1
|
Bisoi A, Sarkar S, Singh PC. Flanking Effect on the Structure and Stability of Human Telomeric G-Quadruplex in Varying Salt Concentrations. J Phys Chem B 2024; 128:7121-7128. [PMID: 39007177 DOI: 10.1021/acs.jpcb.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The stability of the human telomere G-quadruplex (G4) is directly linked to cancer disease. The human telomere is mostly associated with the flanking nucleobases, which can affect the stability of G4. Hence, in this study, the effect of the flanking nucleobases in the context of their chemical nature, number, and position on the structure and stability of G4 has been investigated in varying concentrations of KCl mimicking the normal and cancer KCl microenvironments. The addition of flanking nucleobases does not alter the G4 topology. However, the presence of merely a single flanking nucleobase destabilizes the telomeric G4. This destabilizing effect is more prominent for thymine than adenine flanking nucleobase, probably due to the formation of the intermolecular G4 topology by thymine. Interestingly, the change in the stability of the telomeric G4 in the presence of thymine flanking nucleobase is sensitive to the concentration of KCl relevant to the normal and cancerous microenvironments, in contrast to adenine. Flanking nucleobases have a greater impact at the 5' end compared to the 3' end, particularly noticeable in KCl concentrations resembling the normal microenvironment rather than the cancerous one. These findings indicate that the effect of the flanking nucleobases on telomeric G4 is different in the KCl salt relevant to normal and cancerous microenvironments. This study may be helpful in attaining molecular-level insight into the role of G4 in telomeric length regulation under normal and cancerous KCl salt conditions.
Collapse
Affiliation(s)
- Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 India
| | - Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 India
| |
Collapse
|
2
|
Li Z, Hu R, Li T, Zhu J, You H, Li Y, Liu BF, Li C, Li Y, Yang Y. A TeZla micromixer for interrogating the early and broad folding landscape of G-quadruplex via multistage velocity descending. Proc Natl Acad Sci U S A 2024; 121:e2315401121. [PMID: 38232280 PMCID: PMC10823215 DOI: 10.1073/pnas.2315401121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.
Collapse
Affiliation(s)
- Zheyu Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan430071, China
- Graduate University of Chinese Academy of Sciences, Beijing10049, China
- Optics Valley Laboratory, Hubei430074, China
| |
Collapse
|
3
|
Huang R, Feng Y, Gao Z, Ahmed A, Zhang W. The Epigenomic Features and Potential Functions of PEG- and PDS-Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2024; 25:634. [PMID: 38203805 PMCID: PMC10779103 DOI: 10.3390/ijms25010634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
A G-quadruplex (G4) is a typical non-B DNA structure and involved in various DNA-templated events in eukaryotic genomes. PEG and PDS chemicals have been widely applied for promoting the folding of in vivo or in vitro G4s. However, how PEG and PDS preferentially affect a subset of G4 formation genome-wide is still largely unknown. We here conducted a BG4-based IP-seq in vitro under K++PEG or K++PDS conditions in the rice genome. We found that PEG-favored IP-G4s+ have distinct sequence features, distinct genomic distributions and distinct associations with TEGs, non-TEGs and subtypes of TEs compared to PDS-favored ones. Strikingly, PEG-specific IP-G4s+ are associated with euchromatin with less enrichment levels of DNA methylation but with more enriched active histone marks, while PDS-specific IP-G4s+ are associated with heterochromatin with higher enrichment levels of DNA methylation and repressive marks. Moreover, we found that genes with PEG-specific IP-G4s+ are more expressed than those with PDS-specific IP-G4s+, suggesting that PEG/PDS-specific IP-G4s+ alone or coordinating with epigenetic marks are involved in the regulation of the differential expression of related genes, therefore functioning in distinct biological processes. Thus, our study provides new insights into differential impacts of PEG and PDS on G4 formation, thereby advancing our understanding of G4 biology.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (R.H.); (Y.F.); (Z.G.); (A.A.)
