1
|
Bourrez M, Gloaguen F. Electrochemical reduction and protonation of a biomimetic diiron azadithiolate hexacarbonyl complex: Mechanistic insights. Bioelectrochemistry 2023; 153:108488. [PMID: 37329847 DOI: 10.1016/j.bioelechem.2023.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
The electrochemical reduction and protonation of [Fe2(adtH)(CO)6] (1, adtH = SCH2N(H)CH2S) and [Fe2(pdt)(CO)6] (2, pdt = SCH2CH2CH2S) in the presence of moderately strong acid in acetonitrile was investigated by cyclic voltammetry (CV), focusing on the catalysis of hydrogen evolution reaction (HER) by a {2e-,2H+} pathway. The turnover frequencies at zero overpotential (TOF0) of the N-protonated product 1(H)+ and 2 for the HER were estimated from simulations of the catalytic CV responses at low acid concentration using a simple ECEC mechanism (two electrochemical and chemical steps). This approach confirmed that 1(H)+ is clearly a better catalyst than 2, pointing to a possible role of the protonable and biologically relevant adtH ligand in the enhancement of the catalytic performances. Density functional theory (DFT) calculations further suggested that, owing to a strong structural rearrangement in the course of the catalytic cycle, the HER catalysis by 1(H)+ only involves the iron center adjacent to the amine group in adtH and not the two iron centers as in 2. Since terminal hydride species (FeFe-H) are known to more easily undergo protonolyse to H2 than their bridging hydride isomers (Fe-H-Fe), this may explain here the enhanced activity of 1(H)+ over 2 for the HER.
Collapse
Affiliation(s)
- Marc Bourrez
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France
| | - Frederic Gloaguen
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France.
| |
Collapse
|
2
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
3
|
Luo D, Yuan ZJ, Ping LJ, Zhu XW, Zheng J, Zhou CW, Zhou XC, Zhou XP, Li D. Tailor-Made Pd n L 2n Metal-Organic Cages through Covalent Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202216977. [PMID: 36753392 DOI: 10.1002/anie.202216977] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize Pdn L2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels-Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12 L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12 L24 , respectively. Furthermore, Pd12 L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2 L4 system.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zi-Jun Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
4
|
Zheng J, von Krbek LKS, Ronson TK, Nitschke JR. Host Spin-Crossover Thermodynamics Indicate Guest Fit. Angew Chem Int Ed Engl 2022; 61:e202212634. [PMID: 36264645 PMCID: PMC10098494 DOI: 10.1002/anie.202212634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Spin-crossover (SCO) metal-organic cages capable of switching between high-spin and low-spin states have the potential to be used as magnetic sensors and switches. Variation of the donor strength of heterocyclic aldehyde subcomponents in imine-based ligands can tune the ligand field for a FeII center, which results in both homoleptic and heteroleptic cages with diverse SCO behaviors. The tetrahedral SCO cage built from 1-methyl-1H-imidazole-2-carbaldehyde is capable of encapsulating various guests, which stabilize different cage spin states depending on guest size. Conversely, the SCO tetrahedron exhibits different affinities for guests in different spin states, which is inferred to result from subtle structural differences of the cavity caused by the change in metal center spin state. Examination of SCO thermodynamics across a series of host-guest complexes enabled sensitive probing of guest fit to the host cavity, providing information complementary to binding-constant determination.
Collapse
Affiliation(s)
- Jieyu Zheng
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Larissa K. S. von Krbek
- Kekulé-Institut für Organische Chemie and BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Tanya K. Ronson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | |
Collapse
|
5
|
Li S, Cai L, Hong M, Chen Q, Sun Q. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204732. [DOI: 10.1002/anie.202204732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Shao‐Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| |
Collapse
|
6
|
Li SC, Cai LX, Hong M, Chen Q, Sun QF. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shao-Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qihui Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qing-Fu Sun
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|