1
|
Jin B, Zhang W, Wei S, Zhang K, Wang H, Liu G, Li J. Magnesium-promoted rapid self-reconstruction of NiFe-based electrocatalysts toward efficient oxygen evolution. J Colloid Interface Sci 2025; 677:208-216. [PMID: 39089127 DOI: 10.1016/j.jcis.2024.07.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
The acceleration of active sites formation through surface reconstruction is widely acknowledged as the crucial factor in developing high-performance oxygen evolution reaction (OER) catalysts for water splitting. Herein, a simple one-step corrosion method and magnesium (Mg)-promoted strategy are reported to develop the NiFe-based catalyst with enhanced OER performance. The Mg is introduced in NiFe materials to preparate a "pre-catalyst" Mg-Ni/Fe2O3. In-situ Raman shows that Mg doping would accelerate the self-reconstruction of Ni/Fe2O3 to form active NiOOH species during OER. In-situ infrared indicates that Mg doping benefits the formation of *OOH intermediate. Theoretical analysis further confirms that Mg doping can optimize the adsorption of oxygen intermediates, accelerating the OER kinetics. Accordingly, the Mg-Ni/Fe2O3 catalyst exhibits excellent OER performance with overpotential of 168 mV at 10 mA cm-2. The anion exchange membrane water electrolyzer achieved 200 mA cm-2 at voltage of 1.53 V, showing excellent stability over 500 h as well. This work demonstrates the potential of Mg-promoted strategy in regulating the activity of transition metal-based OER electrocatalysts.
Collapse
Affiliation(s)
- Boxuan Jin
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wenwen Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuaichong Wei
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kai Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongyu Wang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guihua Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Jingde Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
2
|
N Dhandapani H, Das C, Ghosh NN, Biswas G, Ramesh Babu B, Kundu S. Ceria-Graphene Oxide Nanocomposite for Electro-oxidation of Urea: An Experimental and Theoretical Investigation. Inorg Chem 2024; 63:16081-16094. [PMID: 39141009 DOI: 10.1021/acs.inorgchem.4c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This study explores the potential of ceria-graphene oxide (CeO2-GO) nanocomposites as efficient electrocatalysts for urea electro-oxidation (UOR). This work combines experimental and theoretical investigations and characterization techniques confirm the successful formation of the CeO2 embedded on graphene oxide sheets. UOR activity was found to be dependent on both OH- and urea concentrations. The optimal UOR performance was achieved in a 0.1 M urea and 1.0 M KOH solution, as evidenced by the low Tafel slope of 60 mV/dec and high turnover frequency (TOF) of 1.690 s-1. DFT calculations revealed that the CeO2-GO nanocomposite exhibited strong urea adsorption due to its favorable bond lengths (Ce-O: 2.58 Å, O-H: 1.77 Å) and high adsorption energy (-1.05 eV). These findings revealed that the CeO2-GO nanocomposites are promising as efficient and durable electrocatalysts for urea conversion to valuable products like nitrogen and hydrogen gas, with potential applications in clean energy generation and ammonia synthesis.
Collapse
Affiliation(s)
- Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | | | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - B Ramesh Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
3
|
Liu G, Xie C, Zhang Y, Du Y, Wang J, Lin J, Bai J, Li J, Zhou C, Zhou T, Zhou B. Synergistic etching of nickel foam by Fe 3+ and Cl - ions to synthesize nickel-iron-layered double hydroxide nanolayers with abundant oxygen vacancies for superior urea oxidation. J Colloid Interface Sci 2024; 668:375-384. [PMID: 38678892 DOI: 10.1016/j.jcis.2024.04.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Urea electrolysis is an appealing topic for hydrogen production due to its ability to extract hydrogen at a lower potential. However, it is plagued by sluggish kinetics and noble-metal catalyst requirements. Herein, we developed nickel-iron-layered double hydroxide (NiFe-LDH) nanolayers with abundant oxygen vacancies (OV) via synergistically etching nickel foam with Fe3+ and Cl- ions, enabling the efficient conversion of urea into H2 and N2. The synthesized OV-NiFe-LDH exhibits a lower potential (1.30 vs. reversible hydrogen electrode, RHE) for achieving 10 mA cm-2 in the urea oxidation reaction (UOR), surpassing most recently reported Ni-based electrodes. OV provides favorable conductivity and a large surface area, which results in a 4.1-fold in electron transport and a 5.1-fold increase in catalyst reactive sites. Density Functional Theory (DFT) calculations indicate that OV can lower the adsorption energy of urea, and enhance the bonding strength of *CONHNH, giving rise to improved UOR. This study provides a viable path toward economical and efficient production of high-purity hydrogen.
Collapse
Affiliation(s)
- Geying Liu
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.
| | - Ye Du
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Lin
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingsheng Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Yang Y, Yuwono JA, Whittaker T, Ibáñez MM, Wang B, Kim C, Borisevich AY, Chua S, Prada JP, Wang X, Autran PO, Unocic RR, Dai L, Holewinski A, Bedford NM. Double Hydroxide Nanocatalysts for Urea Electrooxidation Engineered toward Environmentally Benign Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403187. [PMID: 39003619 DOI: 10.1002/adma.202403187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Recent advancements in the electrochemical urea oxidation reaction (UOR) present promising avenues for wastewater remediation and energy recovery. Despite progress toward optimized efficiency, hurdles persist in steering oxidation products away from environmentally unfriendly products, mostly due to a lack of understanding of structure-selectivity relationships. In this study, the UOR performance of Ni and Cu double hydroxides, which show marked differences in their reactivity and selectivity is evaluated. CuCo hydroxides predominantly produce N2, reaching a current density of 20 mA cmgeo -2 at 1.04 V - 250 mV less than NiCo hydroxides that generate nitrogen oxides. A collection of in-situ spectroscopies and scattering experiments reveal a unique in situ generated Cu(2-x)+-OO-• active sites in CuCo, which initiates nucleophilic substitution of NH2 from the amide, leading to N-N coupling between *NH on Co and Cu. In contrast, the formation of nitrogen oxides on NiCo is primarily attributed to the presence of high-valence Ni3+ and Ni4+, which facilitates N-H activation. This process, in conjunction with the excessive accumulation of OH- ions on Jahn-Teller (JT) distorted Co sites, leads to the generation of NO2 - as the primary product. This work underscores the importance of catalyst composition and structural engineering in tailoring innocuous UOR products.
