1
|
Su DD, Ali LMA, Coste M, Laroui N, Bessin Y, Barboiu M, Bettache N, Ulrich S. Structure-Activity Relationships in Nucleic-Acid-Templated Vectors Based on Peptidic Dynamic Covalent Polymers. Chemistry 2023; 29:e202202921. [PMID: 36342312 PMCID: PMC10108046 DOI: 10.1002/chem.202202921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
The use of nucleic acids as templates, which can trigger the self-assembly of their own vectors represent an emerging, simple and versatile, approach toward the self-fabrication of tailored nucleic acids delivery vectors. However, the structure-activity relationships governing this complex templated self-assembly process that accompanies the complexation of nucleic acids remains poorly understood. Herein, the class of arginine-rich dynamic covalent polymers (DCPs) composed of different monomers varying the number and position of arginines were studied. The combinations that lead to nucleic acid complexation, in saline buffer, using different templates, from short siRNA to long DNA, are described. Finally, a successful peptidic DCP featuring six-arginine repeating unit that promote the safe and effective delivery of siRNA in live cancer cells was identified.
Collapse
Affiliation(s)
- Dan-Dan Su
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Lamiaa M A Ali
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France.,Department of Biochemistry Medical Research Institute, University of Alexandria, 21561, Alexandria, Egypt
| | - Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Nabila Laroui
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Yannick Bessin
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Nadir Bettache
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM, 34095, Montpellier, France
| |
Collapse
|
2
|
Assies L, Mercier V, López‐Andarias J, Roux A, Sakai N, Matile S. The Dynamic Range of Acidity: Tracking Rules for the Unidirectional Penetration of Cellular Compartments. Chembiochem 2022; 23:e202200192. [PMID: 35535626 PMCID: PMC9400975 DOI: 10.1002/cbic.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Indexed: 12/03/2022]
Abstract
Labeled ammonium cations with pKa ∼7.4 accumulate in acidic organelles because they can be neutralized transiently to cross the membrane at cytosolic pH 7.2 but not at their internal pH<5.5. Retention in early endosomes with less acidic internal pH was achieved recently using weaker acids of up to pKa 9.8. We report here that primary ammonium cations with higher pKa 10.6, label early endosomes more efficiently. This maximized early endosome tracking coincides with increasing labeling of Golgi networks with similarly weak internal acidity. Guanidinium cations with pKa 13.5 cannot cross the plasma membrane in monomeric form and label the plasma membrane with selectivity for vesicles embarking into endocytosis. Self-assembled into micelles, guanidinium cations enter cells like arginine-rich cell-penetrating peptides and, driven by their membrane potential, penetrate mitochondria unidirectionally despite their high inner pH. The resulting tracking rules with an approximated dynamic range of pKa change ∼3.5 are expected to be generally valid, thus enabling the design of chemistry tools for biology research in the broadest sense. From a practical point of view, most relevant are two complementary fluorescent flipper probes that can be used to image the mechanics at the very beginning of endocytosis.
Collapse
Affiliation(s)
- Lea Assies
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Vincent Mercier
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Javier López‐Andarias
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Aurelien Roux
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| |
Collapse
|
3
|
Laurent Q, Martinent R, Moreau D, Winssinger N, Sakai N, Matile S. Oligonucleotide Phosphorothioates Enter Cells by Thiol‐Mediated Uptake. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Quentin Laurent
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Rémi Martinent
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Dimitri Moreau
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
4
|
Laurent Q, Martinent R, Moreau D, Winssinger N, Sakai N, Matile S. Oligonucleotide Phosphorothioates Enter Cells by Thiol-Mediated Uptake. Angew Chem Int Ed Engl 2021; 60:19102-19106. [PMID: 34173696 PMCID: PMC8456962 DOI: 10.1002/anie.202107327] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Oligonucleotide phosphorothioates (OPS) are DNA or RNA mimics where one phosphate oxygen is replaced by a sulfur atom. They have been shown to enter mammalian cells much more efficiently than non-modified DNA. Thus, solving one of the key challenges with oligonucleotide technology, OPS became very useful in practice, with several FDA-approved drugs on the market or in late clinical trials. However, the mechanism accounting for this facile cellular uptake is unknown. Here, we show that OPS enter cells by thiol-mediated uptake. The transient adaptive network produced by dynamic covalent pseudo-disulfide exchange is characterized in action. Inhibitors with nanomolar efficiency are provided, together with activators that reduce endosomal capture for efficient delivery of OPS into the cytosol, the site of action.
Collapse
Affiliation(s)
- Quentin Laurent
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Rémi Martinent
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Dimitri Moreau
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Nicolas Winssinger
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|