1
|
Wen M, Sun N, Jiao L, Zang SQ, Jiang HL. Microwave-Assisted Rapid Synthesis of MOF-Based Single-Atom Ni Catalyst for CO 2 Electroreduction at Ampere-Level Current. Angew Chem Int Ed Engl 2024; 63:e202318338. [PMID: 38230982 DOI: 10.1002/anie.202318338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Carbon-based single-atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon-based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave-assisted rapid pyrolysis method is developed to afford carbon-based SACs within 3 min without inert gas protection. The obtained carbon-based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single-atom Ni implanted N-doped carbon (Ni1 -N-C) derived from a Ni-doped metal-organic framework (Ni-ZIF-8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO ) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1 -N-C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large-scale synthesis of SACs as well as other carbon-based materials for efficient catalysis.
Collapse
Affiliation(s)
- Ming Wen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Nana Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
2
|
Xu R, Si DH, Zhao SS, Wu QJ, Wang XS, Liu TF, Zhao H, Cao R, Huang YB. Tandem Photocatalysis of CO 2 to C 2H 4 via a Synergistic Rhenium-(I) Bipyridine/Copper-Porphyrinic Triazine Framework. J Am Chem Soc 2023; 145:8261-8270. [PMID: 36976930 DOI: 10.1021/jacs.3c02370] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The photocatalytic conversion of CO2 into C2+ products such as ethylene is a promising path toward the carbon neutral goal but remains a big challenge due to the high activation barrier for CO2 and similar reduction potentials of many possible multi-electron-transfer products. Herein, an effective tandem photocatalysis strategy has been developed to support conversion of CO2 to ethylene by construction of the synergistic dual sites in rhenium-(I) bipyridine fac-[ReI(bpy)(CO)3Cl] (Re-bpy) and copper-porphyrinic triazine framework [PTF(Cu)]. With these two catalysts, a large amount of ethylene can be produced at a rate of 73.2 μmol g-1 h-1 under visible light irradiation. However, ethylene cannot be obtained from CO2 by use of either component of the Re-bpy or PTF(Cu) catalysts alone; with a single catalyst, only monocarbon product CO is produced under similar conditions. In the tandem photocatalytic system, the CO generated at the Re-bpy sites is adsorbed by the nearby Cu single sites in PTF(Cu), and this is followed by a synergistic C-C coupling process which ultimately produces ethylene. Density functional theory calculations demonstrate that the coupling process between PTF(Cu)-*CO and Re-bpy-*CO to form the key intermediate Re-bpy-*CO-*CO-PTF(Cu) is vital to the C2H4 production. This work provides a new pathway for the design of efficient photocatalysts for photoconversion of CO2 to C2 products via a tandem process driven by visible light under mild conditions.
Collapse
|
3
|
Feng G, Wang S, Li S, Ge R, Feng X, Zhang J, Song Y, Dong X, Zhang J, Zeng G, Zhang Q, Ma G, Chuang YD, Zhang X, Guo J, Sun Y, Wei W, Chen W. Highly Selective Photoelectroreduction of Carbon Dioxide to Ethanol over Graphene/Silicon Carbide Composites. Angew Chem Int Ed Engl 2023; 62:e202218664. [PMID: 36787047 DOI: 10.1002/anie.202218664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2 ), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2 H5 OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat -1 h-1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2 H5 OH conversion pathway.
Collapse
Affiliation(s)
- Guanghui Feng
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shibin Wang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Shenggang Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Ruipeng Ge
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junwei Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jiazhou Zhang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Gaofeng Zeng
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Guijun Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xixiang Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuhan Sun
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Wu QJ, Si DH, Wu Q, Dong YL, Cao R, Huang YB. Boosting Electroreduction of CO 2 over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions. Angew Chem Int Ed Engl 2023; 62:e202215687. [PMID: 36424351 DOI: 10.1002/anie.202215687] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
We present the first example of charged imidazolium functionalized porphyrin-based covalent organic framework (Co-iBFBim-COF-X) for electrocatalytic CO2 reduction reaction, where the free anions (e.g., F- , Cl- , Br- , and I- ) of imidazolium ions nearby the active Co sites can stabilize the key intermediate *COOH and inhibit hydrogen evolution reaction. Thus, Co-iBFBim-COF-X exhibits higher activity than the neutral Co-BFBim-COF, following the trend of F- <Cl- <Br- <I- . Particularly, the Co-iBFBim-COF-I- showed nearly 100 % CO2 selectivity at a low full-cell voltage of 2.3 V, and achieved a high CO2 partial current density of 52 mA cm-2 with a turnover frequency of 3018 h-1 at 2.4 V in the anion membrane electrode assembly, which is 3.57 times larger than that of neutral Co-BFBim-COF. This work provides new insight into the importance of free anions in the stabilization of intermediates and decreasing the local binding energy of H2 O with active moiety to enhance CO2 reduction reaction.
Collapse
Affiliation(s)
- Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qiao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu-Liang Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zou H, Zhao G, Dai H, Dong H, Luo W, Wang L, Lu Z, Luo Y, Zhang G, Duan L. Electronic Perturbation of Copper Single-Atom CO 2 Reduction Catalysts in a Molecular Way. Angew Chem Int Ed Engl 2023; 62:e202217220. [PMID: 36478508 DOI: 10.1002/anie.202217220] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Fine-tuning electronic structures of single-atom catalysts (SACs) plays a crucial role in harnessing their catalytic activities, yet challenges remain at a molecular scale in a controlled fashion. By tailoring the structure of graphdiyne (GDY) with electron-withdrawing/-donating groups, we show herein the electronic perturbation of Cu single-atom CO2 reduction catalysts in a molecular way. The elaborately introduced functional groups (-F, -H and -OMe) can regulate the valance state of Cuδ+ , which is found to be directly scaled with the selectivity of the electrochemical CO2 -to-CH4 conversion. An optimum CH4 Faradaic efficiency of 72.3 % was achieved over the Cu SAC on the F-substituted GDY. In situ spectroscopic studies and theoretical calculations revealed that the positive Cuδ+ centers adjusted by the electron-withdrawing group decrease the pKa of adsorbed H2 O, promoting the hydrogenation of intermediates toward the CH4 production. Our strategy paves the way for precise electronic perturbation of SACs toward efficient electrocatalysis.