Collapse
Affiliation(s)
- Yuwei Yang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence in Carbon Science and Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jodie A Yuwono
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Todd Whittaker
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Marc Manyé Ibáñez
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Bingliang Wang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Changmin Kim
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Albina Y Borisevich
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephanie Chua
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jhair Pena Prada
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xichu Wang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liming Dai
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence in Carbon Science and Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Carbon Materials Centre (A-CMC), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence in Carbon Science and Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
5
|
Yu J, Li Z, Wang C, Xu X, Liu T, Chen D, Shao Z, Ni M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J Colloid Interface Sci 2024; 661:629-661. [PMID: 38310771 DOI: 10.1016/j.jcis.2024.01.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
When the anodic oxygen evolution reaction (OER) of water splitting is replaced by the urea oxidation reaction (UOR), the electrolyzer can fulfill hydrogen generation in an energy-economic manner for urea electrolysis as well as sewage purification. However, owing to the sluggish kinetics from a six-electron process for UOR, it is in great demand to design and fabricate high-performance and affordable electrocatalysts. Over the past years, numerous non-precious materials (especially nickel-involved samples) have offered huge potential as catalysts for urea electrolysis under alkaline conditions, even in comparison with frequently used noble-metal ones. In this review, recent efforts and progress in these high-efficiency noble-metal-free electrocatalysts are comprehensively summarized. The fundamentals and principles of UOR are first described, followed by highlighting UOR mechanism progress, and then some discussion about density functional theory (DFT) calculations and operando investigations is given to disclose the real reaction mechanism. Afterward, aiming to improve or optimize UOR electrocatalytic properties, various noble-metal-free catalytic materials are introduced in detail and classified into different classes, highlighting the underlying activity-structure relationships. Furthermore, new design trends are also discussed, including targetedly designing nanostructured materials, manipulating anodic products, combining theory and in situ experiments, and constructing bifunctional catalysts. Ultimately, we point out the outlook and explore the possible future opportunities by analyzing the remaining challenges in this booming field.
Collapse
Affiliation(s)
- Jie Yu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Chen Wang
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Daifen Chen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China.
| |
Collapse
|
6
|
Andaveh R, Sabour Rouhaghdam A, Seif A, Wang K, Maleki M, Ai J, Barati Darband G, Li J. In Situ Assembly of a Superaerophobic CoMn/CuNiP Heterostructure as a Trifunctional Electrocatalyst for Ampere-Level Current Density Urea-Assisted Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8717-8732. [PMID: 38326933 DOI: 10.1021/acsami.3c16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Urea electrolysis is a promising energy-efficient hydrogen production process with environmental benefits, but the lack of efficient and sustainable ampere-level current density electrocatalysts fabricated through simple methods is a major challenge for commercialization. Herein, we present an efficient and stable heterostructure electrocatalyst for full urea and water electrolysis in a convenient and time-efficient preparation manner. Overall, superhydrophilic/superaerophobic CoMn/CuNiP/NF exhibits exceptional performance for the hydrogen evolution reaction (HER) (-33.8, -184.4, and -234.8 mV at -10, -500, and -1000 mA cm-2, respectively), urea electro-oxidation reaction (UOR) [1.28, 1.43, and 1.51 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively], and oxygen evolution reaction (OER) [1.45, 1.67, and 1.74 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively]. Moreover, the superaerophobic CoMn/CuNiP/NF demonstrates promising potential in full urea (1.33, 1.57, and 1.60 V at 10, 500, and 1000 mA cm-2, respectively) and water (1.46 V, 1.78, and 1.86 at 10, 500, and 1000 mA cm-2, respectively) electrolysis. Based on X-ray photoelectron spectroscopy results, it was determined that the surface of the CoMn/CuNiP electrode was rich in redox pairs such as Ni2+/Ni3+, Cu+/Cu2+, Co2+/Co3+, and Mn2+/Mn3+, which are crucial for the formation of active sites for the OER and UOR, such as NiOOH, MnOOH, and CoOOH, thereby enhancing the catalytic activity. Besides, the in situ assembled CoMn/CuNiP/NF displayed highly stable performance for HER, OER, and UOR with high Faradaic efficiency for over 500 h. This research offers a simple and efficient method for manufacturing a high-efficiency and stable trifunctional electrocatalyst capable of delivering ampere-level current density in urea-assisted hydrogen production. Our density functional theory calculations reveal the potential of CoMn/CuNiP as an effective catalyst, enhancing the electronic properties and catalytic performance. The near-zero Gibbs free-energy change for HER underscores its promise, while reduced CO2 desorption energies and charge redistribution support efficient UOR. These findings signify CoMn/CuNiP's potential for electrochemical applications.
