1
|
Valera JS, López-Acosta Á, Hermans TM. Photoinitiated Transient Self-Assembly in a Catalytically Driven Chemical Reaction Cycle. Angew Chem Int Ed Engl 2024; 63:e202406931. [PMID: 38770670 DOI: 10.1002/anie.202406931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Chemically fueled chemical reaction networks (CRNs) are essential in controlling dissipative self-assembly. A key challenge in the field is to store chemical fuel-precursors or "pre-fuels" in the system that are converted into activating or deactivating fuels in a catalytically controlled CRN. In addition, real-time control over catalysis in a CRN by light is highly desirable, but so far not yet achieved. Here we show a catalytically driven CRN that is photoinitiated with 450 nm light, producing activated monomers that go on to perform transient self-assembly. Monomer activation proceeds via photoredox catalysis, converting the monomer alcohol groups into the corresponding aldehydes that self-assemble into large supramolecular fibers. Monomer deactivation is achieved by organometallic catalysis that relies on pre-fuel hydrolysis to release formate (i.e. the deactivating fuel). Additionally, irradiation with 305 nm light accelerates the release of formate by photo-uncaging the pre-fuel, leading to a factor of ca. 2 faster deactivation of the monomer. Overall, we show transient self-assembly upon visible light photoactivation, and tunable life-times by ultraviolet light.
Collapse
Affiliation(s)
- Jorge S Valera
- IMDEA Nanociencia, C/ Faraday 9, 28049, Madrid, Spain
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | | | - Thomas M Hermans
- IMDEA Nanociencia, C/ Faraday 9, 28049, Madrid, Spain
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| |
Collapse
|
2
|
Sun M, Deng J, Walther A. Communication and Cross-Regulation between Chemically Fueled Sender and Receiver Reaction Networks. Angew Chem Int Ed Engl 2023; 62:e202214499. [PMID: 36354214 PMCID: PMC10107503 DOI: 10.1002/anie.202214499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Nature connects multiple fuel-driven chemical/enzymatic reaction networks (CRNs/ERNs) via cross-regulation to hierarchically control biofunctions for a tailored adaption in complex sensory landscapes. Herein, we introduce a facile example of communication and cross-regulation among two fuel-driven DNA-based ERNs regulated by a concatenated RNA transcription regulator. ERN1 ("sender") is designed for the fuel-driven promoter formation for T7 RNA polymerase, which activates RNA transcription. The produced RNA can deactivate or activate DNA in ERN2 ("receiver") by toehold-mediated strand displacement, leading to a communication between two ERNs. The RNA from ERN1 can repress or promote the fuel-driven state of ERN2; ERN2 in turn feedbacks to regulate the lifetime of ERN1. Furthermore, the incorporation of RNase H allows for RNA degradation and enables the autonomous recovery of ERN2. We believe that concatenation of multiple CRNs/ERNs provides a basis for the design of more elaborate autonomous regulatory mechanisms in systems chemistry and synthetic biology.
Collapse
Affiliation(s)
- Mo Sun
- Department of Chemistry, Fudan University, Shanghai, 200438, China.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Jie Deng
- Life Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Dana-Farber Cancer Institute, Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Walther
- Life Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
3
|
Del Grosso E, Irmisch P, Gentile S, Prins LJ, Seidel R, Ricci F. Dissipative Control over the Toehold-Mediated DNA Strand Displacement Reaction. Angew Chem Int Ed Engl 2022; 61:e202201929. [PMID: 35315568 PMCID: PMC9324813 DOI: 10.1002/anie.202201929] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Here we show a general approach to achieve dissipative control over toehold-mediated strand-displacement, the most widely employed reaction in the field of DNA nanotechnology. The approach relies on rationally re-engineering the classic strand displacement reaction such that the high-energy invader strand (fuel) is converted into a low-energy waste product through an energy-dissipating reaction allowing the spontaneous return to the original state over time. We show that such dissipative control over the toehold-mediated strand displacement process is reversible (up to 10 cycles), highly controllable and enables unique temporal activation of DNA systems. We show here two possible applications of this strategy: the transient labelling of DNA structures and the additional temporal control of cascade reactions.