Collapse
Affiliation(s)
- Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Gang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Dai
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research Pudong, Shanghai, 201203, China
| | - Wen Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
6
|
Wang Y, Ding H, Sun S, Shi J, Yang Y, Li Q, Chen Y, Li S, Lan Y. Light, Heat and Electricity Integrated Energy Conversion System: Photothermal‐Assisted Co‐Electrolysis of CO
2
and Methanol. Angew Chem Int Ed Engl 2022; 61:e202212162. [DOI: 10.1002/anie.202212162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yi‐Rong Wang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Hui‐Min Ding
- School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Sheng‐Nan Sun
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Jing‐wen Shi
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Yi.‐Lu Yang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Qi Li
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Yifa Chen
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Shun‐Li Li
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Ya‐Qian Lan
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
7
|
Qiu X, Huang J, Yu C, Zhao Z, Zhu H, Ke Z, Liao P, Chen X. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew Chem Int Ed Engl 2022; 61:e202206470. [DOI: 10.1002/anie.202206470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Xiao‐Feng Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jia‐Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Can Yu
- Institute of High Energy Physics Chinese Academy of Sciences (CAS) Beijing 100049 China
| | - Zhen‐Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hao‐Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zhuofeng Ke
- School of Materials Science & Engineering Sun Yat-sen University Guangzhou 510275 China
| | - Pei‐Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiao‐Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
8
|
Sun S, Dong L, Li J, Shi J, Liu J, Wang Y, Huang Q, Lan Y. Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO
2
Reduction. Angew Chem Int Ed Engl 2022; 61:e202207282. [DOI: 10.1002/anie.202207282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng‐Nan Sun
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Long‐Zhang Dong
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jia‐Ru Li
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jing‐Wen Shi
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jiang Liu
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Yi‐Rong Wang
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Qing Huang
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Ya‐Qian Lan
- School of Chemistry South China Normal University Guangzhou 510006 China
| |
Collapse
|
9
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single‐Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Tian Ma
- Sichuan University West China Hospital Department of Ultrasound CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital Department of Nephrology CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University College of Biomass Science and Engineering CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Chong Cheng
- Sichuan University Department of polymer science No. 24, Yihuan Road 610065 Chengdu CHINA
| |
Collapse
|
10
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single-Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022; 61:e202208667. [PMID: 35876718 DOI: 10.1002/anie.202208667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 02/05/2023]
Abstract
Single-Atom Sites (SASs) are commonly stabilized and influenced by neighboring atoms in the host; disclosing the structure-reactivity relationships of SASs in water electrolysis are the grand challenges originating from the enormous support materials with complex structures. Through a multidisciplinary view of the design principles, synthesis strategies, characterization techniques, and theoretical analysis of structure-performance correlations, this timely review is dedicated to summarizing the most recent progress in tailoring bond microenvironments on different supports and discussing the reaction pathways and performance advantages of different SAS structures for water electrolysis . The essences and mechanisms of how SAS structures influence their electrocatalysis and the critical needs for their future developments are discussed. Finally, the challenges and perspectives are also provided to stimulate their practically widespread utilization in water-splitting electrolyzers.
Collapse
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Tian Ma
- Sichuan University West China Hospital, Department of Ultrasound, CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital, Department of Nephrology, CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University, College of Biomass Science and Engineering, CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Chong Cheng
- Sichuan University, Department of polymer science, No. 24, Yihuan Road, 610065, Chengdu, CHINA
| |
Collapse
|
11
|
Hou M, Shi Y, Li J, Gao Z, Zhang Z. Cu-based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction. Chem Asian J 2022; 17:e202200624. [PMID: 35859530 DOI: 10.1002/asia.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is an attractive pathway to convert CO2 into value-added chemicals and fuels. Copper (Cu) is the most effective monometallic catalyst for converting CO2 into multi-carbon products, but suffers from high overpotentials and poor selectivity. Therefore, it is essential to design efficient Cu-based catalyst to improve the selectivity of specific products. Due to the combination of advantages of organic and inorganic composite materials, organic-inorganic composites exhibit high catalytic performance towards CO2RR, and have been extensively studied. In this review, the research advances of various Cu-based organic-inorganic composite materials in CO2RR, i.e., organic molecular modified-metal Cu composites, Cu-based molecular catalyst/carbon carrier composites, Cu-based metal organic framework (MOF) composites, and Cu-based covalent organic framework (COF) composites are systematically summarized. Particularly, the synthesis strategies of Cu-based composites, structure-performance relationship, and catalytic mechanisms are discussed. Finally, the opportunities and challenges of Cu-based organic-inorganic composite materials in CO2RR are proposed.
Collapse
Affiliation(s)
- Man Hou
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - YongXia Shi
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - JunJun Li
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - ZengQiang Gao
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - Zhicheng Zhang
- Tianjin University, Department of Chemistry, 92, Weijin Road, Nankai District, Tianjin, 300072, Tianjin, CHINA
| |
Collapse
|
12
|
Zhuo LL, Chen P, Zheng K, Zhang XW, Wu JX, Lin DY, Liu SY, Wang ZS, Liu JY, Zhou DD, Zhang JP. Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO 2 Reduction with Tunable C 2 H 4 /CH 4 Selectivity. Angew Chem Int Ed Engl 2022; 61:e202204967. [PMID: 35510692 DOI: 10.1002/anie.202204967] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Cu-based metal-organic frameworks have attracted much attention for electrocatalytic CO2 reduction, but they are generally instable and difficult to control the product selectivity. We report flexible Cu(I) triazolate frameworks as efficient, stable, and tunable electrocatalysts for CO2 reduction to C2 H4 /CH4 . By changing the size of ligand side groups, the C2 H4 /CH4 selectivity ratio can be gradually tuned and inversed from 11.8 : 1 to 1 : 2.6, giving C2 H4 , CH4 , and hydrocarbon selectivities up to 51 %, 56 %, and 77 %, respectively. After long-term electrocatalysis, they can retain the structures/morphologies without formation of Cu-based inorganic species. Computational simulations showed that the coordination geometry of Cu(I) changed from triangular to tetrahedral to bind the reaction intermediates, and two adjacent Cu(I) cooperated for C-C coupling to form C2 H4 . Importantly, the ligand side groups controlled the catalyst flexibility by the steric hindrance mechanism, and the C2 H4 pathway is more sensitive than the CH4 one.