| |
Collapse
|
4
|
Aznauryan M, Birkedal V. Dynamics of G-Quadruplex Formation under Molecular Crowding. J Phys Chem Lett 2023; 14:10354-10360. [PMID: 37948600 DOI: 10.1021/acs.jpclett.3c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
G-quadruplex (G4) structures assemble from guanine-rich DNA sequences and are believed to regulate several key cellular processes. G4 formation and conformational interconversions are well-established to occur dynamically in vitro. However, a clear understanding of G4 formation dynamics in cells as well as under conditions mimicking the cellular environment is missing. To fill this gap, we have investigated the G4 dynamics in molecularly crowded solutions, thus replicating the effect of the excluded volume present in cells. The results show that the volume exclusion exerted by large crowding agents accelerates the rate of G4 formation by at least an order of magnitude, leading to significant G4 stabilization. Extrapolation from our experimental data predicts crowding-induced G4 stabilization by more than 3 kcal/mol, under crowding levels found in the cellular environment. Such effects are likely to be important for G4-driven regulatory functions.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Univ. Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, 33607 Pessac, France
| | - Victoria Birkedal
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Sannapureddi RKR, Mohanty MK, Salmon L, Sathyamoorthy B. Conformational Plasticity of Parallel G-Quadruplex─Implications on Duplex-Quadruplex Motifs. J Am Chem Soc 2023. [PMID: 37428641 DOI: 10.1021/jacs.3c03218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
DNA G-quadruplexes are essential motifs in molecular biology performing a wide range of functions enabled by their unique and diverse structures. In this study, we focus on the conformational plasticity of the most abundant and biologically relevant parallel G-quadruplex topology. A multipronged approach of structure survey, solution-state NMR spectroscopy, and molecular dynamics simulations unravels subtle yet essential features of the parallel G-quadruplex topology. Stark differences in flexibility are observed for the nucleotides depending upon their positioning in the tetrad planes that are intricately correlated with the conformational sampling of the propeller loop. Importantly, the terminal nucleotides in the 5'-end versus the 3'-end of the parallel quadruplex display differential dynamics that manifests their ability to accommodate a duplex on either end of the G-quadruplex. The conformational plasticity characterized in this study provides essential cues toward biomolecular processes such as small molecular binding, intermolecular quadruplex stacking, and implications on how a duplex influences the structure of a neighboring quadruplex.
Collapse
Affiliation(s)
| | - Manish Kumar Mohanty
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, UMR 5082 (CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), University of Lyon, Villeurbanne 69100, France
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
6
|
Gao C, Mohamed HI, Deng J, Umer M, Anwar N, Chen J, Wu Q, Wang Z, He Y. Effects of Molecular Crowding on the Structure, Stability, and Interaction with Ligands of G-quadruplexes. ACS OMEGA 2023; 8:14342-14348. [PMID: 37125118 PMCID: PMC10134454 DOI: 10.1021/acsomega.3c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
G-quadruplexes (G4s) are widely found in cells and have significant biological functions, which makes them a target for screening antitumor and antiviral drugs. Most of the previous research on G4s has been conducted mainly in diluted solutions. However, cells are filled with organelles and many biomolecules, resulting in a constant state of a crowded molecular environment. The conformation and stability of some G4s were found to change significantly in the molecularly crowded environment, and interactions with ligands were disturbed to some extent. The structure of the G4s and their biological functions are correlated, and the effect of the molecularly crowded environment on G4 conformational transitions and interactions with ligands should be considered in drug design targeting G4s. This review discusses the changes in the conformation and stability of G4s in a physiological environment. Moreover, the mechanism of action of the molecularly crowded environment affecting the G4 has been further reviewed based on previous studies. Furthermore, current challenges and future research directions are put forward. This review has implications for the design of drugs targeting G4s.