Collapse
Affiliation(s)
- Reza Andaveh
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran 14115111, P.O. Box: 14115-143, Iran
| | - Alireza Sabour Rouhaghdam
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran 14115111, P.O. Box: 14115-143, Iran
| | - Abdolvahab Seif
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, Padova I-35131, Italy
| | - Kun Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Meysam Maleki
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran 14115111, P.O. Box: 14115-143, Iran
| | - Jianping Ai
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Ghasem Barati Darband
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran
| | - Jinyang Li
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Yibin Institute of Southwest Jiaotong University, Yibin 644000, China
| |
Collapse
|
7
|
Bezboruah J, Mayurdhwaj Sanke D, Vinayakrao Munde A, Trilochand Bhattad P, Shekhar Karmakar H, Zade SS. A TiO 2 nanorod and perylene diimide based inorganic/organic nanoheterostructure photoanode for photoelectrochemical urea oxidation. NANOSCALE ADVANCES 2023; 5:6670-6677. [PMID: 38024322 PMCID: PMC10662079 DOI: 10.1039/d3na00294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Visible light-driven photoelectrochemical (PEC) urea oxidation using inorganic/organic nano-heterostructure (NH) photoanodes is an attractive method for hydrogen (H2) production. In this article, inorganic/organic NHs (TiO2/PDIEH) consisting of a N,N-bis(2-ethylhexyl)perylene-3,4,9,10-tetracarboxylic diimide (PDIEH) thin layer over TiO2 nanorods (NRs) were fabricated for the PEC urea oxidation reaction (UOR). In these NHs, a PDIEH layer was anchored on TiO2 NR arrays using the spin-coating technique, which is beneficial for the uniform deposition of PDIEH on TiO2 NRs. Uniform deposition facilitated adequate interface contact between PDIEH and TiO2 NRs. TiO2/PDIEH NHs achieved a high current density of 1.1 mA cm-2 at 1.96 VRHE compared to TiO2 NRs. TiO2/PDIEH offers long-term stability under light illumination with 90.21% faradaic efficiency. TiO2/PDIEH exhibits a solar-to-hydrogen efficiency of 0.52%. This outcome opens up new opportunities for inorganic/organic NHs for high-performance PEC urea oxidation.
Collapse
Affiliation(s)
- Jasmine Bezboruah
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia 741246 West Bengal India
| | - Devendra Mayurdhwaj Sanke
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia 741246 West Bengal India
| | - Ajay Vinayakrao Munde
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia 741246 West Bengal India
| | - Palak Trilochand Bhattad
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia 741246 West Bengal India
| | - Himadri Shekhar Karmakar
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia 741246 West Bengal India
| | - Sanjio S Zade
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur Nadia 741246 West Bengal India
| |
Collapse
|
8
|
Hu Y, Chao T, Li Y, Liu P, Zhao T, Yu G, Chen C, Liang X, Jin H, Niu S, Chen W, Wang D, Li Y. Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H 2 Production. Angew Chem Int Ed Engl 2023; 62:e202308800. [PMID: 37428114 DOI: 10.1002/anie.202308800] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Water electrolysis for H2 production is restricted by the sluggish oxygen evolution reaction (OER). Using the thermodynamically more favorable hydrazine oxidation reaction (HzOR) to replace OER has attracted ever-growing attention. Herein, we report a twisted NiCoP nanowire array immobilized with Ru single atoms (Ru1 -NiCoP) as superior bifunctional electrocatalyst toward both HzOR and hydrogen evolution reaction (HER), realizing an ultralow working potential of -60 mV and overpotential of 32 mV for a current density of 10 mA cm-2 , respectively. Inspiringly, two-electrode electrolyzer based on overall hydrazine splitting (OHzS) demonstrates outstanding activity with a record-high current density of 522 mA cm-2 at cell voltage of 0.3 V. DFT calculations elucidate the cooperative Ni(Co)-Ru-P sites in Ru1 -NiCoP optimize H* adsorption, and enhance adsorption of *N2 H2 to significantly lower the energy barrier for hydrazine dehydrogenation. Moreover, a self-powered H2 production system utilizing OHzS device driven by direct hydrazine fuel cell (DHzFC) achieve a satisfactory rate of 24.0 mol h-1 m-2 .
Collapse
Affiliation(s)
- Yanmin Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tingting Chao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yapeng Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tonghui Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ge Yu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Cai Chen
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shuwen Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Liu H, Yu J, Chen Y, Lee J, Huang W, Li W. Cu-Based Bimetallic Catalysts for Electrocatalytic Oxidative Dehydrogenation of Furfural with Practical Rates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37477-37485. [PMID: 37495558 DOI: 10.1021/acsami.3c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Electrocatalytic oxidative dehydrogenation (EOD) of aldehydes enables ultra-low voltage, bipolar H2 production with co-generation of carboxylic acid. Herein, we reported a simple galvanic replacement method to prepare CuM (M = Pt, Pd, Au, and Ag) bimetallic catalysts to improve the EOD of furfural to reach industrially relevant current densities. The redox potential difference between Cu/Cu2+ and a noble metal M/My+ can incorporate the noble metal on the Cu surface and enlarge its surface area. Particularly, dispersing Pt in Cu (CuPt) achieved a record-high current density of 498 mA cm-2 for bipolar H2 production at a low cell voltage of 0.6 V and a Faradaic efficiency of >80% to H2. Future research is needed to deeply understand the synergistic effects of Cu-M toward EOD of furfural, and improve the Cu-M catalyst stability, thus offering great opportunities for future distributed manufacturing of green hydrogen and carbon chemicals with practical rates and low-carbon footprints.