Collapse
Affiliation(s)
- Lin-Ling Zhuo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Duo-Yu Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhi-Shuo Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jin-Yu Liu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dong-Dong Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
13
|
Wang F, Wang Q, Wang S, Zhang K, Jia S, Chen J, Wang X. Water-Phase Lateral Interconnecting Quantum Dots as Free-Floating 2D Film Assembled by Hydrogen-Bonding Interactions to Acquire Excellent Electrocatalytic Activity. ACS NANO 2022; 16:9049-9061. [PMID: 35695291 DOI: 10.1021/acsnano.2c00507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular self-assembly of nanoparticles in two orthogonal directions would potentially allow one to fabricate nanomaterials with fascinating properties. In this study of a hydrothermal polycondensation of melamine/cyanuric acid, graphitic carbon nitride-based quantum dots (CNQD, ∼2 nm) are in situ arranged along two orthogonal directions through lateral hydrogen bonding, and free-floating two-dimensional hydrogen-bonded films of CNQD (2D CNQD) are built. On the basis of the universality of this hydrothermal in situ supramolecular self-assembly technique, 2D films linked by other quantum dots such as sulfur-doped graphitic carbon nitride and CdTe are also constructed. With the benefits of stimuli responsiveness and the reversibility of hydrogen bonds, controllable assembly/disassembly of the 2D CNQD film is feasibly achieved by external stimuli such as inletting CO2/N2, which endows the assembled 2D CNQD films optimal electrochemical superiorities of both 2D film and zero-dimensional (0D) quantum dots. Accordingly, the 2D CNQD film delivers a high bifunctional activity in both a nitrogen reduction reaction (NRR) and an oxygen evolution reaction (OER). Especially in NRR, it exhibits the high yield rate of NH3 reaching 75.07 μg h-1 mg-1 at -0.85 V versus reversible hydrogen electrode at ambient condition. Strikingly, the power density of the rechargeable Zn-N2 battery using 2D CNQD film as cathode reaches 31.94 mW cm-2, outperforming the majority of Zn-N2 batteries. Density functional theory calculations proved the promoted adsorption of N2 and stabilized NRR intermediates on 2D CNQD cooperated by multiply hydrogen-bonding interactions are the main reasons for the excellent NRR electrocatalytic performances. This work hints that hydrothermal in situ supramolecular self-assembly is a feasible and direct way to integrate 0D quantum dots into 2D directional arrays, and the hydrogen bond that interlinks enables this free-floating 2D structure to maintain the electrochemical superiority of both 0D and 2D structures.
Collapse
Affiliation(s)
- Feifei Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Qiguan Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Sumin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Zhang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | | | - Jian Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Xinhai Wang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Sun SN, Dong LZ, Li JR, Shi JW, Liu J, Wang YR, Huang Q, Lan YQ. Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Full Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng-Nan Sun
- South China Normal University school of chemistry CHINA
| | | | - Jia-Ru Li
- South China Normal University school of chemistry CHINA
| | - Jing-Wen Shi
- Nanjing Normal University school of chemistry CHINA
| | - Jiang Liu
- South China Normal University school of chemistry CHINA
| | - Yi-Rong Wang
- South China Normal University school of chemistry CHINA
| | - Qing Huang
- South China Normal University school of chemistry CHINA
| | - Ya-Qian Lan
- South China Normal University school of chemistry Nanjing wenyuan road No. 1 51006 Guangzhou CHINA
| |
Collapse
|
15
|
Qiu XF, Huang JR, Yu C, Zhao ZH, Zhu HL, Ke Z, Liao PQ, Chen XM. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Can Yu
- Chinses Academy of Science Institute of High Energy Physics CHINA
| | | | - Hao-Lin Zhu
- Sun Yat-Sen University School of Chemistry CHINA
| | - Zhuofeng Ke
- Sun Yat-sen University School of Chemistry CHINA
| | - Pei-Qin Liao
- Sun Yat-Sen University School of Chemistry No. 135, Xingang Xi Road 510275 Guangzhou CHINA
| | | |
Collapse
|
16
|
Lei K, Yu Xia B. Electrocatalytic CO
2
Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022; 28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Lei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
17
|
Zhuo LL, Chen P, Zheng K, Zhang XW, Wu JX, Lin DY, Liu SY, Wang ZS, Liu JY, Zhou DD, Zhang JP. Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO2 Reduction with Tunable C2H4/CH4 Selectivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Pin Chen
- Sun Yat-Sen University School of Computer Science and Engineering CHINA
| | - Kai Zheng
- Sun Yat-Sen University School of Chemistry CHINA
| | | | - Jun-Xi Wu
- Sun Yat-Sen University School of Chemistry CHINA
| | - Duo-Yu Lin
- Sun Yat-Sen University School of Chemistry CHINA
| | - Si-Yang Liu
- Sun Yat-Sen University School of Biomedical Engineering CHINA
| | | | - Jin-Yu Liu
- Sun Yat-Sen University School of Computer Science and Engineering CHINA
| | | | - Jie-Peng Zhang
- Sun Yat-Sen University School of Chemistry and Chemical Engineering 135 Xingang Rd. W. 510275 Guangzhou CHINA
| |
Collapse
|
18
|
Gu AL, Zhang YX, Wu ZL, Cui HY, Hu TD, Zhao B. Highly Efficient Conversion of Propargylic Alcohols and Propargylic Amines with CO 2 Activated by Noble-Metal-Free Catalyst Cu 2 O@ZIF-8. Angew Chem Int Ed Engl 2022; 61:e202114817. [PMID: 35014760 DOI: 10.1002/anie.202114817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 01/05/2023]
Abstract
The cyclization reactions of propargylic alcohols and propargylic amines with CO2 are important in industrial applications, but it was a great challenge that non-noble-metal catalysts catalyzed both reactions under mild conditions. Herein, the catalyst Cu2 O@ZIF-8 was prepared by encapsulating Cu2 O nanoparticles into robust ZIF-8, and it can effectively catalyze the cyclization of both propargylic alcohols and propargylic amines with CO2 into valuable α-alkylidene cyclic carbonates and oxazolidinones with turnover numbers (TONs) of 12.1 and 19.6, which can be recycled at least five times. The mechanisms were further uncovered by NMR, FTIR, 13 C isotope-labeling experiments and DFT calculations, in which Cu2 O and DBU can synergistically activate the C≡C bond and the hydroxy/amino group of substrates. Importantly, it is the first example of a noble-metal-free catalyst that can catalyze both propargylic alcohols and propargylic amines with CO2 simultaneously.
