1
|
Brégent T, Ivanova MV, Poisson T, Jubault P, Legros J. Continuous‐Flow Divergent Lithiation of 2,3‐Dihalopyridines: Deprotolithiation versus Halogen Dance. Chemistry 2022; 28:e202202286. [PMID: 36200571 PMCID: PMC10092453 DOI: 10.1002/chem.202202286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/07/2022]
Abstract
We describe herein the first halogen dance (HD) in continuous flow on 2-chloro-3-bromopyridine by selectively trapping a (pyridin-4-yl)lithium species that is known to undergo the halogen-dance process. In addition, this lithiated intermediate was trapped at lower temperature before the HD occurs. The HD process was extended to fluoro-iodopyridines by using various electrophiles to afford 28 examples with yields ranging from 42 to 97 % with very short residence times. Finally, scale up of the reaction was demonstrated, affording a promising space-time yield (STY) of 4.2 kg.h-1 .L-1 .
Collapse
Affiliation(s)
- Thibaud Brégent
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Maria V. Ivanova
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Thomas Poisson
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
- Institut Universitaire de France 1 rue Descartes 75231 Paris France
| | - Philippe Jubault
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Julien Legros
- Normandie Univ. INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
2
|
Senatore R, Malik M, Pace V. Fluoroiodomethane: A CH2F‐Moiety Delivering Agent Suitable for Nucleophilic‐, Electrophilic‐ and Radical‐Harnessed Operations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Lo YH, Wang LY, Duraisamy T, Govindan K, Kandasamy M, Lin WY. Efficient synthesis of symmetrical and unsymmetrical disulfides using a continuous flow method. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yung-Han Lo
- Kaohsiung Medical University Department of Medicinal and applied Chemistry TAIWAN
| | - Li-Yu Wang
- Kaohsiung Medical University Department of Medicinal and applied Chemistry TAIWAN
| | | | - Karthick Govindan
- Kaohsiung Medical University Department of Medicinal and applied Chemistry TAIWAN
| | - Mohanraj Kandasamy
- Kaohsiung Medical University Department of Medicinal and applied Chemistry TAIWAN
| | - Wei-Yu Lin
- Kaohsiung Medical University Department of Medicinal and Applied Chemistry 100 shih-chugn road 807 Kaohsiung TAIWAN
| |
Collapse
|
4
|
Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Takumi M, Sakaue H, Nagaki A. Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2021; 61:e202116177. [PMID: 34931424 DOI: 10.1002/anie.202116177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
A novel flow electrochemical reactor that accomplishes electrolysis within a few seconds in a single passage was developed. By using the flow reactor system, the flash electrochemical generation of short-lived carbocations, including oxocarbenium ions, N -acyliminium ions, glycosyl cations, and Ferrier cations was achieved within a few seconds, enabling the subsequent reaction with nucleophiles before their decomposition. Moreover, continuous operation based on the present system enabled the rapid synthesis of pharmaceutical precursors on demand.
Collapse
Affiliation(s)
- Masahiro Takumi
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Hodaka Sakaue
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Aiichiro Nagaki
- Kyoto University, Graduate School of Engineering, Department of Synthetic Chemistry & Biological Chemistry, Katsura, 615-8510, Kyoto, JAPAN
| |
Collapse
|
6
|
Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry 2021; 27:16107-16111. [PMID: 34549843 DOI: 10.1002/chem.202103183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/10/2022]
Abstract
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Mai Furusawa
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Yuya Yonekura
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Susumu Ishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| |
Collapse
|
7
|
Musci P, von Keutz T, Belaj F, Degennaro L, Cantillo D, Kappe CO, Luisi R. Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C 3 ) Functionalization of Highly Strained 1-Azabicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2021; 60:6395-6399. [PMID: 33325599 DOI: 10.1002/anie.202014881] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Strained compounds are privileged moieties in modern synthesis. In this context, 1-azabicyclo[1.1.0]butanes are appealing structural motifs that can be employed as click reagents or precursors to azetidines. We herein report the first telescoped continuous flow protocol for the generation, lithiation, and electrophilic trapping of 1-azabicyclo[1.1.0]butanes. The flow method allows for exquisite control of the reaction parameters, and the process operates at higher temperatures and safer conditions with respect to batch mode. The efficiency of this intramolecular cyclization/C3-lithiation/electrophilic quenching flow sequence is documented with more than 20 examples.
