1
|
Lu Y, Li W, Fan Y, Cheng L, Tang Y, Sun H. Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406180. [PMID: 39385633 DOI: 10.1002/smll.202406180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiyi Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Panda S, Phan H, Karlin KD. Heme-copper and Heme O 2-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry. J Inorg Biochem 2023; 249:112367. [PMID: 37742491 PMCID: PMC10615892 DOI: 10.1016/j.jinorgbio.2023.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) → PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo‑copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo‑copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Zhou XY, Xu C, Guo PP, Sun WL, Wei PJ, Liu JG. Axial Ligand Coordination Tuning of the Electrocatalytic Activity of Iron Porphyrin Electrografted onto Carbon Nanotubes for the Oxygen Reduction Reaction. Chemistry 2021; 27:9898-9904. [PMID: 33876876 DOI: 10.1002/chem.202100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 11/12/2022]
Abstract
The oxygen reduction reaction (ORR) is essential in many life processes and energy conversion systems. It is desirable to design transition metal molecular catalysts inspired by enzymatic oxygen activation/reduction processes as an alternative to noble-metal-Pt-based ORR electrocatalysts, especially in view point of fuel cell commercialization. We have fabricated bio-inspired molecular catalysts electrografted onto multiwalled carbon nanotubes (MWCNTs) in which 5,10,15,20-tetra(pentafluorophenyl) iron porphyrin (iron porphyrin FeF20 TPP) is coordinated with covalently electrografted axial ligands varying from thiophene to imidazole on the MWCNTs' surface. The catalysts' electrocatalytic activity varied with the axial coordination environment (i. e., S-thiophene, N-imidazole, and O-carboxylate); the imidazole-coordinated catalyst MWCNTs-Im-FeF20 TPP exhibited the highest ORR activity among the prepared catalysts. When MWCNT-Im-FeF20 TPP was loaded onto the cathode of a zinc-air battery, an open-cell voltage (OCV) of 1.35 V and a maximum power density (Pmax ) of 110 mW cm-2 were achieved; this was higher than those of MWCNTs-Thi-FeF20 TPP (OCV=1.30 V, Pmax =100 mW cm-2 ) and MWCNTs-Ox-FeF20 TPP (OCV=1.28 V, Pmax =86 mW cm-2 ) and comparable with a commercial Pt/C catalyst (OCV=1.45 V, Pmax =120 mW cm-2 ) under similar experimental conditions. This study provides a time-saving method to prepare covalently immobilized molecular electrocatalysts on carbon-based materials with structure-performance correlation that is also applicable to the design of other electrografted catalysts for energy conversion.
Collapse
Affiliation(s)
- Xin-You Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peng-Peng Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Li Sun
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H‐Atom Transfer (HAT). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyun Kim
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Patrick J. Rogler
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Savita K. Sharma
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | | | | | - Kenneth D. Karlin
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
6
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H-Atom Transfer (HAT). Angew Chem Int Ed Engl 2021; 60:5907-5912. [PMID: 33348450 PMCID: PMC7920932 DOI: 10.1002/anie.202013791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/07/2023]
Abstract
A new end-on low-spin ferric heme peroxide, [(PIm )FeIII -(O22- )]- (PIm -P), and subsequently formed hydroperoxide species, [(PIm )FeIII -(OOH)] (PIm -HP) are generated utilizing the iron-porphyrinate PIm with its tethered axial base imidazolyl group. Measured thermodynamic parameters, the ferric heme superoxide [(PIm )FeIII -(O2⋅- )] (PIm -S) reduction potential (E°') and the PIm -HP pKa value, lead to the finding of the OO-H bond-dissociation free energy (BDFE) of PIm -HP as 69.5 kcal mol-1 using a thermodynamic square scheme and Bordwell relationship. The results are validated by the observed oxidizing ability of PIm -S via hydrogen-atom transfer (HAT) compared to that of the F8 superoxide complex, [(F8 )FeIII -(O2.- )] (S) (F8 =tetrakis(2,6-difluorophenyl)porphyrinate, without an internally appended axial base imidazolyl), as determined from reactivity comparison of superoxide complexes PIm -S and S with the hydroxylamine (O-H) substrates TEMPO-H and ABNO-H.
Collapse
Affiliation(s)
- Hyun Kim
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Rogler
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Savita K Sharma
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Edward I Solomon
- Chemistry Department, Stanford University, Stanford, CA, 94305, USA
| | - Kenneth D Karlin
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
7
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Marquardt M, Cula B, Budhija V, Dallmann A, Schwalbe M. Structural Determination of an Unusual Cu I -Porphyrin-π-Bond in a Hetero-Pacman Cu-Zn-Complex. Chemistry 2021; 27:3991-3996. [PMID: 33405305 PMCID: PMC7986761 DOI: 10.1002/chem.202004945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Indexed: 12/02/2022]
Abstract
The synthesis and characterization of a hetero‐dinuclear compound is presented, in which a copper(I) trishistidine type coordination unit is positioned directly above a zinc porphyrin unit. The close distance between the two coordination fragments is secured by a rigid xanthene backbone, and a unique (intramolecular) copper porphyrin‐π‐bond was determined for the first time in the molecular structure. This structural motif was further analyzed by temperature‐dependent NMR studies: In solution at room temperature the coordinative bond fluctuates, while it can be frozen at low temperatures. Preliminary reactivity studies revealed a reduced reactivity of the copper(I) moiety towards dioxygen. The results adumbrate why nature is avoiding metal porphyrin‐π‐bonds by fixing reactive metal centers in a predetermined distance to each other within multimetallic enzymatic reaction centers.