Collapse
Affiliation(s)
- Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Jiaqi Yu
- Department of Chemistry, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Yifu Chen
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Jungkuk Lee
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Jiang LH, Cheng XF, Zhang HY, Cao Q, Song K, He JH. Self-supported spinel nanosphere as bifunctional electrocatalysts for energy-saving hydrogen production via urea-water electrolysis. J Colloid Interface Sci 2023; 643:403-408. [PMID: 37084620 DOI: 10.1016/j.jcis.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Electrochemical oxidation of urea is of great importance in the removal and energy exchange and storage of urea from wastewater as well as of potential applications in potable dialysis of end-stage renal disease. However, the lack of economical electrocatalysts hinders its widespread application. In this study, we successfully fabricated ZnCo2O4 nanospheres with bifunctional catalysis on nickel foam (NF). The catalytic system has high catalytic activity and durability for urea overall electrolysis. The urea oxidation and hydrogen evolution reactions required only 1.32 V and -80.91 mV to obtain ± 10 mA cm-2. Only 1.39 V was needed to obtain 10 mA cm-2 for 40 h without noticeably declining activity. The excellent performance could be attributed to the fact that the material can provide multiple redox couplings and a three-dimensional porous structure to facilitate the release of gases from the surface.
Collapse
Affiliation(s)
- Li-Hua Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xue-Feng Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hao-Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kai Song
- Department of Nephrology, Second Affiliated Hospital of Soochow University, Suzhou, PR China.
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
11
|
Xie H, Feng Y, He X, Zhu Y, Li Z, Liu H, Zeng S, Qian Q, Zhang G. Construction of Nitrogen-Doped Biphasic Transition-Metal Sulfide Nanosheet Electrode for Energy-Efficient Hydrogen Production via Urea Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207425. [PMID: 36703521 DOI: 10.1002/smll.202207425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Urea-assisted hybrid water splitting is a promising technology for hydrogen (H2 ) production, but the lack of cost-effective electrocatalysts hinders its extensive application. Herein, it is reported that Nitrogen-doped Co9 S8 /Ni3 S2 hybrid nanosheet arrays on nickel foam (N-Co9 S8 /Ni3 S2 /NF) can act as an active and robust bifunctional catalyst for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), which could drive an ultrahigh current density of 400 mA cm-2 at a low working potential of 1.47 V versus RHE for UOR, and gives a low overpotential of 111 mV to reach 10 mA cm-2 toward HER. Further, a hybrid water electrolysis cell utilizing the synthesized N-Co9 S8 /Ni3 S2 /NF electrode as both the cathode and anode displays a low cell voltage of 1.40 V to reach 10 mA cm-2 , which can be powered by an AA battery with a nominal voltage of 1.5 V. The density functional theory (DFT) calculations decipher that N-doped heterointerfaces can synergistically optimize Gibbs free energy of hydrogen and urea, thus accelerating the catalytic kinetics of HER and UOR. This work significantly advances the development of the promising cobalt-nickel-based sulfide as a bifunctional electrocatalyst for energy-saving electrolytic H2 production and urea-rich innocent wastewater treatment.
Collapse
Affiliation(s)
- Hui Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoyue He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ziyun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huanhuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Suyuan Zeng
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Qizhu Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Genqiang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
12
|
Li P, Li W, Huang Y, Huang Q, Li J, Zhao S, Tian S. Unconventional Phase Synergies with Doping Engineering Over Ni Electrocatalyst Featuring Regulated Electronic State for Accelerated Urea Oxidation. CHEMSUSCHEM 2023; 16:e202201921. [PMID: 36564998 DOI: 10.1002/cssc.202201921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Exploring high-performing Ni-based electrocatalysts for the urea oxidation reaction (UOR) is crucial for developing urea-related energy technologies yet remains a daunting challenge. In this study, a synergistic anomalous hcp phase and heteroatom doping engineering over metallic Ni are found to enhance the UOR. A metal-organic framework-mediated approach is proposed to construct Ni nanoparticles (NPs) with designated crystal phase embedded in N-doped carbon (fcc-Ni/NC and hcp-Ni/NC). Significant crystal phase-dependent catalytic activity for the UOR is observed; hcp-Ni/NC, featuring unusual hcp phase, outperforms fcc-Ni/NC with conventional fcc phase. Moreover, incorporating foreign Mn species in hcp-Ni/NC can further dramatically promote UOR, making it among the best UOR catalysts reported to date. From experimental results and DFT calculations, the specific nanoarchitecture, involving an anomalous hcp phase together with Mn doping engineering, endows hcp-MnNi/NC with abundant exposed active sites, facile charge transfer, and more significantly, optimized electronic state, giving rise to enriched Ni3+ active species and oxygen vacancies on the catalyst surface during electrocatalysis. These features collectively contribute to the enhanced UOR activity. This work highlights a potent design strategy to develop advanced catalysts with regulated electronic state through synergistic crystal phase and doping engineering.
Collapse
Affiliation(s)
- Ping Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Wenqin Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Yuqi Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Quhua Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Jixin Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Shien Zhao
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Shuanghong Tian
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| |
Collapse
|
13
|
Zhao T, Zhong D, Tian L, Hao G, Liu G, Li J, Zhao Q. Constructing abundant phase interfaces of the sulfides/metal-organic frameworks p-p heterojunction array for efficient overall water splitting and urea electrolysis. J Colloid Interface Sci 2023; 634:630-641. [PMID: 36549211 DOI: 10.1016/j.jcis.2022.11.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Designing efficient electrocatalysts to improve the overall water splitting and urea electrolysis efficiency for hydrogen generation can greatly solve the dilemma of energy shortage and environmental pollution. In this work, Co8FeS8@CoFe-MOF/NF heterojunction arrays were fabricated by embedding sulfides into the surface of metal-organic frameworks (MOFs) nanosheets as multifunctional electrocatalyst. The introduction of sulfide on CoFe-MOF/NF can not only adjust the electronic structure (electron-rich state) and change the surface properties (more hydrophilic), but also increase the active area to enhance the catalytic activity. The in situ Raman shows Co8FeS8@CoFe-MOF/NF is more easily to generate active species at low potentials and generates a higher content of active β-MOOH phase than CoFe-MOF/NF. Therefore, the Co8FeS8@CoFe-MOF/NF exhibits excellent oxygen evolution reaction (OER) performance with an overpotential of 213 mV at 10 mA cm-2. Furthermore, when used as a urea oxidation reaction (UOR), only an ultralow potential of 1.311 V at 10 mA cm-2. More importantly, the assembled two-electrode drives overall water splitting and urea electrolysis with cell voltages of 1.62 V and 1.55 V at 10 mA cm-2, respectively. This work provides insights into the preparation of electrocatalysts with multifunctional heterostructure arrays for hydrogen production.