Collapse
Affiliation(s)
- Pantaleo Musci
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Timo von Keutz
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Leonardo Degennaro
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
8
|
Musci P, Keutz T, Belaj F, Degennaro L, Cantillo D, Kappe CO, Luisi R. Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C
3
) Functionalization of Highly Strained 1‐Azabicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pantaleo Musci
- Flow Chemistry and Microreactor Technology FLAME-Lab Department of Pharmacy—Drug Sciences University of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Timo Keutz
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Ferdinand Belaj
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Leonardo Degennaro
- Flow Chemistry and Microreactor Technology FLAME-Lab Department of Pharmacy—Drug Sciences University of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - David Cantillo
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Renzo Luisi
- Flow Chemistry and Microreactor Technology FLAME-Lab Department of Pharmacy—Drug Sciences University of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
9
|
Decaens J, Couve-Bonnaire S, Charette AB, Poisson T, Jubault P. Synthesis of Fluoro-, Monofluoromethyl-, Difluoromethyl-, and Trifluoromethyl-Substituted Three-Membered Rings. Chemistry 2021; 27:2935-2962. [PMID: 32939868 DOI: 10.1002/chem.202003822] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/13/2022]
Abstract
This Minireview describes recent advances toward the synthesis of fluoro-, monofluoromethyl-, difluoromethyl-, and trifluoromethyl-substituted three-membered rings such as cyclopropanes, aziridines, epoxides, episulfides, cyclopropenes, and 2 H-azirines. The main synthetic methodologies since 2016 for cyclopropanes and since 2010 for the other three-membered rings are reported.
Collapse
Affiliation(s)
- Jonathan Decaens
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| | | | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal, PO Box 6128, Station Downtown, Montréal, Québec, H3C 3J7, Canada
| | - Thomas Poisson
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| |
Collapse
|
10
|
Orr SA, Andrews PC, Blair VL. Main Group Metal-Mediated Transformations of Imines. Chemistry 2021; 27:2569-2588. [PMID: 32761667 DOI: 10.1002/chem.202003108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Main-group-metal-mediated transformations of imines have earned a valued place in the synthetic chemist's toolbox. Their versatility allows the simple preparation of various nitrogen containing compounds. This review will outline the early discoveries including metallation, addition/cyclisation and metathesis pathways, followed by the modern-day use of imines in synthetic methodology. Recent advances in imine C-F activation protocols are discussed, alongside revisiting "classic" imine reactivity from a sustainable perspective. Developments in catalytic methods for hydroelementation of imines have been reviewed, highlighting the importance of s-block metals in the catalytic arena. Whilst stoichiometric transformations in alternative reaction media such as deep eutectic solvents or water have been summarised. The incorporation of imines into flow chemistry has received recent attention and is summarised within.