Collapse
Affiliation(s)
- Michael Marquardt
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Vishal Budhija
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - André Dallmann
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Matthias Schwalbe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
9
|
Kitagishi H, Kano K. Synthetic heme protein models that function in aqueous solution. Chem Commun (Camb) 2021; 57:148-173. [DOI: 10.1039/d0cc07044k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular porphyrin–cyclodextrin complexes act as biomimetic heme protein models in aqueous solution.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyoto 610-0321
- Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyoto 610-0321
- Japan
| |
Collapse
|
10
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Heme-Fe III Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe III-O 2•- Complex H-Atom Abstraction Reactivity. J Am Chem Soc 2020; 142:3104-3116. [PMID: 31913628 PMCID: PMC7034651 DOI: 10.1021/jacs.9b12571] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Establishing redox and thermodynamic relationships between metal-ion-bound O2 and its reduced (and protonated) derivatives is critically important for a full understanding of (bio)chemical processes involving dioxygen processing. Here, a ferric heme peroxide complex, [(F8)FeIII-(O22-)]- (P) (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a superoxide complex, [(F8)FeIII-(O2•-)] (S), are shown to be redox interconvertible. Using Cr(η-C6H6)2, an equilibrium state where S and P are present is established in tetrahydrofuran (THF) at -80 °C, allowing determination of the reduction potential of S as -1.17 V vs Fc+/0. P could be protonated with 2,6-lutidinium triflate, yielding the low-spin ferric hydroperoxide species, [(F8)FeIII-(OOH)] (HP). Partial conversion of HP back to P using a derivatized phosphazene base gave a P/HP equilibrium mixture, leading to the determination of pKa = 28.8 for HP (THF, -80 °C). With the measured reduction potential and pKa, the O-H bond dissociation free energy (BDFE) of hydroperoxide species HP was calculated to be 73.5 kcal/mol, employing the thermodynamic square scheme and Bordwell relationship. This calculated O-H BDFE of HP, in fact, lines up with an experimental demonstration of the oxidizing ability of S via hydrogen atom transfer (HAT) from TEMPO-H (2,2,6,6-tetramethylpiperdine-N-hydroxide, BDFE = 66.5 kcal/mol in THF), forming the hydroperoxide species HP and TEMPO radical. Kinetic studies carried out with TEMPO-H(D) reveal second-order behavior, kH = 0.5, kD = 0.08 M-1 s-1 (THF, -80 °C); thus, the hydrogen/deuterium kinetic isotope effect (KIE) = 6, consistent with H-atom abstraction by S being the rate-determining step. This appears to be the first case where experimentally derived thermodynamics lead to a ferric heme hydroperoxide OO-H BDFE determination, that FeIII-OOH species being formed via HAT reactivity of the partner ferric heme superoxide complex.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Patrick J Rogler
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Savita K Sharma
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
11
|
Kim H, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Heme-Cu Binucleating Ligand Supports Heme/O 2 and Fe II-Cu I/O 2 Reactivity Providing High- and Low-Spin Fe III-Peroxo-Cu II Complexes. Inorg Chem 2019; 58:15423-15432. [PMID: 31657921 DOI: 10.1021/acs.inorgchem.9b02521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The focus of this study is in the description of synthetic heme/copper/O2 chemistry employing a heme-containing binucleating ligand which provides a tridentate chelate for copper ion binding. The addition of O2 (-80 °C, tetrahydrofuran (THF) solvent) to the reduced heme compound (PImH)FeII (1), gives the oxy-heme adduct, formally a heme-superoxide complex FeIII-(O2•-) (2) (resonance Raman spectroscopy (rR): νO-O, 1171 cm-1 (Δ18O2, -61 cm-1); νFe-O, 575 cm-1 (Δ18O2, -24 cm-1)). Simple warming of 2 to room temperature regenerates reduced complex 1; this reaction is reversible, as followed by UV-vis spectroscopy. Complex 2 is electron paramagnetic resonance (EPR)-silent and exhibits upfield-shifted pyrrole resonances (δ 9.12 ppm) in 2H NMR spectroscopy, indicative of a six-coordinate low-spin heme. The coordination of the tethered imidazolyl arm to the heme-superoxide complex as an axial base ligand is suggested. We also report the new fully reduced heme-copper complex [(PImH)FeIICuI]+ (3), where the copper ion is bound to the tethered tridentate portion of PImH. This reacts with O2 to give a distinctive low-temperature-stable, high-spin (S = 2, overall) peroxo-bridged complex [(PImH)FeIII-(O22-)-CuII]+ (3a): λmax, 420 (Soret), 545, 565 nm; δpyrr, 93 ppm; νO-O, 799 cm-1 (Δ18O2, -48 cm-1); νFe-O, 524 cm-1 (Δ18O2, -23 cm-1). To 3a, the addition of dicyclohexylimidazole (DCHIm), which serves as a heme axial base, leads to low-spin (S = 0 overall) species complex [(DCHIm)(PImH)FeIII-(O22-)-CuII]+ (3b): λmax, 425 (Soret), 538 nm; δpyrr, 10.2 ppm; νO-O, 817 cm-1 (Δ18O2, -55 cm-1); νFe-O, 610 cm-1 (Δ18O2, -26 cm-1). These investigations into the characterization of the O2-adducts from (PImH)FeII (1) with/without additional copper chelation advance our understanding of the dioxygen reactivity of heme-only and heme/Cu-ligand heterobinuclear system, thus potentially relevant to O2 reduction in heme-copper oxidases or fuel-cell chemistry.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Savita K Sharma
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
12
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lei H, Li X, Meng J, Zheng H, Zhang W, Cao R. Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00310] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
14
|
Ehudin MA, Schaefer AW, Adam SM, Quist DA, Diaz DE, Tang JA, Solomon EI, Karlin KD. Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome c oxidase inspired low-spin heme-peroxo-copper complexes. Chem Sci 2019; 10:2893-2905. [PMID: 30996867 PMCID: PMC6431958 DOI: 10.1039/c8sc05165h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 11/21/2022] Open