Collapse
Affiliation(s)
- Ai-Ling Gu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China.,College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Ya-Xin Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China.,College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Zhi-Lei Wu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China.,College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Hui-Ya Cui
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China.,College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Tian-Ding Hu
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Wang Y, Zhang X, Chang K, Zhao Z, Huang J, Kuang Q. MOF Encapsulated AuPt Bimetallic Nanoparticles for Improved Plasmonic‐induced Photothermal Catalysis of CO
2
Hydrogenation. Chemistry 2022; 28:e202104514. [DOI: 10.1002/chem.202104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xibo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Kuan Chang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhiying Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jiayu Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
20
|
Liu H, Wang H, Song Q, Küster K, Starke U, van Aken PA, Klemm E. Assembling Metal Organic Layer Composites for High-Performance Electrocatalytic CO 2 Reduction to Formate. Angew Chem Int Ed Engl 2022; 61:e202117058. [PMID: 34962341 PMCID: PMC9303648 DOI: 10.1002/anie.202117058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 11/11/2022]
Abstract
2D metal-organic-framework (MOF) based composites have emerged as promising candidates for electrocatalysis due to their high structural flexibility and fully exposed active sites. Herein, a freestanding metal-organic layer (MOL) with a 2D kgd (kagome dual) lattice was constructed with abundant surface oxygenate groups serving as anchoring sites to immobilize diverse guests. Taking Bi as an example, tetragonal Bi2 O3 nanowires can be uniformly grown on MOLs after solvothermal treatment, the structural evolution of which was followed by ex situ electron microscopy. The as-prepared Bi2 O3 /MOL exhibits excellent CO2 electroreduction activity towards formate reaching a specific current of 2.3 A mgBi -1 and Faradaic efficiencies of over 85 % with a wide potential range from -0.87 to -1.17 V, far surpassing Bi2 O3 /UiO (a 3D Zr6 -oxo based MOF) and Bi2 O3 /AB (Acetylene Black). Such a post-synthetic modification strategy can be flexibly extended to develop versatile MOL composites, highlighting the superiority of optimizing MOL-based composites for electrocatalysis.
Collapse
Affiliation(s)
- Hang Liu
- Universität StuttgartInstitut für Technische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Hongguang Wang
- Max Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
| | - Qian Song
- Universität StuttgartInstitut für Technische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Kathrin Küster
- Max Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
| | - Ulrich Starke
- Max Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
| | - Peter A. van Aken
- Max Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
| | - Elias Klemm
- Universität StuttgartInstitut für Technische ChemiePfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
21
|
Zhang Y, Zhou Q, Wang P, Zhao Y, Gong F, Sun WY. Hydroxy-Group-Functionalized Single Crystal of Copper(II)-Porphyrin Complex for Electroreduction CO 2 to CH 4. CHEMSUSCHEM 2022; 15:e202102528. [PMID: 35023312 DOI: 10.1002/cssc.202102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Purposefully developing crystalline materials at molecular level to improve the selectivity of electroreduction CO2 to CH4 is still rarely studied. Herein, a single crystal of copper(II) complex with hydroxy groups was designed and synthesized, namely 5,10,15,20-tetrakis(3,4-dihydroxyphenyl)porphyrin copper(II) (Cu-PorOH), which could serve as a highly efficient heterogeneous electrocatalyst for electroreduction of CO2 toward CH4 . In 0.5 m KHCO3 , Cu-PorOH gave a high faradaic efficiency of 51.3 % for CH4 and drove a partial current density of 23.2 mA cm-2 at -1.5 V versus the reversible hydrogen electrode in H-cell. The high performance was greatly promoted by the hydroxy groups in Cu-PorOH, which could not only form stable three-dimensional frameworks through hydrogen-bonding interactions but also stabilize the intermediate species by hydrogen bonds, as supported by density functional theory calculations. This work provides an effective avenue in exploring crystalline catalysts for CO2 reduction at molecular level.