Collapse
Affiliation(s)
- Chao Gao
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hany I. Mohamed
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Jieya Deng
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Umer
- Institute
for Forest Resources and Environment of Guizhou and Forestry College,
Research Center of Forest Ecology, Guizhou
University, Guiyang 550025, China
| | - Naureen Anwar
- Department
of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Jixin Chen
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan
Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| | - Zhangqian Wang
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
7
|
Feng Y, Luo Z, Huang R, Yang X, Cheng X, Zhang W. Epigenomic Features and Potential Functions of K+ and Na+ Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2022; 23:ijms23158404. [PMID: 35955535 PMCID: PMC9368837 DOI: 10.3390/ijms23158404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
DNA G-quadruplexes (G4s) are non-canonical four-stranded DNA structures involved in various biological processes in eukaryotes. Molecularly crowded solutions and monovalent cations have been reported to stabilize in vitro and in vivo G4 formation. However, how K+ and Na+ affect G4 formation genome-wide is still unclear in plants. Here, we conducted BG4-DNA-IP-seq, DNA immunoprecipitation with anti-BG4 antibody coupled with sequencing, under K+ and Na+ + PEG conditions in vitro. We found that K+-specific IP-G4s had a longer peak size, more GC and PQS content, and distinct AT and GC skews compared to Na+-specific IP-G4s. Moreover, K+- and Na+-specific IP-G4s exhibited differential subgenomic enrichment and distinct putative functional motifs for the binding of certain trans-factors. More importantly, we found that K+-specific IP-G4s were more associated with active marks, such as active histone marks, and low DNA methylation levels, as compared to Na+-specific IP-G4s; thus, K+-specific IP-G4s in combination with active chromatin features facilitate the expression of overlapping genes. In addition, K+- and Na+-specific IP-G4 overlapping genes exhibited differential GO (gene ontology) terms, suggesting they may have distinct biological relevance in rice. Thus, our study, for the first time, explores the effects of K+ and Na+ on global G4 formation in vitro, thereby providing valuable resources for functional G4 studies in rice. It will provide certain G4 loci for the biotechnological engineering of rice in the future.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Ranran Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Xueming Yang
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
- Correspondence: ; Tel.: +86-25-84396610; Fax: +86-25-84396302
| |
Collapse
|
8
|
Topcu A, Bağda E, Oymak T, Durmuş M. Development of quantum dot-phthalocyanine integrated G-quadruplex /double-stranded DNA biosensor. Anal Biochem 2022; 654:114777. [PMID: 35750250 DOI: 10.1016/j.ab.2022.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
In the present study, the phthalocyanine (Pc) integrated mercaptopropionic acid capped quantum dot (mpa@QD) biosensor has been developed for the quantitative determination of G-quadruplex and double-stranded DNA. The working principle of the developed biosensor platform is based on the quenching of the emission signal of the mpa@QD in the presence of Pc (closed position) and the recovery of the fluorescence signal in the presence of DNA (open position). The parameters affecting biosensor performance, such as Pc type and concentration, were optimized. Since the developed biosensor aimed to determine G-quadruplex and double-stranded DNA in biological samples, the effect of common ions (such as Na+, Mg2+) and serum albumin found in many biological matrices on the biosensor performance were examined. The effect of common ions on biosensor signal was negligible, except Zn2+. The analytical properties of the biosensor, such as linear range, calibration sensitivity, relative standard deviation %, the limit of detection, and quantification, were determined. The limit of detection and quantification values were found 0.055 μM and 0.18 μM for AS1411, 0.061 μM and 0.20 μM for Tel21, 0.038 μM and 0.13 μM for Tel45 and 0.091 μM and 0.30 μM for ctDNA. Several different synthetic samples were prepared. The spiked synthetic samples such as mammalian cell medium were used to evaluate the analytical performance of Pc-mpa@QD. All synthetic samples were prepared with polyethylene glycol, which resembles biological samples' crowded environment.
Collapse
Affiliation(s)
- Ayşe Topcu
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Tülay Oymak
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
| |
Collapse
|
9
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
10
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
11
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
12
|
Kinetics, conformation, stability, and targeting of G-quadruplexes from a physiological perspective. Biochem Biophys Res Commun 2020; 531:84-87. [PMID: 32331835 DOI: 10.1016/j.bbrc.2020.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023]
Abstract
The particular enrichment of G-quadruplex-forming sequences near transcription start sites signifies the involvement of G-quadruplexes in the regulation of transcription. The characterization of G-quadruplex formation, which holds the key to understand the function it plays in physiological and pathological processes, is mostly performed under simplified in vitro experimental conditions. Formation of G-quadruplexes in cells, however, occurs in an environment far different from the ones in which the in vitro studies on G-quadruplexes are normally carried out. Therefore, the characteristics of G-quadruplex structures obtained under the in vitro conditions may not faithfully reveal how the G-quadruplexes would behave in a physiologically relevant situation. In this mini-review, we attempt to briefly summarize the differences in a few important characteristics, including kinetics, conformation, and stability of G-quadruplex formation observed under the two conditions to illustrate how the intracellular environment might affect the behavior of G-quadruplexes largely based on the previous work carried out in the authors' laboratory. We also propose that unstable G-quadruplex variants may be better drug target candidates to improve selectivity and potency.