Abstract
Dioxygen reduction by heme-copper oxidases is a critical biochemical process, wherein hydrogen bonding is hypothesized to participate in the critical step involving the active-site reductive cleavage of the O-O bond. Sixteen novel synthetic heme-(μ-O2 2-)-Cu(XTMPA) complexes, whose design is inspired by the cytochrome c oxidase active site structure, were generated in an attempt to form the first intramolecular H-bonded complexes. Derivatives of the "parent" ligand (XTMPA, TMPA = (tris((2-pyridyl)methyl)amine)) possessing one or two amine pendants preferentially form an H-bond with the copper-bound O-atom of the peroxide bridge. This is evidenced by a characteristic blue shift in the ligand-to-metal charge transfer (LMCT) bands observed in UV-vis spectroscopy (consistent with lowering of the peroxo π* relative to the iron orbitals) and a weakening of the O-O bond determined by resonance Raman spectroscopy (rR), with support from Density Functional Theory (DFT) calculations. Remarkably, with the TMPA-based infrastructure (versus similar heme-peroxo-copper complexes with different copper ligands), the typically undetected Cu-O stretch for these complexes was observed via rR, affording critical insights into the nature of the O-O peroxo core for the complexes studied. While amido functionalities have been shown to have greater H-bonding capabilities than their amino counterparts, in these heme-peroxo-copper complexes amido substituents distort the local geometry such that H-bonding with the peroxo core only imparts a weak electronic effect; optimal H-bonding interactions are observed by employing two amino groups on the copper ligand. The amino-substituted systems presented in this work reveal a key orientational anisotropy in H-bonding to the peroxo core for activating the O-O bond, offering critical insights into effective O-O cleavage chemistry. These findings indirectly support computational and protein structural studies suggesting the presence of an interstitial H-bonding water molecule in the CcO active site, which is critical for the desired reactivity. The results are evaluated with appropriate controls and discussed with respect to potential O2-reduction capabilities.
Collapse
Affiliation(s)
- Melanie A Ehudin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA .
| | - Suzanne M Adam
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - David A Quist
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Daniel E Diaz
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Joel A Tang
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA .
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| |
Collapse
|
15
|
Zhao Y, Yu G, Wang F, Wei P, Liu J. Bioinspired Transition‐Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction. Chemistry 2018; 25:3726-3739. [DOI: 10.1002/chem.201803764] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Ye‐Min Zhao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Guo‐Qiang Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Fei‐Fei Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Ping‐Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Jin‐Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
16
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 619] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Kitagishi H, Shimoji D, Ohta T, Kamiya R, Kudo Y, Onoda A, Hayashi T, Weiss J, Wytko JA, Kano K. A water-soluble supramolecular complex that mimics the heme/copper hetero-binuclear site of cytochrome c oxidase. Chem Sci 2018; 9:1989-1995. [PMID: 29675246 PMCID: PMC5892347 DOI: 10.1039/c7sc04732k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
The O2 adduct of an aqueous synthetic heme/copper model system built on a porphyrin/cyclodextrin supramolecular complex has been characterized.
In mitochondria, cytochrome c oxidase (CcO) catalyses the reduction of oxygen (O2) to water by using a heme/copper hetero-binuclear active site. Here we report a highly efficient supramolecular approach for the construction of a water-soluble biomimetic model for the active site of CcO. A tridentate copper(ii) complex was fixed onto 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(iii) (FeIIITPPS) through supramolecular complexation between FeIIITPPS and a per-O-methylated β-cyclodextrin dimer linked by a (2,2′:6′,2′′-terpyridyl)copper(ii) complex (CuIITerpyCD2). The reduced FeIITPPS/CuITerpyCD2 complex reacted with O2 in an aqueous solution at pH 7 and 25 °C to form a superoxo-type FeIII–O2–/CuI complex in a manner similar to CcO. The pH-dependent autoxidation of the O2 complex suggests that water molecules gathered at the distal Cu site are possibly involved in the FeIII–O2–/CuI superoxo complex in an aqueous solution. Electrochemical analysis using a rotating disk electrode demonstrated the role of the FeTPPS/CuTerpyCD2 hetero-binuclear structure in the catalytic O2 reduction reaction.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Daiki Shimoji
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Takehiro Ohta
- Picobiology Institute , Graduate School of Life Science , University of Hyogo , RSC-UH LP Center , Hyogo 679-5148 , Japan
| | - Ryo Kamiya
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Yasuhiro Kudo
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| | - Akira Onoda
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan
| | - Takashi Hayashi
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita 565-0871 , Japan
| | - Jean Weiss
- Institut de Chimie de Strasbourg , UMR 7177 , CNRS , Université de Strasbourg , 4 Rue Blaise Pascal , 67000 Strasbourg , France
| | - Jennifer A Wytko
- Institut de Chimie de Strasbourg , UMR 7177 , CNRS , Université de Strasbourg , 4 Rue Blaise Pascal , 67000 Strasbourg , France
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry , Faculty of Science and Engineering , Doshisha University , Kyotanabe , Kyoto 610-0321 , Japan .