Collapse
Affiliation(s)
- Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qiang Zhou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
22
|
Wang W, Xi Y, Yang C, Byun J, Cheng J, Wang S, Wang X. Incorporation of metal active sites on porous polycarbazoles for photocatalytic CO2 reduction. ChemCatChem 2022. [DOI: 10.1002/cctc.202101872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenyan Wang
- Fuzhou University College of Chemistry CHINA
| | - Yang Xi
- Fuzhou University College of Chemistry CHINA
| | - Can Yang
- Fuzhou University College of Chemistry CHINA
| | - Jeehye Byun
- Korea Institute of Science and Technology water cycle research center KOREA, REPUBLIC OF
| | | | - Sibo Wang
- Fuzhou University College of Chemistry CHINA
| | - Xinchen Wang
- Fuzhou University Chemistry 523 Gongye Rd, Gulou 350000 Fuzhou CHINA
| |
Collapse
|
23
|
Imparting CO
2
Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin‐based Covalent Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Chen S, Li W, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N‐Heterocyclic Carbene‐Ligated Copper Single‐Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenghua Chen
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wen‐Hao Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology China Academy of Space Technology Beijing 100094 P. R. China
| | - Jiarui Yang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials School of Material Science and Engineering Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Honghui Ou
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Zechao Zhuang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 P. R. China
| | - Xiaohui Sun
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
25
|
Zhang W, Huang C, Zhu J, Zhou Q, Yu R, Wang Y, An P, Zhang J, Qiu M, Zhou L, Mai L, Yi Z, Yu Y. Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO
2
Reduction to Hydrocarbons**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Zhang
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Chuqiang Huang
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Qiancheng Zhou
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Yali Wang
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Science Beijing 100049 P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Science Beijing 100049 P. R. China
| | - Ming Qiu
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei P. R. China
| | - Zhiguo Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Ying Yu
- Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 Hubei P. R. China
| |
Collapse
|
26
|
Zhao B, Gu AL, Wu ZL, Zhang YX, Cui HY, Hu TD. Highly Efficient Conversion of Both Propargylic Alcohols and Propargylic Amines with CO2 Activated by Noble‐Metal‐Free Catalyst Cu2O@ZIF‐8. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Zhao
- Nankai University Department of Chemistry weijin road 94# 300071 tianjin city CHINA
| | - Ai-Ling Gu
- Nankai University Department of Chemistry Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, M 300071 Tianjin CHINA
| | - Zhi-Lei Wu
- Nankai University Department of Chemistry Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, M 300071 Tianjin CHINA
| | - Ya-Xin Zhang
- Nankai University Department of Chemistry Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, M 300071 Tianjin CHINA
| | - Hui-Ya Cui
- Nankai University Department of Chemistry Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, M 300071 Tianjin CHINA
| | | |
Collapse
|
27
|
Han B, Jin Y, Chen B, Zhou W, Yu B, Wei C, Wang H, Wang K, Chen Y, Chen B, Jiang J. Maximizing Electroactive Sites in a Three‐Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Wei Zhou
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899-6102 USA
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chuangyu Wei
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Yanli Chen
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249-0698 USA
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
28
|
Liu H, Wang H, Song Q, Küster K, Starke U, van Aken PA, Klemm E. Assembling Metal Organic Layer Composites for High‐Performance Electrocatalytic CO2 Reduction to Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hang Liu
- Universität Stuttgart: Universitat Stuttgart Institute of Technical Chemistry Pfaffenwaldring 55 70569 Stuttgart GERMANY
| | - Hongguang Wang
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Stuttgart Center for Electron Microscopy GERMANY
| | - Qian Song
- Universität Stuttgart: Universitat Stuttgart Institute of Technical Chemistry GERMANY
| | - Kathrin Küster
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Interface Analysis GERMANY
| | - Ulrich Starke
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Interface Analysis GERMANY
| | - Peter A. van Aken
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Stuttgart Center for Electron Microscopy GERMANY
| | - Elias Klemm
- Universität Stuttgart: Universitat Stuttgart Institute of Technical Chemistry GERMANY
| |
Collapse
|
29
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO
2
‐to‐Methane Electrosynthesis on Reconstructed Cu
2
O Microparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Kanglu Li
- College of Architecture and Environment Sichuan University Chengdu 610065 P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P.R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P.R. China
| |
Collapse
|
30
|
Mukherjee S, Hou S, Watzele SA, Garlyyev B, Li W, Bandarenka AS, Fischer RA. Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOF‐derived Electrocatalysts. ChemElectroChem 2021. [DOI: 10.1002/celc.202101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soumya Mukherjee
- Technical University Munich: Technische Universitat Munchen Department of Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Shujin Hou
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Sebastian A. Watzele
- Technical University Munich: Technische Universitat Munchen Physik James-Franck-Str. 1 85748 Munich GERMANY
| | - Batyr Garlyyev
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Weijin Li
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Aliaksandr S. Bandarenka
- Technical University Munich: Technische Universitat Munchen Physics Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Roland A. Fischer
- Technische Universität München Lehrst. für Anorgan. u. Metallorgan. Chemie Lichtenbergstr. 4 85748 Garching GERMANY
| |
Collapse
|
31
|
Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. The Crystal Plane is not the Key Factor for CO 2 -to-Methane Electrosynthesis on Reconstructed Cu 2 O Microparticles. Angew Chem Int Ed Engl 2021; 61:e202114080. [PMID: 34882934 DOI: 10.1002/anie.202114080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/04/2023]
Abstract
Cu2 O microparticles with controllable crystal planes and relatively high stability have been recognized as a good platform to understand the mechanism of the electrocatalytic CO2 reduction reaction (CO2 RR). Herein, we demonstrate that the in situ generated Cu2 O/Cu interface plays a key role in determining the selectivity of methane formation, rather than the initial crystal plane of the reconstructed Cu2 O microparticles. Experimental results indicate that the methane evolution is dominated on all three different crystal planes with similar Tafel slopes and long-term stabilities. Density functional theory (DFT) calculations further reveal that *CO is protonated via a similar bridge configuration at the Cu2 O/Cu interface, regardless of the initial crystal planes of Cu2 O. The Gibbs free energy changes (ΔG) of *CHO on different reconstructed Cu2 O planes are close and more negative than that of *OCCOH, indicating the methane formation is more favorable than ethylene on all Cu2 O crystal planes.
Collapse
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Ming Huang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Kanglu Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P.R. China
| | - Xiaoli Zhao
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Hongtao Xie
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| |
Collapse
|
32
|
Ultrastable Cu Catalyst for CO
2
Electroreduction to Multicarbon Liquid Fuels by Tuning C–C Coupling with CuTi Subsurface. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Meng DL, Zhang MD, Si DH, Mao MJ, Hou Y, Huang YB, Cao R. Highly Selective Tandem Electroreduction of CO 2 to Ethylene over Atomically Isolated Nickel-Nitrogen Site/Copper Nanoparticle Catalysts. Angew Chem Int Ed Engl 2021; 60:25485-25492. [PMID: 34533874 DOI: 10.1002/anie.202111136] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Indexed: 11/11/2022]
Abstract
Herein, an effective tandem catalysis strategy is developed to improve the selectivity of the CO2 RR towards C2 H4 by multiple distinct catalytic sites in local vicinity. An earth-abundant elements-based tandem electrocatalyst PTF(Ni)/Cu is constructed by uniformly dispersing Cu nanoparticles (NPs) on the porphyrinic triazine framework anchored with atomically isolated nickel-nitrogen sites (PTF(Ni)) for the enhanced CO2 RR to produce C2 H4 . The Faradaic efficiency of C2 H4 reaches 57.3 % at -1.1 V versus the reversible hydrogen electrode (RHE), which is about 6 times higher than the non-tandem catalyst PTF/Cu, which produces CH4 as the major carbon product. The operando infrared spectroscopy and theoretic density functional theory (DFT) calculations reveal that the local high concentration of CO generated by PTF(Ni) sites can facilitate the C-C coupling to form C2 H4 on the nearby Cu NP sites. The work offers an effective avenue to design electrocatalysts for the highly selective CO2 RR to produce multicarbon products via a tandem route.