Collapse
Affiliation(s)
- Samantha A Orr
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
11
|
Dilchert K, Schmidt M, Großjohann A, Feichtner K, Mulvey RE, Gessner VH. Lösungsmitteleinflüsse auf die Struktur und Stabilität von Alkalimetallcarbenoiden. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katharina Dilchert
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Michelle Schmidt
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Angela Großjohann
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Kai‐Stephan Feichtner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Robert E. Mulvey
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Viktoria H. Gessner
- Lehrstuhl für Anorganische Chemie II Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
12
|
Dilchert K, Schmidt M, Großjohann A, Feichtner K, Mulvey RE, Gessner VH. Solvation Effects on the Structure and Stability of Alkali Metal Carbenoids. Angew Chem Int Ed Engl 2021; 60:493-498. [PMID: 33006796 PMCID: PMC7821203 DOI: 10.1002/anie.202011278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/26/2022]
Abstract
s-Block metal carbenoids are carbene synthons and applied in a myriad of organic transformations. They exhibit a strong structure-activity relationship, but this is only poorly understood due to the challenging high reactivity and sensitivity of these reagents. Here, we report on systematic VT and DOSY NMR studies, XRD analyses as well as DFT calculations on a sulfoximinoyl-substituted model system to explain the pronounced solvent dependency of the carbenoid stability. While the sodium and potassium chloride carbenoids showed high stabilities independent of the solvent, the lithium carbenoid was stable at room temperature in THF but decomposed at -10 °C in toluene. These divergent stabilities could be explained by the different structures formed in solution. In contrast to simple organolithium reagents, the monomeric THF-solvate was found to be more stable than the dimer in toluene, since the latter more readily forms direct Li/Cl interactions which facilitate decomposition via α-elimination.
Collapse
Affiliation(s)
- Katharina Dilchert
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Michelle Schmidt
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Angela Großjohann
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Robert E. Mulvey
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
13
|
Dilchert K, Scherpf T, Gessner VH. Carbenoid‐Mediated Formation and Activation of Element‐Element and Element–Hydrogen Bonds. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katharina Dilchert
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr‐University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr‐University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr‐University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
14
|
Ielo L, Castoldi L, Touqeer S, Lombino J, Roller A, Prandi C, Holzer W, Pace V. Halogen‐Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bis‐Trifluoromethyl‐β‐Diketiminates and the Dual Role of LiCH
2
I. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laura Ielo
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Laura Castoldi
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Saad Touqeer
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Jessica Lombino
- Fondazione Ri.MED Via Bandiera 11 90133 Palermo Italy
- University of Palermo Department STEBICEF Via Archirafi 32 90123 Palermo Italy
| | - Alexander Roller
- University of Vienna X-Ray Structure Analysis Center Waehringerstrasse 42 1090 Vienna Austria
| | - Cristina Prandi
- University of Turin Department of Chemistry Via P. Giuria 7 10125 Turin Italy
| | - Wolfgang Holzer
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Vittorio Pace
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
- University of Turin Department of Chemistry Via P. Giuria 7 10125 Turin Italy
| |
Collapse
|
15
|
Ielo L, Castoldi L, Touqeer S, Lombino J, Roller A, Prandi C, Holzer W, Pace V. Halogen‐Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bis‐Trifluoromethyl‐β‐Diketiminates and the Dual Role of LiCH
2
I. Angew Chem Int Ed Engl 2020; 59:20852-20857. [DOI: 10.1002/anie.202007954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Laura Ielo
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Laura Castoldi
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Saad Touqeer
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Jessica Lombino
- Fondazione Ri.MED Via Bandiera 11 90133 Palermo Italy
- University of Palermo Department STEBICEF Via Archirafi 32 90123 Palermo Italy
| | - Alexander Roller
- University of Vienna X-Ray Structure Analysis Center Waehringerstrasse 42 1090 Vienna Austria
| | - Cristina Prandi
- University of Turin Department of Chemistry Via P. Giuria 7 10125 Turin Italy
| | - Wolfgang Holzer
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
| | - Vittorio Pace
- University of Vienna Department of Pharmaceutical Chemistry Althanstrasse 14 1090 Vienna Austria
- University of Turin Department of Chemistry Via P. Giuria 7 10125 Turin Italy
| |
Collapse
|
16
|
Affiliation(s)
- Kengo Inoue
- Department of Chemical Science and Engineering Kobe University Rokkodai, Nada, Kobe 657-8501 Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering Kobe University Rokkodai, Nada, Kobe 657-8501 Japan
| |
Collapse
|