Collapse
Affiliation(s)
- Tao Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Dazhong Zhong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Lu Tian
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Genyan Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Guang Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Jinping Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Qiang Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
14
|
Wang T, Miao L, Zheng S, Qin H, Cao X, Yang L, Jiao L. Interfacial Engineering of Ni 3N/Mo 2N Heterojunctions for Urea-Assisted Hydrogen Evolution Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyu Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
15
|
Pan L, Wang J, Lu F, Liu Q, Gao Y, Wang Y, Jiang J, Sun C, Wang J, Wang X. Single-Atom or Dual-Atom in TiO 2 Nanosheet: Which is the Better Choice for Electrocatalytic Urea Synthesis? Angew Chem Int Ed Engl 2023; 62:e202216835. [PMID: 36448542 DOI: 10.1002/anie.202216835] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
As rising star materials, single-atom and dual-atom catalysts have been widely reported in the electro-catalysis area. To answer the key question: single-atom and dual-atom catalysts, which is better for electrocatalytic urea synthesis? we design two types of catalysts via a vacancy-anchorage strategy: single-atom Pd1 -TiO2 and dual-atom Pd1 Cu1 -TiO2 nanosheets. An ultrahigh urea activity of 166.67 molurea molPd -1 h1 with the corresponding 22.54 % Faradaic efficiency at -0.5 V vs. reversible hydrogen electrode (RHE) is achieved over Pd1 Cu1 -TiO2 , which is much higher than that of Pd1 -TiO2 . Various characterization including an in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and theoretical calculations demonstrate that dual-atom Pd1 Cu1 site in Pd1 Cu1 -TiO2 is more favorable for producing urea, which experiences a C-N coupling pathway with a lower energy barrier compared with Pd1 in Pd1 -TiO2 .
Collapse
Affiliation(s)
- Lu Pan
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jingnan Wang
- School of Chemical Engineering and Technology, Tianjin University, Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Qiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Yuhang Gao
- Key Laboratory of Photochemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jingzhe Jiang
- School of Chemical Engineering and Technology, Tianjin University, Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Chao Sun
- School of Chemical Engineering and Technology, Tianjin University, Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jian Wang
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Xi Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| |
Collapse
|
16
|
Enhancing the surface polarization effect via Ni/NiMoOx heterojunction architecture for urea-assisted hydrogen generation. J Colloid Interface Sci 2023; 629:1012-1020. [DOI: 10.1016/j.jcis.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
|
17
|
Jin L, Ji R, Wan H, He J, Gu P, Lin H, Xu Q, Lu J. Boosting the Electrocatalytic Urea Oxidation Performance by Amorphous–Crystalline Ni-TPA@NiSe Heterostructures and Mechanism Discovery. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rui Ji
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hongzhen Lin
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, Jiangsu, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
18
|
Wang T, Cao X, Jiao L. Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules. Angew Chem Int Ed Engl 2022; 61:e202213328. [PMID: 36200263 DOI: 10.1002/anie.202213328] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/05/2022]
Abstract
The electrochemical oxidation of small molecules to generate value-added products has gained enormous interest in recent years because of the advantages of benign operation conditions, high conversion efficiency and selectivity, the absence of external oxidizing agents, and eco-friendliness. Coupling the electrochemical oxidation of small molecules to replace oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode in an electrolyzer would simultaneously realize the generation of high-value chemicals or pollutant degradation and the highly efficient production of hydrogen. This Minireview presents an introduction on small-molecule choice and design strategies of electrocatalysts as well as recent breakthroughs achieved in the highly efficient production of hydrogen. Finally, challenges and future orientations are highlighted.
Collapse
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
19
|
Yan D, Mebrahtu C, Wang S, Palkovits R. Innovative Electrochemical Strategies for Hydrogen Production: From Electricity Input to Electricity Output. Angew Chem Int Ed Engl 2022; 62:e202214333. [PMID: 36437229 DOI: 10.1002/anie.202214333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Renewable H2 production by water electrolysis has attracted much attention due to its numerous advantages. However, the energy consumption of conventional water electrolysis is high and mainly driven by the kinetically inert anodic oxygen evolution reaction. An alternative approach is the coupling of different half-cell reactions and the use of redox mediators. In this review, we, therefore, summarize the latest findings on innovative electrochemical strategies for H2 production. First, we address redox mediators utilized in water splitting, including soluble and insoluble species, and the corresponding cell concepts. Second, we discuss alternative anodic reactions involving organic and inorganic chemical transformations. Then, electrochemical H2 production at both the cathode and anode, or even H2 production together with electricity generation, is presented. Finally, the remaining challenges and prospects for the future development of this research field are highlighted.