Collapse
Affiliation(s)
- Dong-Li Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng-Di Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Min-Jie Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ying Hou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Meng D, Zhang M, Si D, Mao M, Hou Y, Huang Y, Cao R. Highly Selective Tandem Electroreduction of CO
2
to Ethylene over Atomically Isolated Nickel–Nitrogen Site/Copper Nanoparticle Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dong‐Li Meng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- College of Materials and Chemical Engineering Minjiang University Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Meng‐Di Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Duan‐Hui Si
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Min‐Jie Mao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Ying Hou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yuan‐Biao Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Wang YR, Ding HM, Ma XY, Liu M, Yang YL, Chen Y, Li SL, Lan YQ. Imparting CO 2 Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin-based Covalent Organic Framework. Angew Chem Int Ed Engl 2021; 61:e202114648. [PMID: 34806265 DOI: 10.1002/anie.202114648] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Strategies that enable simultaneous morphology-tuning and electroreduction performance boosting are much desired for the exploration of covalent organic frameworks in efficient CO2 electroreduction. Herein, a kind of functionalizing exfoliation agent has been selected to simultaneously modify and exfoliate bulk COFs into functional nanosheets and investigate their CO2 electroreduction performance. The obtained nanosheets (Cu-Tph-COF-Dct) with large-scale (≈1.0 μm) and ultrathin (≈3.8 nm) morphology enable a superior FECH4 (≈80 %) (almost doubly enhanced than bare COF) with large current-density (-220.0 mA cm-2 ) at -0.9 V. The boosted performance can be ascribed to the immobilized functionalizing exfoliation agent (Dct groups) with integrated amino and triazine groups that strengthen CO2 absorption/activation, stabilize intermediates and enrich the CO concentration around the Cu active sites as revealed by DFT calculations. The point-to-point functionalization strategy for modularly assembling Dct-functionalized COF catalyst for CO2 electroreduction will open up the attractive possibility of developing COFs as efficient CO2 RR electrocatalysts.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hui-Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Ma
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yi-Lu Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
36
|
Chen S, Li WH, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew Chem Int Ed Engl 2021; 61:e202114450. [PMID: 34767294 DOI: 10.1002/anie.202114450] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The exploitation of highly efficient carbon dioxide reduction (CO2 RR) electrocatalyst for methane (CH4 ) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N-heterocyclic carbene (NHC)-ligated copper single atom site (Cu SAS) embedded in metal-organic framework is reported (2Bn-Cu@UiO-67), which can achieve an outstanding Faradaic efficiency (FE) of 81 % for the CO2 reduction to CH4 at -1.5 V vs. RHE with a current density of 420 mA cm-2 . The CH4 FE of our catalyst remains above 70 % within a wide potential range and achieves an unprecedented turnover frequency (TOF) of 16.3 s-1 . The σ donation of NHC enriches the surface electron density of Cu SAS and promotes the preferential adsorption of CHO* intermediates. The porosity of the catalyst facilitates the diffusion of CO2 to 2Bn-Cu, significantly increasing the availability of each catalytic center.
Collapse
Affiliation(s)
- Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
37
|
Han B, Jin Y, Chen B, Zhou W, Yu B, Wei C, Wang H, Wang K, Chen Y, Chen B, Jiang J. Maximizing Electroactive Sites in a Three-Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021; 61:e202114244. [PMID: 34716743 DOI: 10.1002/anie.202114244] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/07/2022]
Abstract
Synthesis of functional 3D COFs with irreversible bond is challenging. Herein, 3D imide-bonded COFs were constructed via the imidization reaction between phthalocyanine-based tetraanhydride and 1,3,5,7-tetra(4-aminophenyl)adamantine. These two 3D COFs are made up of interpenetrated pts networks according to powder X-ray diffraction and gas adsorption analyses. CoPc-PI-COF-3 doped with carbon black has been employed to fabricate the electrocatalytic cathode towards CO2 reduction reaction within KHCO3 aqueous solution, displaying the Faradaic efficiency of 88-96 % for the CO2 -to-CO conversion at the voltage range of ca. -0.60 to -1.00 V (vs. RHE). In particular, the 3D porous structure of CoPc-PI-COF-3 enables the active electrocatalytic centers occupying 32.7 % of total cobalt-phthalocyanine subunits, thus giving a large current density (jCO ) of -31.7 mA cm-2 at -0.90 V. These two parameters are significantly improved than the excellent 2D COF analogue (CoPc-PI-COF-1, 5.1 % and -21.2 mA cm-2 ).
