and performance tuning, and many studies have shown that GDY has been a key material for innovation and development in the fields of catalysis, energy, photoelectric conversion, mode conversion and transformation of electronic devices, detectors, life sciences, etc. In the past ten years, the fundamental scientific issues related to GDY have been understood, showing differences from traditional carbon materials in controlled growth, chemical and physical properties and mechanisms, and attracting extensive attention from many scientists. GDY has gradually developed into one of the frontiers of chemistry and materials science, and has entered the rapid development period, producing large numbers of fundamental and applied research achievements in the fundamental and applied research of carbon materials. For the exploration of frontier scientific concepts and phenomena in carbon science research, there is great potential to promote progress in the fields of energy, catalysis, intelligent information, optoelectronics, and life sciences. In this review, the growth, self-assembly method, aggregation structure, chemical modification, and doping of GDY are shown, and the theoretical calculation and simulation and fundamental properties of GDY are also fully introduced. In particular, the applications of GDY and its formed aggregates in catalysis, energy storage, photoelectronic, biomedicine, environmental science, life science, detectors, and material separation are introduced.
Collapse
Affiliation(s)
- Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Danyan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonggang Jiu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300350, P. R. China
| | - Dan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering and Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials, Soochow University, Soochow 1215031, P. R. China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control for Aerospace Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Wang Z, Qi L, Zheng Z, Xue Y, Li Y. 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chem Asian J 2021; 16:3259-3271. [PMID: 34467664 DOI: 10.1002/asia.202100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/20/2022]
Abstract
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2 -cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqiang Zheng
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yurui Xue
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Gao L, Yang Z, Li X, Huang C. Post-modified Strategies of Graphdiyne for Electrochemical Applications. Chem Asian J 2021; 16:2185-2194. [PMID: 34196117 DOI: 10.1002/asia.202100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The new carbon material graphdiyne (GDY) has been verified to have a great application prospect in electrochemical field. In order to study its properties and expand its scope of application, various experiments including structural control tests are imposed on GDY. Among them, as one of the most commonly used methods to modify the structure, heteroatom doping is favored for its advantages in synthesis methods and the control of mechanical, electrical and even magnetic properties of carbon materials. According to the published studies, the top-down methods of doping heteroatoms for GDY only need cheap raw materials, simple synthetic route and strong controllability, which is conducive to rapid performance breakthroughs in electrochemical applications. This review selects the typical cases in the development of that post-modification method from the application of GDY in the electrochemical field. Here, based on the existed reports, the commonly used non-metal elements (such as nitrogen, sulfur) and metal elements (such as iron) have been introduced to post-modify GDY. Then, a detailed analysis is made for corresponding electrochemical applications, such as energy storage and electrocatalysis. Finally, the challenges and prospects of post-modified GDY in synthesis and electrochemical applications are proposed. This review provides us a useful guidance for the development of high-quality GDY suitable for electrochemical applications.
Collapse
Affiliation(s)
- Lei Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Ze Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Xiaodong Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Li Y, He J, Shen H. Journey from Small-Molecule Diyne Structures to 2D Graphdiyne: Synthetic Strategies. Chemistry 2020; 26:12310-12321. [PMID: 32496650 DOI: 10.1002/chem.202001898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Indexed: 11/06/2022]
Abstract
Graphdiyne (GDY) exhibits unique characteristics of a highly conjugated π system, evenly distributed nanopores, and a direct band gap. This has encouraged multidisciplinary research groups to investigate its application in energy conversion and storage, catalysts, electronic devices, sensing, and separation. Herein, the achievements of synthetic strategies for preparing small-molecule diyne structures (GDY substructure), 1D nanoribbons, and 2D GDY are presented. These studies may help future investigations into the basic structure-related properties of GDY and synthetic methodology for the future developments of GDY-related 2D carbon materials.
Collapse
Affiliation(s)
- Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jingyi He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Han Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|