| |
Collapse
|
19
|
Lang P, Schwalbe M. Pacman Compounds: From Energy Transfer to Cooperative Catalysis. Chemistry 2017; 23:17398-17412. [DOI: 10.1002/chem.201703675] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp Lang
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-St. 2 12489 Berlin Germany
| | - Matthias Schwalbe
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-St. 2 12489 Berlin Germany
| |
Collapse
|
20
|
Schaefer AW, Kieber-Emmons MT, Adam SM, Karlin KD, Solomon EI. Phenol-Induced O-O Bond Cleavage in a Low-Spin Heme-Peroxo-Copper Complex: Implications for O 2 Reduction in Heme-Copper Oxidases. J Am Chem Soc 2017; 139:7958-7973. [PMID: 28521498 PMCID: PMC5605297 DOI: 10.1021/jacs.7b03292] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study evaluates the reaction of a biomimetic heme-peroxo-copper complex, {[(DCHIm)(F8)FeIII]-(O22-)-[CuII(AN)]}+ (1), with a phenolic substrate, involving a net H-atom abstraction to cleave the bridging peroxo O-O bond that produces FeIV═O, CuII-OH, and phenoxyl radical moieties, analogous to the chemistry carried out in heme-copper oxidases (HCOs). A 3D potential energy surface generated for this reaction reveals two possible reaction pathways: one involves nearly complete proton transfer (PT) from the phenol to the peroxo ligand before the barrier; the other involves O-O homolysis, where the phenol remains H-bonding to the peroxo OCu in the transition state (TS) and transfers the H+ after the barrier. In both mechanisms, electron transfer (ET) from phenol occurs after the PT (and after the barrier); therefore, only the interaction with the H+ is involved in lowering the O-O cleavage barrier. The relative barriers depend on covalency (which governs ET from Fe), and therefore vary with DFT functional. However, as these mechanisms differ by the amount of PT at the TS, kinetic isotope experiments were conducted to determine which mechanism is active. It is found that the phenolic proton exhibits a secondary kinetic isotope effect, consistent with the calculations for the H-bonded O-O homolysis mechanism. The consequences of these findings are discussed in relation to O-O cleavage in HCOs, supporting a model in which a peroxo intermediate serves as the active H+ acceptor, and both the H+ and e- required for O-O cleavage derive from the cross-linked Tyr residue present at the active site.
Collapse
Affiliation(s)
- Andrew W Schaefer
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Matthew T Kieber-Emmons
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
- Department of Chemistry, The University of Utah , Salt Lake City, Utah 84112, United States
| | - Suzanne M Adam
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
21
|
Quist DA, Diaz DE, Liu JJ, Karlin KD. Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 2017; 22:253-288. [PMID: 27921179 PMCID: PMC5600896 DOI: 10.1007/s00775-016-1415-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/11/2016] [Indexed: 02/08/2023]
Abstract
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed.
Collapse
Affiliation(s)
- David A Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniel E Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeffrey J Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
22
|
Zhang W, Lai W, Cao R. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chem Rev 2016; 117:3717-3797. [PMID: 28222601 DOI: 10.1021/acs.chemrev.6b00299] [Citation(s) in RCA: 711] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Wenzhen Lai
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China.,Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
23
|
Ohta T, Nagaraju P, Liu JG, Ogura T, Naruta Y. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study. J Biol Inorg Chem 2016; 21:745-55. [PMID: 27501847 DOI: 10.1007/s00775-016-1380-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a's of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born-Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe-O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O-O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.
Collapse
Affiliation(s)
- Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo, 679-5148, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Perumandla Nagaraju
- Institute of Science and Technology Research, Chubu University, Kasugai, Aichi, 487-8501, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan
| | - Jin-Gang Liu
- Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo, 679-5148, Japan
| | - Yoshinori Naruta
- Institute of Science and Technology Research, Chubu University, Kasugai, Aichi, 487-8501, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
24
|
Decréau RA, Collman JP. Three toxic gases meet in the mitochondria. Front Physiol 2015; 6:210. [PMID: 26347655 PMCID: PMC4542460 DOI: 10.3389/fphys.2015.00210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022] Open
Abstract
The rationale of the study was two-fold: (i) develop a functional synthetic model of the Cytochrome c oxidase (CcO) active site, (ii) use it as a convenient tool to understand or predict the outcome of the reaction of CcO with ligands (physiologically relevant gases and other ligands). At physiological pH and potential, the model catalyzes the 4-electron reduction of oxygen. This model was immobilized on self-assembled-monolayer (SAM) modified electrode. During catalytic oxygen reduction, electron delivery through SAMs is rate limiting, similar to the situation in CcO. This model contains all three redox-active components in CcO's active site, which are required to minimize the production of partially-reduced-oxygen-species (PROS): Fe-heme (“heme a3”) in a myoglobin-like model fitted with a proximal imidazole ligand, and a distal tris-imidazole Copper (“CuB”) complex, where one imidazole is cross-linked to a phenol (mimicking “Tyr244”). This functional CcO model demonstrates how CcO itself might tolerate the hormone NO (which diffuses through the mitochondria). It is proposed that CuB delivers superoxide to NO bound to Fe-heme forming peroxynitrite, then nitrate that diffuses away. Another toxic gas, H2S, has exceptional biological effects: at ~80 ppm, H2S induces a state similar to hibernation in mice, lowering the animal's temperature and slowing respiration. Using our functional CcO model, we have demonstrated that at the same concentration range H2S can reversibly inhibit catalytic oxygen reduction. Such a reversible catalytic process on the model was also demonstrated with an organic compound, tetrazole (TZ). Following studies showed that TZ reversibly inhibits respiration in isolated mitochondria, and induces deactivation of platelets, a mitochondria-rich key component of blood coagulation. Hence, this program is a rare example illustrating the use of a functional model to understand and predict physiologically important reactions at the active site of CcO.