Collapse
Affiliation(s)
- Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuangyu Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249-0698, USA
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
38
|
Zhang W, Huang C, Zhu J, Zhou Q, Yu R, Wang Y, An P, Zhang J, Qiu M, Zhou L, Mai L, Yi Z, Yu Y. Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO 2 Reduction to Hydrocarbons*. Angew Chem Int Ed Engl 2021; 61:e202112116. [PMID: 34704659 DOI: 10.1002/anie.202112116] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Indexed: 01/24/2023]
Abstract
The electrochemical reduction of CO2 to hydrocarbons involves a multistep proton-coupled electron transfer (PCET) reaction. Second coordination sphere engineering is reported to be effective in the PCET process; however, little is known about the actual catalytic active sites under realistic operating conditions. We have designed a defect-containing metal-organic framework, HKUST-1, through a facile "atomized trimesic acid" strategy, in which Cu atoms are modified by unsaturated carboxylate ligands, producing coordinatively unsaturated Cu paddle wheel (CU-CPW) clusters. We investigate the dynamic behavior of the CU-CPW during electrochemical reconstruction through the comprehensive analysis of in situ characterization results. It is demonstrated that Cu2 (HCOO)3 is maintained after electrochemical reconstruction and that is behaves as an active site. Mechanistic studies reveal that CU-CPW accelerates the proton-coupled multi-electron transfer (PCMET) reaction, resulting in a deep CO2 reduction reaction.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Chuqiang Huang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Qiancheng Zhou
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Yali Wang
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Ming Qiu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Zhiguo Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ying Yu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, P. R. China
| |
Collapse
|
39
|
Zhu ZH, Zhao BH, Hou SL, Jiang XL, Liang ZL, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon-Particle-Modified Metal-Organic Framework for Enhancing the Efficiency of CO 2 Electroreduction into Formate. Angew Chem Int Ed Engl 2021; 60:23394-23402. [PMID: 34406687 DOI: 10.1002/anie.202110387] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/11/2022]
Abstract
Electrocatalytic reduction of CO2 by metal-organic frameworks (MOFs) has been widely investigated, but insufficient conductivity limits application. Herein, a porous 3D In-MOF {(Me2 NH2 )[In(BCP)]⋅2 DMF}n (V11) with good stability was constructed with two types of channels (1.6 and 1.2 nm diameter). V11 exhibits moderate catalytic activity in CO2 electroreduction with 76.0 % of Faradaic efficiency for formate (FEHCOO- ). Methylene blue molecules of suitable size and pyrolysis temperature were introduced and transformed into carbon particles (CPs) after calcination. The performance of the obtained CPs@V11 is significantly improved both in FEHCOO- (from 76.0 % to 90.1 %) and current density (2.2 times). Control experiments show that introduced CPs serve as accelerant to promote the charges and mass transfer in framework, and benefit to sufficiently expose active sites. This strategy can also work on other In-MOFs, demonstrating the universality of this method for electroreduction of CO2 .
Collapse
Affiliation(s)
- Zi-Hao Zhu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bo-Hang Zhao
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Ze-Long Liang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
40
|
Zhu Z, Zhao B, Hou S, Jiang X, Liang Z, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon‐Particle‐Modified Metal–Organic Framework for Enhancing the Efficiency of CO
2
Electroreduction into Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Hao Zhu
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bo‐Hang Zhao
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Sheng‐Li Hou
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Xiao‐Lei Jiang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Ze‐Long Liang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Bin Zhao
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| |
Collapse
|
41
|
Hu F, Yang L, Jiang Y, Duan C, Wang X, Zeng L, Lv X, Duan D, Liu Q, Kong T, Jiang J, Long R, Xiong Y. Ultrastable Cu Catalyst for CO 2 Electroreduction to Multicarbon Liquid Fuels by Tuning C-C Coupling with CuTi Subsurface. Angew Chem Int Ed Engl 2021; 60:26122-26127. [PMID: 34596317 DOI: 10.1002/anie.202110303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Production of multicarbon (C2+ ) liquid fuels is a challenging task for electrocatalytic CO2 reduction, mainly limited by the stabilization of reaction intermediates and their subsequent C-C couplings. In this work, we report a unique catalyst, the coordinatively unsaturated Cu sites on amorphous CuTi alloy (a-CuTi@Cu) toward electrocatalytic CO2 reduction to multicarbon (C2-4 ) liquid fuels. Remarkably, the electrocatalyst yields ethanol, acetone, and n-butanol as major products with a total C2-4 faradaic efficiency of about 49 % at -0.8 V vs. reversible hydrogen electrode (RHE), which can be maintained for at least 3 months. Theoretical simulations and in situ characterization reveals that subsurface Ti atoms can increase the electron density of surface Cu sites and enhance the adsorption of *CO intermediate, which in turn reduces the energy barriers required for *CO dimerization and trimerization.
Collapse
Affiliation(s)
- Fei Hu
- School of Materials Science and Energy Engineering, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, China
| | - Li Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yawen Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chongxiong Duan
- School of Materials Science and Energy Engineering, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, China
| | - Xiaonong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Longjiao Zeng
- School of Materials Science and Energy Engineering, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, China
| | - Xuefeng Lv
- School of Materials Science and Energy Engineering, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan, Guangdong, 528000, China
| | - Delong Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710054, China
| | - Tingting Kong
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710054, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
42
|
Wang Y, Liu M, Gao G, Yang Y, Yang R, Ding H, Chen Y, Li S, Lan Y. Implanting Numerous Hydrogen‐Bonding Networks in a Cu‐Porphyrin‐Based Nanosheet to Boost CH
4
Selectivity in Neutral‐Media CO
2
Electroreduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yi‐Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Guang‐Kuo Gao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Yi‐Lu Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Ru‐Xin Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Hui‐Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Shun‐Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Ya‐Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
43
|
Han Y, Zhu S, Xu S, Niu X, Xu Z, Zhao R, Wang Q. Understanding Structure‐activity Relationship on Metal‐Organic‐Framework‐Derived Catalyst for CO
2
Electroreduction to C
2
Products. ChemElectroChem 2021. [DOI: 10.1002/celc.202100942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yunxi Han
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuaikang Zhu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuang Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
44
|
Wang YR, Liu M, Gao GK, Yang YL, Yang RX, Ding HM, Chen Y, Li SL, Lan YQ. Implanting Numerous Hydrogen-Bonding Networks in a Cu-Porphyrin-Based Nanosheet to Boost CH 4 Selectivity in Neutral-Media CO 2 Electroreduction. Angew Chem Int Ed Engl 2021; 60:21952-21958. [PMID: 34387026 DOI: 10.1002/anie.202108388] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/10/2022]
Abstract