Collapse
|
13
|
Bošković F, Zhu J, Chen K, Keyser UF. Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores. NANO LETTERS 2019; 19:7996-8001. [PMID: 31577148 DOI: 10.1021/acs.nanolett.9b03184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
G-quadruplexes (Gqs) are guanine-rich DNA structures formed by single-stranded DNA. They are of paramount significance to gene expression regulation, but also drug targets for cancer and human viruses. Current ensemble and single-molecule methods require fluorescent labels, which can affect Gq folding kinetics. Here we introduce, a single-molecule Gq nanopore assay (smGNA) to detect Gqs and kinetics of Gq formation. We use ∼5 nm solid-state nanopores to detect various Gq structural variants attached to designed DNA carriers. Gqs can be identified by localizing their positions along designed DNA carriers, establishing smGNA as a tool for Gq mapping. In addition, smGNA allows for discrimination of (un)folded Gq structures, provides insights into single-molecule kinetics of Gq folding, and probes quadruplex-to-duplex structural transitions. smGNA can elucidate the formation of Gqs at the single-molecule level without labeling and has potential implications on the study of these structures both in single-stranded DNA and in genomic samples.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
14
|
Bednářová K, Kejnovská I, Vorlíčková M, Renčiuk D. Guanine Substitutions Prevent Conformational Switch from Antiparallel to Parallel G-Quadruplex. Chemistry 2019; 25:13422-13428. [PMID: 31453656 DOI: 10.1002/chem.201903015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Guanine quadruplexes, recently reported to form in vivo, represent a broad spectrum of non-canonical conformations of nucleic acids. The actual conformation might differ between water solutions and crowding or dehydrating solutions that better reflect the conditions in the cell. Here we show, using spectroscopic techniques, that most guanine substitutions prevent the conformational switch from antiparallel or hybrid forms to parallel ones when induced by dehydrating agents. The inhibitory effect does not depend on the position of the substitution, but, interestingly, on the type of substitution and, to some extent, on its destabilising potential. A parallel form might be induced in some cases by ligands such as N-methyl mesoporphyrin IX and even this ligand-induced switch is inhibited by guanine substitution. The ability or inability to have a conformation switch, based on actual conditions, might significantly influence potential conformation-dependent quadruplex interactions.
Collapse
Affiliation(s)
- Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Michaela Vorlíčková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
15
|
Xia Y, Zheng KW, He YD, Liu HH, Wen CJ, Hao YH, Tan Z. Transmission of dynamic supercoiling in linear and multi-way branched DNAs and its regulation revealed by a fluorescent G-quadruplex torsion sensor. Nucleic Acids Res 2019; 46:7418-7424. [PMID: 29982790 PMCID: PMC6101514 DOI: 10.1093/nar/gky534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/31/2018] [Indexed: 01/20/2023] Open
Abstract
DNA supercoiling is an important regulator of gene activity. The transmission of transcription-generated supercoiling wave along a DNA helix provides a way for a gene being transcribed to communicate with and regulate its neighboring genes. Currently, the dynamic behavior of supercoiling transmission remains unclear owing to the lack of a suitable tool for detecting the dynamics of supercoiling transmission. In this work, we established a torsion sensor that quantitatively monitors supercoiling transmission in real time in DNA. Using this sensor, we studied the transmission of transcriptionally generated negative supercoiling in linear and multi-way DNA duplexes. We found that transcription-generated dynamic supercoiling not only transmits along linear DNA duplex but also equally diverges at and proceeds through multi-way DNA junctions. We also show that such a process is regulated by DNA–protein interactions and non-canonical DNA structures in the path of supercoiling transmission. These results imply a transcription-coupled mechanism of dynamic supercoiling-mediated intra- and inter-chromosomal signal transduction pathway and their regulation in DNA.
Collapse
Affiliation(s)
- Ye Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ke-Wei Zheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yi-de He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hong-He Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Cui-Jiao Wen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yu-Hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zheng Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
16
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
17
|
Di Fonzo S, Bottari C, Brady JW, Tavagnacco L, Caterino M, Petraccone L, Amato J, Giancola C, Cesàro A. Crowding and conformation interplay on human DNA G-quadruplex by ultraviolet resonant Raman scattering. Phys Chem Chem Phys 2019; 21:2093-2101. [DOI: 10.1039/c8cp04728f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The G-quadruplex-forming telomeric sequence (TTAGGG)4TT was investigated by polarized Ultraviolet Resonance Raman Scattering (UVRR) at 266 nm.