Collapse
Affiliation(s)
- Erica Del Grosso
- Department of ChemistryUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Patrick Irmisch
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
| | - Serena Gentile
- Department of ChemistryUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Leonard J. Prins
- Department of Chemical fSciencesUniversity of PaduaVia Marzolo 135131PaduaItaly
| | - Ralf Seidel
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
| | - Francesco Ricci
- Department of ChemistryUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| |
Collapse
|
4
|
Del Grosso E, Irmisch P, Gentile S, Prins LJ, Seidel R, Ricci F. Dissipative Control over the Toehold‐Mediated DNA Strand Displacement Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Patrick Irmisch
- Molecular Biophysics Group Peter Debye Institute for Soft Matter Physics Universität Leipzig 04103 Leipzig Germany
| | - Serena Gentile
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical fSciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Ralf Seidel
- Molecular Biophysics Group Peter Debye Institute for Soft Matter Physics Universität Leipzig 04103 Leipzig Germany
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
5
|
Deng J, Liu W, Sun M, Walther A. Dissipative Organization of DNA Oligomers for Transient Catalytic Function. Angew Chem Int Ed Engl 2022; 61:e202113477. [PMID: 35026052 PMCID: PMC9306540 DOI: 10.1002/anie.202113477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 12/31/2022]
Abstract
The development of synthetic non-equilibrium systems opens doors for man-made life-like materials. Yet, creating distinct transient functions from artificial fuel-driven structures remains a challenge. Building on our ATP-driven dynamic covalent DNA assembly in an enzymatic reaction network of concurrent ATP-powered ligation and restriction, we introduce ATP-fueled transient organization of functional subunits for various functions. The programmability of the ligation/restriction site allows to precisely organize multiple sticky-end-encoded oligo segments into double-stranded (ds) DNA complexes. We demonstrate principles of ATP-driven organization into sequence-defined oligomers by sensing barcode-embedded targets with different defects. Furthermore, ATP-fueled DNAzymes for substrate cleavage are achieved by transiently ligating two DNAzyme subunits into a dsDNA complex, rendering ATP-fueled transient catalytic function.
Collapse
Affiliation(s)
- Jie Deng
- ABMS Lab, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Department of Cancer BiologyDana-Farber Cancer Institute and Wyss Institute for Biologically Inspired EngineeringHarvard Medical SchoolBostonMA 02115USA
| | - Wei Liu
- ABMS Lab, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Mo Sun
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Department of ChemistryFudan UniversityShanghai200438China
| | - Andreas Walther
- ABMS Lab, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
6
|
Deng J, Liu W, Sun M, Walther A. Dissipative Organization of DNA Oligomers for Transient Catalytic Function. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Deng
- A3BMS Lab, Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Department of Cancer Biology Dana-Farber Cancer Institute and Wyss Institute for Biologically Inspired Engineering Harvard Medical School Boston MA 02115 USA
| | - Wei Liu
- A3BMS Lab, Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Mo Sun
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
7
|
Teders M, Murray NR, Huck WTS. Reversible Photoswitchable Inhibitors Enable Wavelength‐Selective Regulation of Out‐of‐Equilibrium Bi‐enzymatic Systems. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Teders
- Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Nicholas R. Murray
- Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
8
|
Fan X, Walther A. pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
9
|
Fan X, Walther A. pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angew Chem Int Ed Engl 2021; 60:11398-11405. [PMID: 33682231 PMCID: PMC8252529 DOI: 10.1002/anie.202017003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Artificial temporal signaling systems, which mimic living out-of-equilibrium conditions, have made large progress. However, systems programmed by enzymatic reaction networks in multicomponent and unknown environments, and using biocompatible components remain a challenge. Herein, we demonstrate an approach to program temporal pH signals by enzymatic logic gates. They are realized by an enzymatic disaccharide-to-monosaccharide-to-sugar acid reaction cascade catalyzed by two metabolic chains: invertase-glucose oxidase and β-galactosidase-glucose oxidase, respectively. Lifetimes of the transient pH signal can be programmed from less than 15 min to more than 1 day. We study enzymatic kinetics of the reaction cascades and reveal the underlying regulatory mechanisms. Operating with all-food grade chemicals and coupling to self-regulating hydrogel, our system is quite robust to work in a complicated medium with unknown components and in a biocompatible fashion.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