The exploration of novel systems for the electrochemical CO2 reduction reaction (CO2 RR) for the production of hydrocarbons like CH4 remains a giant challenge. Well-designed electrocatalysts with advantages like proton generation/transferring and intermediate-fixating for efficient CO2 RR are much preferred yet largely unexplored. In this work, a kind of Cu-porphyrin-based large-scale (≈1.5 μm) and ultrathin nanosheet (≈5 nm) has been successfully applied in electrochemical CO2 RR. It exhibits a superior FE CH 4 of 70 % with a high current density (-183.0 mA cm-2 ) at -1.6 V under rarely reported neutral conditions and maintains FE CH 4 >51 % over a wide potential range (-1.5 to -1.7 V) in a flow cell. The high performance can be attributed to the construction of numerous hydrogen-bonding networks through the integration of diaminotriazine with Cu-porphyrin, which is beneficial for proton migration and intermediate stabilization, as supported by DFT calculations. This work paves a new way in exploring hydrogen-bonding-based materials as efficient CO2 RR catalysts.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Guang-Kuo Gao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yi-Lu Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ru-Xin Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hui-Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
45
|
Zou Y, Huang Y, Si D, Yin Q, Wu Q, Weng Z, Cao R. Porous Metal–Organic Framework Liquids for Enhanced CO
2
Adsorption and Catalytic Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yu‐Huang Zou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- Department of Chemistry School of Chemistry and Materials Science University of Science and Technology of China Anhui Hefei 230000 P. R. China
| | - Yuan‐Biao Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Duan‐Hui Si
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Qiu‐Jin Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Zixiang Weng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- Department of Chemistry School of Chemistry and Materials Science University of Science and Technology of China Anhui Hefei 230000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory, for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
46
|
Zou YH, Huang YB, Si DH, Yin Q, Wu QJ, Weng Z, Cao R. Porous Metal-Organic Framework Liquids for Enhanced CO 2 Adsorption and Catalytic Conversion. Angew Chem Int Ed Engl 2021; 60:20915-20920. [PMID: 34278674 DOI: 10.1002/anie.202107156] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/18/2022]
Abstract
The unique applications of porous metal-organic framework (MOF) liquids with permanent porosity and fluidity have attracted significant attention. However, fabrication of porous MOF liquids remains challenging because of the easy intermolecular self-filling of the cavity or the rapid settlement of porous hosts in hindered solvents that cannot enter their pores. Herein, we report a facile strategy for the fabrication of a MOF liquid (Im-UiO-PL) by surface ionization of an imidazolium-functionalized framework with a sterically hindered poly(ethylene glycol) sulfonate (PEGS) canopy. The Im-UiO-PL obtained in this way has a CO2 adsorption approximately 14 times larger than that of pure PEGS. Distinct from a porous MOF solid counterpart, the stored CO2 in Im-UiO-PL can be slowly released and efficiently utilized to synthesize cyclic carbonates in the atmosphere. This is the first example of the use of a porous MOF liquid as a CO2 storage material for catalysis. It offers a new method for the fabrication of unique porous liquid MOFs with functional behaviors in various fields of gas adsorption and catalysis.
Collapse
Affiliation(s)
- Yu-Huang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China.,Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Anhui, Hefei, 230000, P. R. China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
| | - Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
| | - Zixiang Weng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China.,Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Anhui, Hefei, 230000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory, for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
47
|
Wang R, Liu J, Huang Q, Dong LZ, Li SL, Lan YQ. Partial Coordination-Perturbed Bi-Copper Sites for Selective Electroreduction of CO 2 to Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:19829-19835. [PMID: 34164890 DOI: 10.1002/anie.202105343] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/19/2021] [Indexed: 11/07/2022]
Abstract
In the electrochemical CO2 reduction reaction (CO2 RR), it is challenging to develop a stable, well-defined catalyst model system that is able to examine the influence of the synergistic effect between adjacent catalytic active sites on the selective generation of C1 or C2 products. We have designed and synthesized a stable crystalline single-chain catalyst model system for electrochemical CO2 RR, which involves four homomorphic one-dimensional chain-like compounds (Cu-PzH, Cu-PzCl, Cu-PzBr, and Cu-PzI). The main structural difference of these four chains is the substituents of halogen atoms with different electronegativity on the Pz ligands. Consequently, different synergistic effects between bi-copper centers lead to changes in the faradic efficiency (FE CH 4 :FE C 2 H 4 ). This work provides a simple and stable crystalline single-chain model system for systematically studying the influence of coordination microenvironment on catalytically active centers in the CO2 RR.
Collapse
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
48
|
Wang R, Liu J, Huang Q, Dong L, Li S, Lan Y. Partial Coordination‐Perturbed Bi‐Copper Sites for Selective Electroreduction of CO
2
to Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Jiang Liu
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Qing Huang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Long‐Zhang Dong
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Shun‐Li Li
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Ya‐Qian Lan
- Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
49
|
Yi JD, Si DH, Xie R, Yin Q, Zhang MD, Wu Q, Chai GL, Huang YB, Cao R. Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO 2. Angew Chem Int Ed Engl 2021; 60:17108-17114. [PMID: 34033203 DOI: 10.1002/anie.202104564] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/20/2022]
Abstract
The electrocatalytic conversion of CO2 into value-added chemicals is a promising approach to realize a carbon-energy balance. However, low current density still limits the application of the CO2 electroreduction reaction (CO2 RR). Metal-organic frameworks (MOFs) are one class of promising alternatives for the CO2 RR due to their periodically arranged isolated metal active sites. However, the poor conductivity of traditional MOFs usually results in a low current density in CO2 RR. We have prepared conductive two-dimensional (2D) phthalocyanine-based MOF (NiPc-NiO4 ) nanosheets linked by nickel-catecholate, which can be employed as highly efficient electrocatalysts for the CO2 RR to CO. The obtained NiPc-NiO4 has a good conductivity and exhibited a very high selectivity of 98.4 % toward CO production and a large CO partial current density of 34.5 mA cm-2 , outperforming the reported MOF catalysts. This work highlights the potential of conductive crystalline frameworks in electrocatalysis.
Collapse
Affiliation(s)
- Jun-Dong Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ruikuan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Meng-Di Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qiao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Guo-Liang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
50
|
Yi J, Si D, Xie R, Yin Q, Zhang M, Wu Q, Chai G, Huang Y, Cao R. Conductive Two‐Dimensional Phthalocyanine‐based Metal–Organic Framework Nanosheets for Efficient Electroreduction of CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104564] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun‐Dong Yi
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Duan‐Hui Si
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Ruikuan Xie
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Meng‐Di Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Qiao Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Guo‐Liang Chai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Yuan‐Biao Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Science Beijing 100049 China
| |
Collapse
|