Collapse
Affiliation(s)
- Silvia Di Fonzo
- Elettra-Sincrotrone Trieste S. C. p. A
- Science Park
- Trieste
- Italy
| | - Cettina Bottari
- Elettra-Sincrotrone Trieste S. C. p. A
- Science Park
- Trieste
- Italy
- Department of Physics
| | - John W. Brady
- Department of Food Science
- Cornell University
- Ithaca
- USA
| | - Letizia Tavagnacco
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- Trieste
- Italy
| | - Marco Caterino
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | - Luigi Petraccone
- Department of Chemical Sciences
- University of Naples Federico II
- Naples
- Italy
| | - Jussara Amato
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | | | - Attilio Cesàro
- Elettra-Sincrotrone Trieste S. C. p. A
- Science Park
- Trieste
- Italy
- Department of Chemical and Pharmaceutical Sciences
| |
Collapse
|
18
|
Li D, Peng P, Yang Z, Lv B. Formation of G-quadruplex structure in supercoiled DNA under molecularly crowded conditions. RSC Adv 2019; 9:26248-26251. [PMID: 35531037 PMCID: PMC9070399 DOI: 10.1039/c9ra06370f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022] Open
Abstract
G-quadruplex is a secondary structure of nucleic acids that plays crucial roles in many significant biological processes. Potential G-quadruplex-forming sequences exist widely in various regions of the genome such as telomeres and gene promoters. In spite of the fact that G-quadruplex can be readily assembled from a single-stranded segment of DNA, its formation from duplex DNA is very difficult under physiological conditions because Watson–Crick interactions in guanine rich segments need to be weakened first. It is demonstrated in our studies that intrastrand G-quadruplex generated from a perfectly matched guanine-rich duplex in a circular DNA as a result of significant quadruplex stabilization and duplex destabilization created by the combined actions of negative DNA supercoiling and molecular crowding conditions. It is demonstrated that G-quadruplex generated from G-rich duplex in a circular DNA as a result of quadruplex stabilization and duplex destabilization created by the combined actions of negative DNA supercoiling and molecular crowding condition.![]()
Collapse
Affiliation(s)
- Dawei Li
- The Southern Modern Forestry Collaborative Innovation Center
- College of Biology and the Environment
- Nanjing Forestry University
- Nanjing
- China
| | - Peiwen Peng
- The Southern Modern Forestry Collaborative Innovation Center
- College of Biology and the Environment
- Nanjing Forestry University
- Nanjing
- China
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi
- China
| | - Bei Lv
- Jiangsu Key Laboratory for Biofunctional Molecules
- College of Life Science and Chemistry
- Jiangsu Second Normal University
- Nanjing
- China
| |
Collapse
|
19
|
Label-free fluorescent and electrochemical biosensors based on defective G-quadruplexes. Biosens Bioelectron 2018; 118:1-8. [DOI: 10.1016/j.bios.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
|
20
|
Chen SB, Liu GC, Gu LQ, Huang ZS, Tan JH. Identification of small molecules capable of regulating conformational changes of telomeric G-quadruplex. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Hasuike E, Akimoto AM, Kuroda R, Matsukawa K, Hiruta Y, Kanazawa H, Yoshida R. Reversible conformational changes in the parallel type G-quadruplex structure inside a thermoresponsive hydrogel. Chem Commun (Camb) 2017; 53:3142-3144. [DOI: 10.1039/c7cc00279c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the novel property of reversible regulation of parallel type G-quadruplexes with moderate temperature changes in thermoresponsive poly(N-isopropylacrylamide) hydrogels.