Collapse
Affiliation(s)
- Dafeng Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, 430062, Wuhan, China.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Chalachew Mebrahtu
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Lushan Nan Road, 410082, Changsha, China
| | - Regina Palkovits
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Research, Stiftstr. 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Sun W, Zhang M, Li J, Peng C. Solar-Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery. CHEMSUSCHEM 2022; 15:e202201263. [PMID: 35972075 DOI: 10.1002/cssc.202201263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The water-energy nexus is highly related to sustainable societal development. As one of the most abundant biowastes discharged into the environment, mild abatements and green conversions of urea wastewater have been widely investigated. Due to abundant sources, global distribution, and easy control, light-based catalytic strategies have become alternative on-site treatment approaches. After comprehensively surveying the recent progress, recent achievements of urea oxidation under light irradiation are reviewed herein. Several typical light-promoted systems employed in urea conversion, including photocatalysis, photo-electrocatalysis, photo-biocatalysis, and photocatalytic fuel cells, are meticulously introduced and discussed, from catalyst designs and medium conditions to established mechanisms. To realize the goal of sustainability, the chemical energy in urea-rich water could be utilized for the value-added production of hydrogen fuel and electricity. Finally, based on current developments, existing challenges are enumerated and developmental prospects in the future of light-driven urea conversion technologies are proposed.
Collapse
Affiliation(s)
- Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Jianan Li
- National Engineering Research Centre of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chong Peng
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Tatarchuk SW, Medvedev JJ, Li F, Tobolovskaya Y, Klinkova A. Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202209839. [DOI: 10.1002/anie.202209839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Stephen W. Tatarchuk
- Department of Chemistry and the Waterloo Institute for Nanotechnology University of Waterloo Ontario N2L 3G1 Canada
| | - Jury J. Medvedev
- Department of Chemistry and the Waterloo Institute for Nanotechnology University of Waterloo Ontario N2L 3G1 Canada
| | - Feng Li
- Department of Chemistry and the Waterloo Institute for Nanotechnology University of Waterloo Ontario N2L 3G1 Canada
| | - Yulia Tobolovskaya
- Department of Chemistry and the Waterloo Institute for Nanotechnology University of Waterloo Ontario N2L 3G1 Canada
| | - Anna Klinkova
- Department of Chemistry and the Waterloo Institute for Nanotechnology University of Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
22
|
Sun S, Dong L, Li J, Shi J, Liu J, Wang Y, Huang Q, Lan Y. Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO
2
Reduction. Angew Chem Int Ed Engl 2022; 61:e202207282. [DOI: 10.1002/anie.202207282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng‐Nan Sun
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Long‐Zhang Dong
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jia‐Ru Li
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jing‐Wen Shi
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jiang Liu
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Yi‐Rong Wang
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Qing Huang
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Ya‐Qian Lan
- School of Chemistry South China Normal University Guangzhou 510006 China
| |
Collapse
|
23
|
Ren Y, Wang C, Duan W, Zhou L, Pang X, Wang D, Zhen Y, Yang C, Gao Z. MoS 2/Ni 3S 2 Schottky heterojunction regulating local charge distribution for efficient urea oxidation and hydrogen evolution. J Colloid Interface Sci 2022; 628:446-455. [PMID: 35998467 DOI: 10.1016/j.jcis.2022.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 10/16/2022]
Abstract
Electrocatalytic urea oxidation reaction (UOR) is a prospective method to substitute the slow oxygen evolution reaction (OER) and solve the problem of urea-rich water pollution due to the low thermodynamic voltage, but its complex six-electron oxidation process greatly impedes the overall efficiency of electrolysis. Here, density functional theory (DFT) calculations imply that the metallic Ni3S2 and semiconductive MoS2 could form Mott-Schottky catalyst because of the suitable band structure. Therefore, we synthesized MoS2/Ni3S2 electrocatalyst by a simple hydrothermal method, and studied its UOR and hydrogen evolution reaction (HER) performance. The formed MoS2/Ni3S2 Schottky heterojunction is only required 109 and 166 mV to obtain ±10 mA cm-2 for UOR and HER, respectively, showing great bifunctional catalytic activity. Moreover, the full urea electrolysis driven by MoS2/Ni3S2 delivers 10 and 100 mA cm-2 at a relatively low potential of 1.44 and 1.59 V. Comprehensive experiments and DFT calculations demonstrate that the MoS2/Ni3S2 Schottky heterojunction causes self-driven charge transfer at the interface and forms built-in electric field, which is not only benefit to reduce H* adsorption energy, but also helps to adjust the absorption and directional distribution of urea molecules, thereby promoting the activity of decomposition of water and urea. This research furnishes a tactic to devise more efficient catalysts for H2 generation and the treatment of urea-rich water pollution.
Collapse
Affiliation(s)
- Yufei Ren
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Chuantao Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Wen Duan
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Lihai Zhou
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Xiangxiang Pang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Danjun Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Yanzhong Zhen
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Chunming Yang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China.
| | - Ziwei Gao
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No.620, West Chang'an Avenue, Xi'an 710119, PR China; School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, PR China.