| | - Andreas Walther
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- ABMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
10
|
Fan X, Walther A. Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angew Chem Int Ed Engl 2021; 60:3619-3624. [PMID: 33098236 PMCID: PMC7898518 DOI: 10.1002/anie.202009542] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Transient signaling orchestrates complex spatiotemporal behaviour in living organisms via (bio)chemical reaction networks (CRNs). Compartmentalization of signal processing is an important aspect for controlling such networks. However, artificial CRNs mostly focus on homogeneous solutions to program autonomous self-assembling systems, which limits their accessible behaviour and tuneability. Here, we introduce layered compartments housing antagonistic pH-modulating enzymes and demonstrate that transient pH signals in a supernatant solution can be programmed based on spatial delays. This overcomes limitations of activity mismatches of antagonistic enzymes in solution and allows to flexibly program acidic and alkaline pH lifecycles beyond the possibilities of homogeneous solutions. Lag time, lifetime, and the pH minima and maxima can be precisely programmed by adjusting spatial and kinetic conditions. We integrate these spatially controlled pH flips with switchable peptides, furnishing time-programmed self-assemblies and hydrogel material system.
Collapse
Affiliation(s)
- Xinlong Fan
- ABMS Lab-Active Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- ABMS Lab-Active Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
11
|
Chen S, Zhou L, An Z, He H, Ma M, Shi Y, Wang X. Driving force balance-the "identity card" of supramolecules in a self-sorting multicomponent assembly system. SOFT MATTER 2021; 17:153-159. [PMID: 33164015 DOI: 10.1039/d0sm01405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contrary to the popular belief that multicomponent assembly systems will theoretically co-assemble under the same type of driving forces, two distinct assembly modes from a system composed of two chemically similar supramolecules were demonstrated in this work. Although with exactly the same driving forces, molecule-level self-sorting unexpectedly occurred in this two-component system made of polyhedral oligomeric silsesquioxane (POSS) core-based supramolecules with one and eight lysine derivative arms. From the experiments, it was concluded that instead of driving force types, driving force counterpoise plays a vital role here, which we called "identity card hypothesis". The hypothesis suggests that two highly similar components show high affinity for the same molecules through the differentiated "identity card"-like balance of driving forces induced by the difference in the molecular spatial shape, which has never been reported before.
Collapse
Affiliation(s)
- Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Fan X, Walther A. Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinlong Fan
- A3BMS Lab-Active Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Andreas Walther
- A3BMS Lab-Active Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
13
|
Sun M, Deng J, Walther A. Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angew Chem Int Ed Engl 2020; 59:18161-18165. [PMID: 32608535 PMCID: PMC7590193 DOI: 10.1002/anie.202006526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Adaptivity is an essential trait of life. One type of adaptivity is the reconfiguration of a functional system states by correlating sensory inputs. We report polymer transformers, which can adaptively reconfigure their composition from a state of a mixed copolymer to being enriched in either monomer A or B. This is achieved by embedding and hierarchically interconnecting two chemically fueled activation/deactivation enzymatic reaction networks for both monomers via a joint activation pathway (network level) and an AB linker monomer reactive to both A and B (species level). The ratio of enzymes governing the individual deactivation pathways (our external signals) control the enrichment behavior in the dynamic state. The method shows high programmability of the reconfigured state, rejuvenation of transformation cycles, and quick in situ adaptation. As a proof-of-concept, we showcase this dynamic reconfiguration for colloidal surface functionalities.
Collapse
Affiliation(s)
- Mo Sun
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Jie Deng
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
14
|
Sun M, Deng J, Walther A. Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mo Sun
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Jie Deng
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Andreas Walther
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|