Collapse
Affiliation(s)
- Erika Hasuike
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology
- Tokyo University of Science
- Chiba
- Japan
| | - Ko Matsukawa
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Yuki Hiruta
- Faculty of Pharmacy
- Keio University
- Tokyo
- Japan
| | | | - Ryo Yoshida
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
22
|
Jin H, Liu Y, Xu T, Qu X, Bian F, Sun Q. Quantum Dots–Ligand Complex as Ratiometric Fluorescent Nanoprobe for Visual and Specific Detection of G-Quadruplex. Anal Chem 2016; 88:10411-10418. [DOI: 10.1021/acs.analchem.6b01967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haojun Jin
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqian Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianshu Xu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaojun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
23
|
Fu B, Huang J, Chen Y, Wang Y, Xue T, Xu G, Wang S, Zhou X. Right-handed and left-handed G-quadruplexes have the same DNA sequence: distinct conformations induced by an organic small molecule and potassium. Chem Commun (Camb) 2016; 52:10052-5. [PMID: 27452654 DOI: 10.1039/c6cc04866h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein, we report two distinct G-quadruplex conformations of the same G-rich oligonucleotide, regulated by a small molecule. This is the first report in which both right- and left-handed G-quadruplex conformations have been obtained from the same sequence. We discriminated these two distinct conformations and investigated their kinetics and thermodynamics.
Collapse
Affiliation(s)
- Boshi Fu
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao A, Zhao C, Tateishi-Karimata H, Ren J, Sugimoto N, Qu X. Incorporation of O(6)-methylguanine restricts the conformational conversion of the human telomere G-quadruplex under molecular crowding conditions. Chem Commun (Camb) 2016; 52:1903-6. [PMID: 26673900 DOI: 10.1039/c5cc09728b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we systematically studied the incorporation of O(6)-methylguanine (6mG) into different positions of the human telomere G-quadruplex. In contrast to the natural G-quadruplex, the 6mG incorporated G-quadruplexes impeded the conformational conversion of the G-quadruplex from a hybrid to a parallel structure under molecular crowding conditions in a K(+) containing buffer.
Collapse
Affiliation(s)
- Andong Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
25
|
Chan K, Yik-Sham Chung C, Wing-Wah Yam V. Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(ii) complex ensemble. Chem Sci 2016; 7:2842-2855. [PMID: 30090278 PMCID: PMC6055111 DOI: 10.1039/c5sc04563k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
The formation of supramolecular assemblies between [Pt(bzimpy-Et){C[triple bond, length as m-dash]CC6H4(CH2NMe3-4)}]Cl2 (1) and mPPE-Ala and the FRET properties of the ensemble have been revealed from the UV-vis absorption, steady-state emission and time-resolved emission decay studies. The two-component mPPE-Ala-1 ensemble has been employed in a "proof-of-principle" concept for label-free detection of G-quadruplex DNAs with the intramolecular propeller parallel folding topology, such as c-myc, in aqueous buffer solution. By the modulation of the aggregation/deaggregation of the polymer-metal complex aggregates and hence the FRET from the mPPE-Ala donor to the aggregated 1 as acceptor, the ensemble has been demonstrated for sensitive and selective label-free detection of c-myc via the monitoring of emission spectral changes of the ensemble. Ratiometric emission of the ensemble at 461 and 662 nm has been shown to distinguish the intramolecular propeller parallel G-quadruplex folding topology of c-myc from other G-quadruplex-forming sequences of different folding topologies, owing to the strong and specific interactions between c-myc and 1 as suggested by the UV-vis absorption and UV melting studies. In addition, the formation of high-order intermolecular multimeric G-quadruplexes from c-myc under molecular crowding conditions has been successfully probed by the ratiometric emission of the ensemble. The conformational and topological transition of human telomeric DNA from the mixed-hybrid form to the intramolecular propeller parallel form, as observed from the circular dichroism spectroscopy, has also been monitored by the ratiometric emission of the ensemble. The ability of the ensemble to detect these conformational and topological transitions of G-quadruplex DNAs has been rationalized by the excellent selectivity and sensitivity of the ensemble towards the intramolecular propeller parallel G-quadruplex DNAs and their high-order intermolecular multimers, which are due to the extra stabilization gained from Pt···Pt and π-π interactions in addition to the electrostatic and hydrophobic interactions found in the polymer-metal complex aggregates.