| |
Collapse
|
24
|
Tatarchuk SW, Medvedev JJ, Li F, Tobolovskaya Y, Klinkova A. Nickel‐Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Feng Li
- University of Waterloo Chemistry CANADA
| | | | - Anna Klinkova
- University of Waterloo Chemistry 200 University Ave W N2L 3G1 Waterloo CANADA
| |
Collapse
|
25
|
In Operando Identification of In Situ Formed Metalloid Zinc
δ+
Active Sites for Highly Efficient Electrocatalyzed Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2022; 61:e202202298. [DOI: 10.1002/anie.202202298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 01/16/2023]
|
26
|
Xu X, Deng Q, Chen HC, Humayun M, Duan D, Zhang X, Sun H, Ao X, Xue X, Nikiforov A, Huo K, Wang C, Xiong Y. Metal-Organic Frameworks Offering Tunable Binary Active Sites toward Highly Efficient Urea Oxidation Electrolysis. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9837109. [PMID: 35935128 PMCID: PMC9275073 DOI: 10.34133/2022/9837109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Electrocatalytic urea oxidation reaction (UOR) is regarded as an effective yet challenging approach for the degradation of urea in wastewater into harmless N2 and CO2. To overcome the sluggish kinetics, catalytically active sites should be rationally designed to maneuver the multiple key steps of intermediate adsorption and desorption. Herein, we demonstrate that metal-organic frameworks (MOFs) can provide an ideal platform for tailoring binary active sites to facilitate the rate-determining steps, achieving remarkable electrocatalytic activity toward UOR. Specifically, the MOF (namely, NiMn0.14-BDC) based on Ni/Mn sites and terephthalic acid (BDC) ligands exhibits a low voltage of 1.317 V to deliver a current density of 10 mA cm-2. As a result, a high turnover frequency (TOF) of 0.15 s-1 is achieved at a voltage of 1.4 V, which enables a urea degradation rate of 81.87% in 0.33 M urea solution. The combination of experimental characterization with theoretical calculation reveals that the Ni and Mn sites play synergistic roles in maneuvering the evolution of urea molecules and key reaction intermediates during the UOR, while the binary Ni/Mn sites in MOF offer the tunability for electronic structure and d-band center impacting on the intermediate evolution. This work provides important insights into active site design by leveraging MOF platform and represents a solid step toward highly efficient UOR with MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Xuefei Xu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Deng
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan, 33302 Taiwan, China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Delong Duan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xia Zhang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huachuan Sun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Ao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinying Xue
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Gent 9000, Belgium
| | - Kaifu Huo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| |
Collapse
|
27
|
Sun SN, Dong LZ, Li JR, Shi JW, Liu J, Wang YR, Huang Q, Lan YQ. Redox‐Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Full Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng-Nan Sun
- South China Normal University school of chemistry CHINA
| | | | - Jia-Ru Li
- South China Normal University school of chemistry CHINA
| | - Jing-Wen Shi
- Nanjing Normal University school of chemistry CHINA
| | - Jiang Liu
- South China Normal University school of chemistry CHINA
| | - Yi-Rong Wang
- South China Normal University school of chemistry CHINA
| | - Qing Huang
- South China Normal University school of chemistry CHINA
| | - Ya-Qian Lan
- South China Normal University school of chemistry Nanjing wenyuan road No. 1 51006 Guangzhou CHINA
| |
Collapse
|
28
|
Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. NANOMATERIALS 2022; 12:nano12111916. [PMID: 35683771 PMCID: PMC9182062 DOI: 10.3390/nano12111916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022]
Abstract
Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal–organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm−2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm−2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm−2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm−2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.
Collapse
|
29
|
Zhang XY, Li WJ, Chen J, Wu XF, Liu YW, Mao F, Yuan HY, Zhu M, Dai S, Wang HF, Hu P, Sun C, Liu PF, Yang H. Operando Metalloid Znδ+ Active Sites for Highly Efficient Carbon Dioxide Reduction Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Yu Zhang
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Wen Jing Li
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Jiacheng Chen
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Xue Feng Wu
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Yuan Wei Liu
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Fangxin Mao
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Hai Yang Yuan
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Minghui Zhu
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Sheng Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Hai Feng Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - P. Hu
- Queen's University Belfast School of Chemistry and Chemical Engineering UNITED KINGDOM
| | - Chenghua Sun
- Swinburne University of Technology Department of Chemistry and Biotechnology AUSTRALIA
| | - Peng Fei Liu
- East China University of Science and Technology School of Materials Science and Engineering 130 Meilong Road, Xuhui District, Shanghai 200237 Shanghai CHINA
| | - Huagui Yang
- East China University of Science and Technology School of Materials Science and Engineering Road Meilong 130 200237 Shanghai CHINA
| |
Collapse
|
30
|
Wang X, Li J, Duan Y, Li J, Wang H, Yang X, Gong M. Electrochemical Urea Oxidation in Different Environment: From Mechanism to Devices. ChemCatChem 2022. [DOI: 10.1002/cctc.202101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xue Wang
- East China University of Science and Technology School of Mechanical and Power Engineering CHINA
| | - Jianping Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Yanghua Duan
- University of California Berkeley Civil and Environmental Engineering UNITED STATES
| | - Jianan Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Hualin Wang
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Xuejing Yang
- East China University of Science and Technology National Engineering Laboratory for Industrial Wastewater Treatment 130 Meilong Road 200237 Shanghai CHINA
| | - Ming Gong
- Fudan University Department of Chemistry CHINA
| |
Collapse
|
31
|
Sun H, Liu J, Chen G, Kim H, Kim S, Hu Z, Chen JM, Haw SC, Ciucci F, Jung W. Hierarchical Structure of CuO Nanowires Decorated with Ni(OH) 2 Supported on Cu Foam for Hydrogen Production via Urea Electrocatalysis. SMALL METHODS 2022; 6:e2101017. [PMID: 35041274 DOI: 10.1002/smtd.202101017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Owing to the low theoretical potential of the urea oxidation reaction (UOR), urea electrolysis is an energy-saving technique for the generation of hydrogen. Herein, a hierarchical structure of CuO nanowires decorated with nickel hydroxide supported on 3D Cu foam is constructed. Combined theoretical and experimental analyses demonstrate the high reactivity and selectivity of CuO and Ni(OH)2 toward the UOR instead of the oxygen evolution reaction. The hierarchical structure creates a synergistic effect between the two highly active sites, enabling an exceptional UOR activity with a record low potential of 1.334 V (vs the reversible hydrogen electrode) to reach 100 mA cm-2 and a low Tafel slope of 14 mV dec-1 in 1 m KOH and 0.5 m urea electrolyte. Assembling full urea electrolysis driven by this developed UOR electrocatalyst as the anode and a commercial Pt/C electrocatalyst as the cathode provides a current density of 20 mA cm-2 at a cell voltage of ≈1.36 V with promising operational stability for at least 150 h. This work not only enriches the UOR material family but also significantly advances energy-saving hydrogen production.