Collapse
Affiliation(s)
- Richard A Decréau
- Department of Chemistry (ICMUB Institute), University of Burgundy Franche-Comté Dijon, France ; Department of Chemistry, Stanford University Stanford, CA, USA
| | - James P Collman
- Department of Chemistry, Stanford University Stanford, CA, USA
| |
Collapse
|
25
|
Samanta S, Das PK, Chatterjee S, Dey A. Effect of axial ligands on electronic structure and O2 reduction by iron porphyrin complexes: Towards a quantitative understanding of the "push effect". J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615300049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Axial ligands play a dominating role in determining the electronic structure and reactivity of iron porphyrin active sites and synthetic models. Several properties unique to the cysteine bound heme enzyme, cytochrome P450, is attributed to the "push effect" of the thiolate axial ligand. In this mini-review the ground state electronic structure of iron porphyrins with imidazole, phenolate and thiolate complexes, derived using a combination of spectroscopy and DFT calculations, are discussed. The differences in kinetics and selectivity of oxygen reduction reaction (ORR), catalyzed by these iron porphyrin complexes with different axial ligands, help elucidate the varying push effects of the different axial ligands on oxygen activation by ferrous porphyrin. The spectroscopic and kinetic data help to develop a quantitative understanding of the "push effect" and, in particular, the electrostatic and covalent contributions to it.
Collapse
Affiliation(s)
- Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradip Kumar Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
26
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
27
|
Garcia-Bosch I, Adam SM, Schaefer AW, Sharma SK, Peterson RL, Solomon EI, Karlin KD. A "naked" Fe(III)-(O₂²⁻)-Cu(II) species allows for structural and spectroscopic tuning of low-spin heme-peroxo-Cu complexes. J Am Chem Soc 2015; 137:1032-5. [PMID: 25594533 PMCID: PMC4311974 DOI: 10.1021/ja5115198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Here
we describe a new approach for the generation of heme-peroxo-Cu
compounds, using a “naked” complex synthon, [(F8)FeIII-(O22–)-CuII(MeTHF)3]+ (MeTHF = 2-methyltetrahydrofuran;
F8 = tetrakis(2,6-difluorophenyl)porphyrinate).
Addition of varying ligands (L) for Cu allows the generation and spectroscopic
characterization of a family of high- and low-spin FeIII-(O22–)-CuII(L) complexes.
These possess markedly varying CuII coordination geometries,
leading to tunable Fe-O, O-O, and Cu-O bond strengths. DFT calculations
accompanied by vibrational data correlations give detailed structural
insights.
Collapse
|
28
|
Xi YT, Wei PJ, Wang RC, Liu JG. Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction. Chem Commun (Camb) 2015; 51:7455-8. [DOI: 10.1039/c5cc00963d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bio-inspired multinuclear copper complex covalently immobilized on graphene exhibited high ORR activity and long-term stability in alkaline media.
Collapse
Affiliation(s)
- Yue-Ting Xi
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Ru-Chun Wang
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
29
|
Weidinger IM. Analysis of structure-function relationships in cytochrome c oxidase and its biomimetic analogs via resonance Raman and surface enhanced resonance Raman spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:119-25. [PMID: 25223590 DOI: 10.1016/j.bbabio.2014.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/08/2023]
Abstract
Cytochrome c oxidase (CcO) catalyzes the four electron reduction of molecular oxygen to water while avoiding the formation of toxic peroxide; a quality that is of high relevance for the development of oxygen-reducing catalysts. Resonance Raman spectroscopy has been used since many years as a technique to identify electron transfer pathways in cytochrome c oxidase and to identify the key intermediates in the catalytic cycle. This information can be compared to artificial systems such as modified heme-copper enzymes, molecular heme-copper catalysts or CcO/electrode complexes in order to shed light into the reaction mechanism of these non-natural systems. Understanding the structural commonalities and differences of CcO with its non-natural analogs is of great value for designing efficient oxygen-reducing catalysts. In this review therefore Raman spectroscopic measurements on artificial heme-copper enzymes and model complexes are summarized and compared to the natural enzyme cytochrome c oxidase. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Inez M Weidinger
- Department of Chemistry PC 14, Technische Universitaet Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
30
|
Schwalbe M, Wrzolek P, Lal G, Braun B. High‐Yielding Synthesis of a Hetero‐Pacman Compound and the Characterization of Intermediates and Side‐Products. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Schwalbe
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| | - Pierre Wrzolek
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| | - Garima Lal
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| | - Beatrice Braun
- Institute of Chemistry, Humboldt‐Universität zu Berlin, Brook‐Taylor‐St. 2, 12489 Berlin, Germany, http://www.chemie.hu‐berlin.de/aglimberg/mschwalbe/ index.html
| |
Collapse
|
31
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014; 53:6659-63. [DOI: 10.1002/anie.201403133] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/15/2014] [Indexed: 12/28/2022]
|
32
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Zipp CF, Michael JP, Fernandes MA, Mathura S, Perry CB, Navizet I, Govender PP, Marques HM. The Synthesis of a Corrole Analogue of Aquacobalamin (Vitamin B12a) and Its Ligand Substitution Reactions. Inorg Chem 2014; 53:4418-29. [DOI: 10.1021/ic5000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Caitlin F. Zipp
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Joseph P. Michael
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Manuel A. Fernandes
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Sadhna Mathura
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Christopher B. Perry
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Isabelle Navizet
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Penny P. Govender
- Department
of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028 South Africa
| | - Helder M. Marques
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| |
Collapse
|
34
|
