1
|
Chen D, Srivastava AK, Dubrochowska J, Liu L, Li T, Hoffmann JP, Kolls JK, Boons GJ. A Bioactive Synthetic Outer-Core Oligosaccharide Derived from a Klebsiella pneumonia Lipopolysaccharide for Bacteria Recognition. Chemistry 2023; 29:e202203408. [PMID: 36662447 PMCID: PMC10159924 DOI: 10.1002/chem.202203408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
There is an urgent need for new treatment options for carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae), which is a common cause of life-threatening hospital- and community-acquired infections. Prophylactic or therapeutic vaccination may offer an approach to control these infections, however, none has yet been approved for human use. Here, we report the chemical synthesis of an outer core tetra- and pentasaccharide derived from the lipopolysaccharide of K. pneumoniae. The oligosaccharides were equipped with an aminopentyl linker, which facilitated conjugation to the carrier proteins CRM197 and BSA. Mice immunized with the glycoconjugate vaccine candidates elicited antibodies that recognized isolated LPS as well as various strains of K. pneumoniae. The successful preparation of the oligosaccharides relied on the selection of monosaccharide building blocks equipped with orthogonal hydroxyl and amino protecting groups. It allowed the differentiation of three types of amines of the target compounds and the installation of a crowded 4,5-branched Kdo moiety.
Collapse
Affiliation(s)
- Dushen Chen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Akhilesh K Srivastava
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Justyna Dubrochowska
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Joseph P Hoffmann
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Braak FT, Elferink H, Houthuijs KJ, Oomens J, Martens J, Boltje TJ. Characterization of Elusive Reaction Intermediates Using Infrared Ion Spectroscopy: Application to the Experimental Characterization of Glycosyl Cations. Acc Chem Res 2022; 55:1669-1679. [PMID: 35616920 PMCID: PMC9219114 DOI: 10.1021/acs.accounts.2c00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A detailed
understanding of the reaction mechanism(s) leading to
stereoselective product formation is crucial to understanding and
predicting product formation and driving the development of new synthetic
methodology. One way to improve our understanding of reaction mechanisms
is to characterize the reaction intermediates involved in product
formation. Because these intermediates are reactive, they are often
unstable and therefore difficult to characterize using experimental
techniques. For example, glycosylation reactions are critical steps
in the chemical synthesis of oligosaccharides and need to be stereoselective
to provide the desired α- or β-diastereomer. It remains
challenging to predict and control the stereochemical outcome of glycosylation
reactions, and their reaction mechanisms remain a hotly debated topic.
In most cases, glycosylation reactions take place via reaction mechanisms
in the continuum between SN1- and SN2-like pathways.
SN2-like pathways proceeding via the displacement of a
contact ion pair are relatively well understood because the reaction
intermediates involved can be characterized by low-temperature NMR
spectroscopy. In contrast, the SN1-like pathways proceeding
via the solvent-separated ion pair, also known as the glycosyl cation,
are poorly understood. SN1-like pathways are more challenging
to investigate because the glycosyl cation intermediates involved
are highly reactive. The highly reactive nature of glycosyl cations
complicates their characterization because they have a short lifetime
and rapidly equilibrate with the corresponding contact ion pair. To
overcome this hurdle and enable the study of glycosyl cation stability
and structure, they can be generated in a mass spectrometer in the
absence of a solvent and counterion in the gas phase. The ease of
formation, stability, and fragmentation of glycosyl cations have been
studied using mass spectrometry (MS). However, MS alone provides little
information about the structure of glycosyl cations. By combining
mass spectrometry (MS) with infrared ion spectroscopy (IRIS), the
determination of the gas-phase structures of glycosyl cations has
been achieved. IRIS enables the recording of gas-phase infrared spectra
of glycosyl cations, which can be assigned by matching to reference
spectra predicted from quantum chemically calculated vibrational spectra.
Here, we review the experimental setups that enable IRIS of glycosyl
cations and discuss the various glycosyl cations that have been characterized
to date. The structure of glycosyl cations depends on the relative
configuration and structure of the monosaccharide substituents, which
can influence the structure through both steric and electronic effects.
The scope and relevance of gas-phase glycosyl cation structures in
relation to their corresponding condensed-phase structures are also
discussed. We expect that the workflow reviewed here to study glycosyl
cation structure and reactivity can be extended to many other reaction
types involving difficult-to-characterize ionic intermediates.
Collapse
Affiliation(s)
- Floor ter Braak
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hidde Elferink
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kas J. Houthuijs
- Radboud University, FELIX Laboratory, Institute of Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, FELIX Laboratory, Institute of Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud University, FELIX Laboratory, Institute of Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N-Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α-Selective 1,2-cis Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202201510. [PMID: 35266604 DOI: 10.1002/anie.202201510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/31/2022]
Abstract
The anomeric configuration can greatly affect the biological functions and activities of carbohydrates. Herein, we report that N-phenyltrifluoroacetimidoyl (PTFAI), a well-known leaving group for catalytic glycosylation, can act as a stereodirecting group for the challenging 1,2-cis α-glycosylation. Utilizing rapidly accessible 1,6-di-OPTFAI glycosyl donors, TMSOTf-catalyzed glycosylation occurred with excellent α-selectivity and broad substrate scope, and the remaining 6-OPTFAI group can be cleaved chemoselectively. The remote participation of 6-OPTFAI is supported by the first characterization of the crucial 1,6-bridged bicyclic oxazepinium ion intermediates by low-temperature NMR spectroscopy. These cations were found to be relatively stable and mainly responsible for the present stereoselectivities. Further application is highlighted in glycosylation reactions toward trisaccharide heparins as well as the convergent synthesis of chacotriose derivatives using a bulky 2,4-di-O-glycosylated donor.
Collapse
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yingying Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Ao Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kaidi Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 200032, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
4
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N‐Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α‐Selective 1,2‐cis Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianglai Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yingying Song
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Ao Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yueer Zhou
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Qian Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Yetong Lin
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Huiyong Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Kaidi Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Ning Ding
- Fudan University Department of Medicinal Chemistry CHINA
| | - Weijia Xie
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Haopeng Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Biao Yu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Peng Xu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Li
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry 639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|