Collapse
Affiliation(s)
- Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jiapeng Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Gao Chen
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hyunseung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sangwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Jin-Ming Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, P. R. China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
32
|
Bian J, Wei C, Wen Y, Zhang B. Regulation of electrocatalytic activity by local microstructure: focusing on catalytic active zone. Chemistry 2021; 28:e202103141. [PMID: 34734654 DOI: 10.1002/chem.202103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/08/2022]
Abstract
Traditional regulation methods of active sites have been successfully optimized the performance of electrocatalysts, but seem unable to achieve further breakthrough in the catalytic activity. Unlike the conventional viewpoint of focusing on single active site, the concept of local microstructure active zone is more comprehensive and new suits of methods to regulate reaction zone for electrocatalytic reactions are developed accordingly. The local microstructure active zone refers to the zone with high catalytic activity formed by the interaction between active atoms and neighboring coordination atoms as well as the surrounding environment. Instead of the traditional single active atom site, the active zone is more suitable for the actual electrochemical reaction process. According to this concept, the activity of the electrocatalysts can be coordinated by multiple active atoms. This strategy is beneficial to understand the relationship between material, structure and catalysis, which realizes the scientific design and synthesis of high performance electrocatalysts. This review provides the research progress of this strategy in electrocatalytic reactions, with the emphasis on their important applications in oxygen evolution reaction, urea oxidation reaction and carbon dioxide reduction.
Collapse
Affiliation(s)
- Juanjuan Bian
- Fudan University, Department of Macromolecular Science, CHINA
| | - Chenyang Wei
- Fudan University, Department of Macromolecular Science, CHINA
| | - Yunzhou Wen
- Fudan University, Department of Macromolecular Science, CHINA
| | | |
Collapse
|
33
|
Lu XF, Zhang SL, Sim WL, Gao S, Lou XW(D. Phosphorized CoNi
2
S
4
Yolk‐Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xue Feng Lu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Song Lin Zhang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Wei Lok Sim
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shuyan Gao
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
34
|
Lou XWD. Phosphorized CoNi2S4 Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angew Chem Int Ed Engl 2021; 60:22885-22891. [PMID: 34351663 DOI: 10.1002/anie.202108563] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Exploring earth-abundant electrocatalysts with excellent activity, robust stability, and multiple functions is crucial for electrolytic hydrogen generation. Herein, porous phosphorized CoNi 2 S 4 yolk-shell spheres (P-CoNi 2 S 4 YSSs) are rationally designed and synthesized by a combined hydrothermal sulfidation and gas-phase phosphorization strategy. Benefiting from the strengthened Ni 3+ /Ni 2+ couple, enhanced electric conductivity, and hollow structure, the P-CoNi 2 S 4 YSSs exhibit excellent activity and durability towards hydrogen/oxygen evolution and urea oxidation reactions in alkaline solution, affording low potentials of -0.135 V, 1.512 V, and 1.306 V (versus reversible hydrogen electrode) at 10 mA cm -2 , respectively. Remarkably, when used as the anode and cathode simultaneously, the P-CoNi 2 S 4 catalyst merely requires a cell voltage of 1.544 V in water splitting and 1.402 V in urea electrolysis to attain 10 mA cm -2 with excellent durability for 100 h, outperforming most of the reported nickel-based sulfides and even noble-metal-based electrocatalysts. This work therefore not only promotes the application of sulfides in electrochemical hydrogen production but also provides a feasible approach for urea-rich wastewater treatment.
Collapse
Affiliation(s)
- Xiong-Wen David Lou
- Nanyang Technological University, School of Chemical and Biomedical Eng, 62 Nanyang Drive, #N1.2-B1-09, 637459, Singapore, SINGAPORE
| |
Collapse
|
35
|
Tian B, Shin H, Liu S, Fei M, Mu Z, Liu C, Pan Y, Sun Y, Goddard WA, Ding M. Double-Exchange-Induced in situ Conductivity in Nickel-Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2021; 60:16448-16456. [PMID: 33973312 DOI: 10.1002/anie.202101906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/25/2021] [Indexed: 11/09/2022]
Abstract
Motivated by in silico predictions that Co, Rh, and Ir dopants would lead to low overpotentials to improve OER activity of Ni-based hydroxides, we report here an experimental confirmation on the altered OER activities for a series of metals (Mo, W, Fe, Ru, Co, Rh, Ir) doped into γ-NiOOH. The in situ electrical conductivity for metal doped γ-NiOOH correlates well with the trend in enhanced OER activities. Density functional theory (DFT) calculations were used to rationalize the in situ conductivity of the key intermediate states of metal doped γ-NiOOH during OER. The simultaneous increase of OER activity with intermediate conductivity was later rationalized by their intrinsic connections to the double exchange (DE) interaction between adjacent metal ions with various d orbital occupancies, serving as an indicator for the key metal-oxo radical character, and an effective descriptor for the mechanistic evaluation and theoretical guidance in design and screening of efficient OER catalysts.
Collapse
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hyeyoung Shin
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, CA, 91125, USA.,Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Korea
| | - Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - William A Goddard
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
36
|
Tian B, Shin H, Liu S, Fei M, Mu Z, Liu C, Pan Y, Sun Y, Goddard WA, Ding M. Double‐Exchange‐Induced in situ Conductivity in Nickel‐Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hyeyoung Shin
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP) California Institute of Technology Pasadena CA 91125 USA
- Graduate School of Energy Science and Technology (GEST) Chungnam National University Daejeon 34134 Korea
| | - Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - William A. Goddard
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP) California Institute of Technology Pasadena CA 91125 USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
37
|
Li J, Li J, Gong M, Peng C, Wang H, Yang X. Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Top Catal 2021. [DOI: 10.1007/s11244-021-01453-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|