Lee YM, Bang S, Kim YM, Cho J, Hong S, Nomura T, Ogura T, Troeppner O, Ivanović-Burmazović I, Sarangi R, Fukuzumi S, Nam W. A Mononuclear Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Metal Ions. Chem Sci 2013; 4:3917-3923. [PMID: 25426288 PMCID: PMC4241270 DOI: 10.1039/c3sc51864g] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating reactivities of oxygen-containing metal complexes in a variety of biological and biomimetic reactions, including dioxygen activation/formation and functionalization of organic substrates. Mononuclear nonheme iron(III)-peroxo species are invoked as active oxygen intermediates in the catalytic cycles of dioxygen activation by nonheme iron enzymes and their biomimetic compounds. Here, we report mononuclear nonheme iron(III)-peroxo complexes binding redox-inactive metal ions, [(TMC)FeIII(O2)]+-M3+ (M3+ = Sc3+ and Y3+; TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), which are characterized spectroscopically as a 'side-on' iron(III)-peroxo complex binding a redox-inactive metal ion, (TMC)FeIII-(μ,η2:η2-O2)-M3+ (2-M). While an iron(III)-peroxo complex, [(TMC)FeIII(O2)]+, does not react with electron donors (e.g., ferrocene), one-electron reduction of the iron(III)-peroxo complexes binding redox-inactive metal ions occurs readily upon addition of electron donors, resulting in the generation of an iron(IV)-oxo complex, [(TMC)FeIV(O)]2+ (4), via heterolytic O-O bond cleavage of the peroxide ligand. The rates of the conversion of 2-M to 4 are found to depend on the Lewis acidity of the redox-inactive metal ions and the oxidation potential of the electron donors. We have also determined the fundamental electron-transfer properties of 2-M, such as the reduction potential and the reorganization energy in electron-transfer reaction. Based on the results presented herein, we have proposed a mechanism for the reactions of 2-M and electron donors; the reduction of 2-M to the reduced species, (TMC)FeII-(O2)-M3+ (2'-M), is the rate-determining step, followed by heterolytic O-O bond cleavage of the reduced species to form 4. The present results provide a biomimetic example demonstrating that redox-inactive metal ions bound to an iron(III)-peroxo intermediate play a significant role in activating the peroxide O-O bond to form a high-valent iron(IV)-oxo species.
Collapse
Affiliation(s)
- Yong-Min Lee
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Suhee Bang
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yun Mi Kim
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Jaeheung Cho
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea ; Department of Emerging Materials Science, DGIST, Daegu 711-873, Korea
| | - Seungwoo Hong
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Takashi Nomura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Oliver Troeppner
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shunichi Fukuzumi
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea ; Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| | - Wonwoo Nam
- Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
35
|
Samanta S, Mittra K, Sengupta K, Chatterjee S, Dey A. Second sphere control of redox catalysis: selective reduction of O2 to O2- or H2O by an iron porphyrin catalyst. Inorg Chem 2013; 52:1443-53. [PMID: 23305073 DOI: 10.1021/ic3021782] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Click" reaction has been utilized to synthesize porphyrin ligands possessing distal superstructures functionalized with ferrocenes, carboxylic acid esters, and phenols. Both structural and spectroscopic evidence indicate that hydrogen bonding interaction between the triazole residues resulting from the "click" reaction promotes axial ligand binding into the sterically demanding distal pocket in preference to the open proximal side. An iron porphyrin complex with four ferrocene groups is found to bind O(2) and quantitatively reduce it by one electron to O(2)(-) in apolar organic solvents. However the same complex electro-catalytically reduces O(2) by four electrons to H(2)O in aqueous medium under fast, moderate, and slow electron fluxes. This selectivity for O(2) reduction is governed by the reduction potential of the electron transfer site (i.e., ferrocene) which in turn is governed by the solvent. This catalyst mimics control of catalysis of an enzyme active site by a second sphere electron transfer residue which is often encountered in naturally occurring metallo-enzymes.
Collapse
Affiliation(s)
- Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
36
|
Schwalbe M, Metzinger R, Teets TS, Nocera DG. Terpyridine-Porphyrin Hetero-Pacman Compounds. Chemistry 2012; 18:15449-58. [DOI: 10.1002/chem.201201728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/20/2012] [Indexed: 12/31/2022]
|
37
|
Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI. Spectroscopic elucidation of a new heme/copper dioxygen structure type: implications for O···O bond rupture in cytochrome c oxidase. Angew Chem Int Ed Engl 2011; 51:168-72. [PMID: 22095556 DOI: 10.1002/anie.201104080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/24/2011] [Indexed: 11/11/2022]
|
38
|
Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI. Spectroscopic Elucidation of a New Heme/Copper Dioxygen Structure Type: Implications for O⋅⋅⋅O Bond Rupture in Cytochrome c Oxidase. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Liu JG, Shimizu Y, Ohta T, Naruta Y. Formation of an end-on ferric peroxo intermediate upon one-electron reduction of a ferric superoxo heme. J Am Chem Soc 2010; 132:3672-3. [PMID: 20196593 DOI: 10.1021/ja1001955] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The low-spin end-on ferric peroxo heme intermediate has been proposed as an alternative reactive intermediate involved in the catalytic cycles of enzymes such as nitric oxide synthase and cytochrome P450. This transient heme intermediate has never been captured using synthetic heme models. We demonstrate herein our success in the solution preparation of such an end-on ferric peroxo intermediate derived from a heme model, which features both a group hanging over the porphyrin macrocycle and a covalently appended axial imidazole ligand, through one-electron reduction of its ferric superoxo precursor. The obtained ferric peroxo intermediate was further transformed into the corresponding ferric hydroperoxo species upon protonation. This heme model compound provides a convenient system for sequential preparation of the important and biologically relevant superoxo/peroxo/hydroperoxo heme intermediates through an oxygenation/one-electron reduction/protonation process similar to the mechanisms used by enzyme systems.
Collapse
Affiliation(s)
- Jin-Gang Liu
- Institute for Materials Chemistry and Engineering, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
40
|
Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Proc Natl Acad Sci U S A 2010; 107:8581-6. [PMID: 20421510 DOI: 10.1073/pnas.1000526107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative Fe(B) site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by approximately 110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a approximately 100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the Fe(B) site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.
Collapse
|
41
|
Halime Z, Kieber-Emmons MT, Qayyum MF, Mondal B, Gandhi T, Puiu SC, Chufán EE, Sarjeant AAN, Hodgson KO, Hedman B, Solomon EI, Karlin KD. Heme-copper-dioxygen complexes: toward understanding ligand-environmental effects on the coordination geometry, electronic structure, and reactivity. Inorg Chem 2010; 49:3629-45. [PMID: 20380465 PMCID: PMC2893725 DOI: 10.1021/ic9020993] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nature of the ligand is an important aspect of controlling the structure and reactivity in coordination chemistry. In connection with our study of heme-copper-oxygen reactivity relevant to cytochrome c oxidase dioxygen-reduction chemistry, we compare the molecular and electronic structures of two high-spin heme-peroxo-copper [Fe(III)O(2)(2-)Cu(II)](+) complexes containing N(4) tetradentate (1) or N(3) tridentate (2) copper ligands. Combining previously reported and new resonance Raman and EXAFS data coupled to density functional theory calculations, we report a geometric structure and more complete electronic description of the high-spin heme-peroxo-copper complexes 1 and 2, which establish mu-(O(2)(2-)) side-on to the Fe(III) and end-on to Cu(II) (mu-eta(2):eta(1)) binding for the complex 1 but side-on/side-on (mu-eta(2):eta(2)) mu-peroxo coordination for the complex 2. We also compare and summarize the differences and similarities of these two complexes in their reactivity toward CO, PPh(3), acid, and phenols. The comparison of a new X-ray structure of mu-oxo complex 2a with the previously reported 1a X-ray structure, two thermal decomposition products respectively of 2 and 1, reveals a considerable difference in the Fe-O-Cu angle between the two mu-oxo complexes ( angleFe-O-Cu = 178.2 degrees in 1a and angleFe-O-Cu = 149.5 degrees in 2a). The reaction of 2 with 1 equiv of an exogenous nitrogen-donor axial base leads to the formation of a distinctive low-temperature-stable, low-spin heme-dioxygen-copper complex (2b), but under the same conditions, the addition of an axial base to 1 leads to the dissociation of the heme-peroxo-copper assembly and the release of O(2). 2b reacts with phenols performing H-atom (e(-) + H(+)) abstraction resulting in O-O bond cleavage and the formation of high-valent ferryl [Fe(IV)=O] complex (2c). The nature of 2c was confirmed by a comparison of its spectroscopic features and reactivity with those of an independently prepared ferryl complex. The phenoxyl radical generated by the H-atom abstraction was either (1) directly detected by electron paramagnetic resonance spectroscopy using phenols that produce stable radicals or (2) indirectly detected by the coupling product of two phenoxyl radicals.
Collapse
Affiliation(s)
- Zakaria Halime
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu JG, Ohta T, Yamaguchi S, Ogura T, Sakamoto S, Maeda Y, Naruta Y. Spectroscopic characterization of a hydroperoxo-heme intermediate: conversion of a side-on peroxo to an end-on hydroperoxo complex. Angew Chem Int Ed Engl 2010; 48:9262-7. [PMID: 19882613 DOI: 10.1002/anie.200904572] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jin-Gang Liu
- Institute for Materials Chemistry and Engineering, Kyushu University, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu JG, Ohta T, Yamaguchi S, Ogura T, Sakamoto S, Maeda Y, Naruta Y. Spectroscopic Characterization of a HydroperoxoâHeme Intermediate: Conversion of a Side-On Peroxo to an End-On Hydroperoxo Complex. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Offenbacher A, White KN, Sen I, Oliver AG, Konopelski JP, Barry BA, Einarsdóttir O. A spectroscopic investigation of a tridentate Cu-complex mimicking the tyrosine-histidine cross-link of cytochrome C oxidase. J Phys Chem B 2009; 113:7407-17. [PMID: 19438285 DOI: 10.1021/jp9010795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme-copper oxidases have a crucial role in the energy transduction mechanism, catalyzing the reduction of dioxygen to water. The reduction of dioxygen takes place at the binuclear center, which contains heme a3 and CuB. The X-ray crystal structures have revealed that the C6' of tyrosine 244 (bovine heart numbering) is cross-linked to a nitrogen of histidine 240, a ligand to CuB. The role of the cross-linked tyrosine at the active site still remains unclear. In order to provide insight into the function of the cross-linked tyrosine, we have investigated the spectroscopic and electrochemical properties of chemical analogues of the CuB-His-Tyr site. The analogues, a tridentate histidine-phenol cross-linked ether ligand and the corresponding Cu-containing complex, were previously synthesized in our laboratory (White, K.; et al. Chem. Commun. 2007, 3252-3254). Spectrophotometric titrations of the ligand and the Cu-complex indicate a pKa of the phenolic proton of 8.8 and 7.7, respectively. These results are consistent with the cross-linked tyrosine playing a proton delivery role at the cytochrome c oxidase active site. The presence of the phenoxyl radical was investigated at low temperature using electron paramagnetic resonance (EPR) and Fourier transform infrared (FT-IR) difference spectroscopy. UV photolysis of the ligand, without bound copper, generated a narrow g=2.0047 signal, attributed to the phenoxyl radial. EPR spectra recorded before and after UV photolysis of the Cu-complex showed a g=2 signal characteristic of oxidized copper, suggesting that the copper is not spin-coupled to the phenoxyl radical. An EPR signal from the phenoxyl radical was not observed in the Cu-complex, either due to spin relaxation of the two unpaired electrons or to masking of the narrow phenoxyl radical signal by the strong copper contribution. Stable isotope (13C) labeling of the phenol ring (C1') Cu-complex, combined with photoinduced difference FT-IR spectroscopy, revealed bands at 1485 and 1483 cm(-1) in the 12C-minus-13C-isotope-edited spectra of the ligand and Cu-complex, respectively. These bands are attributed to the radical v7a stretching frequency and are shifted to 1468 and 1472 cm(-1), respectively, with 13C1' labeling. These results show that a radical is generated in both the ligand and the Cu-complex and support the unambiguous assignment of a vibrational band to the phenoxyl radical v7a stretching mode. These data are discussed with respect to a possible role of the cross-linked tyrosine radical in cytochrome c oxidase.
Collapse
Affiliation(s)
- Adam Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Collman JP, Ghosh S, Dey A, Decréau RA, Yang Y. Catalytic reduction of O2 by cytochrome C using a synthetic model of cytochrome C oxidase. J Am Chem Soc 2009; 131:5034-5. [PMID: 19317484 DOI: 10.1021/ja9001579] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CcO) catalyzes the four-electron reduction of oxygen to water, the one-electron reductant Cytochrome c (Cytc) being the source of electrons. Recently we reported a functional model of CcO that electrochemically catalyzes the four-electron reduction of O(2) to H(2)O (Collman et al. Science 2007, 315, 1565). The current paper shows that the same functional CcO model catalyzes the four-electron reduction of O(2) using the actual biological reductant Cytc in a homogeneous solution. Both single and steady-state turnover kinetics studies indicate that O(2) binding is rate-determining and that O-O bond cleavage and electron transfer from reduced Cytc to the oxidized model complex are relatively fast.
Collapse
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
46
|
Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H. High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:635-45. [PMID: 19374884 DOI: 10.1016/j.bbabio.2009.04.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 11/19/2022]
Abstract
The structure of the two-subunit cytochrome c oxidase from Paracoccus denitrificans has been refined using X-ray cryodata to 2.25 A resolution in order to gain further insights into its mechanism of action. The refined structural model shows a number of new features including many additional solvent and detergent molecules. The electron density bridging the heme a(3) iron and Cu(B) of the active site is fitted best by a peroxo-group or a chloride ion. Two waters or OH(-) groups do not fit, one water (or OH(-)) does not provide sufficient electron density. The analysis of crystals of cytochrome c oxidase isolated in the presence of bromide instead of chloride appears to exclude chloride as the bridging ligand. In the D-pathway a hydrogen bonded chain of six water molecules connects Asn131 and Glu278, but the access for protons to this water chain is blocked by Asn113, Asn131 and Asn199. The K-pathway contains two firmly bound water molecules, an additional water chain seems to form its entrance. Above the hemes a cluster of 13 water molecules is observed which potentially form multiple exit pathways for pumped protons. The hydrogen bond pattern excludes that the Cu(B) ligand His326 is present in the imidazolate form.
Collapse
Affiliation(s)
- Juergen Koepke
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str.3, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Collman JP, Decréau RA. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Chem Commun (Camb) 2008:5065-76. [PMID: 18956030 DOI: 10.1039/b808070b] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).
Collapse
Affiliation(s)
- James P Collman
- Stanford University, Chemistry Department, Stanford, CA-94305-5080, USA.
| | | |
Collapse
|
48
|
Collman JP, Dey A, Decréau RA, Yang Y. Model studies of azide binding to functional analogues of CcO. Inorg Chem 2008; 47:2916-8. [PMID: 18361486 DOI: 10.1021/ic702294n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N3- binding to a functional model of CcO is investigated in its Fe3+, Fe3+Cu+, and Fe3+Cu2+ forms. A combination of EPR and FTIR indicates that N3- binds in a bridging mode in the bimetallic sites and signature N3- bands are identified for several forms of N3- binding to the site. The presence of the distal metal increases the binding affinity of N3-. This bridging enables antiferromagnetic interaction between the two metal centers in the Fe3+Cu2+ state, which results in an EPR-silent ground state.
Collapse
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
49
|
|
50
|
Yeung N, Lu Y. One heme, diverse functions: using biosynthetic myoglobin models to gain insights into heme-copper oxidases and nitric oxide reductases. Chem Biodivers 2008; 5:1437-1454. [PMID: 18729107 PMCID: PMC2770894 DOI: 10.1002/cbdv.200890134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Natasha Yeung
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|