Collapse
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| |
Collapse
|
26
|
Rapid three-dimensional microfluidic mixer for high viscosity solutions to unravel earlier folding kinetics of G-quadruplex under molecular crowding conditions. Talanta 2016; 149:237-243. [DOI: 10.1016/j.talanta.2015.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023]
|
27
|
Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci U S A 2015; 112:14581-6. [PMID: 26553979 DOI: 10.1073/pnas.1516925112] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
G-quadruplex structures formed by guanine-rich nucleic acids are implicated in essential physiological and pathological processes and nanodevices. G-quadruplexes are normally composed of four Gn (n ≥ 3) tracts assembled into a core of multiple stacked G-quartet layers. By dimethyl sulfate footprinting, circular dichroism spectroscopy, thermal melting, and photo-cross-linking, here we describe a unique type of intramolecular G-quadruplex that forms with one G2 and three G3 tracts and bears a guanine vacancy (G-vacancy) in one of the G-quartet layers. The G-vacancy can be filled up by a guanine base from GTP or GMP to complete an intact G-quartet by Hoogsteen hydrogen bonding, resulting in significant G-quadruplex stabilization that can effectively alter DNA replication in vitro at physiological concentration of GTP and Mg(2+). A bioinformatic survey shows motifs of such G-quadruplexes are evolutionally selected in genes with unique distribution pattern in both eukaryotic and prokaryotic organisms, implying such G-vacancy-bearing G-quadruplexes are present and play a role in gene regulation. Because guanine derivatives are natural metabolites in cells, the formation of such G-quadruplexes and guanine fill-in (G-fill-in) may grant an environment-responsive regulation in cellular processes. Our findings thus not only expand the sequence definition of G-quadruplex formation, but more importantly, reveal a structural and functional property not seen in the standard canonical G-quadruplexes.
Collapse
|
28
|
Wang SK, Su HF, Gu YC, Lin SL, Tan JH, Huang ZS, Ou TM. Complicated behavior of G-quadruplexes and evaluating G-quadruplexes' ligands in various systems mimicking cellular circumstance. Biochem Biophys Rep 2015; 5:439-447. [PMID: 28955851 PMCID: PMC5600415 DOI: 10.1016/j.bbrep.2015.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023] Open
Abstract
Environments surrounding G-rich sequences remarkably affect the conformations of these structures. A proper evaluation system mimicking the crowded environment in a cell with macromolecules should be developed to perform structural and functional studies on G-quadruplexes. In this study, the topology and stability of a G-quadruplex formed by human telomeric repeat sequences were investigated in a macromolecule-crowded environment created by polyethylene glycol 200 (PEG200), tumor cell extract, and Xenopus laevis egg extract. The interactions between small molecules and telomeric G-quadruplexes were also evaluated in the different systems. The results suggested that the actual behavior of G-quadruplex structures in cells extract is quite different from that in the PEG crowding system, and proteins or other factors in extracts might play a very important role in G-quadruplex structures. Cell-free system was constructed using HL60 cell extract. Topologies and stability of G-quadruplexes were identified in different systems. G-quadruplex’s ligands’ effects were evaluated in different systems.
Collapse
Affiliation(s)
- Shi-Ke Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Hua-Fei Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Yu-Chao Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Shu-Ling Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| |
Collapse
|
29
|
Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay. Biochimie 2015; 115:194-202. [DOI: 10.1016/j.biochi.2015.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/06/2015] [Indexed: 11/18/2022]
|
30
|
Reilly SM, Morgan RK, Brooks TA, Wadkins RM. Effect of interior loop length on the thermal stability and pK(a) of i-motif DNA. Biochemistry 2015; 54:1364-70. [PMID: 25619229 DOI: 10.1021/bi5014722] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The four-stranded i-motif (iM) conformation of cytosine-rich DNA is important in a wide variety of biochemical systems ranging from its use in nanomaterials to a potential role in oncogene regulation. An iM is stabilized by acidic pH that allows hemiprotonated cytidines to form a C·C(+) base pair. Fundamental studies that aim to understand how the lengths of loops connecting the protonated C·C(+) pairs affect intramolecular iM physical properties are described here. We characterized both the thermal stability and the pK(a) of intramolecular iMs with differing loop lengths, in both dilute solutions and solutions containing molecular crowding agents. Our results showed that intramolecular iMs with longer central loops form at pHs and temperatures higher than those of iMs with longer outer loops. Our studies also showed that increases in thermal stability of iMs when molecular crowding agents are present are dependent on the loop that is lengthened. However, the increase in pK(a) for iMs when molecular crowding agents are present is insensitive to loop length. Importantly, we also determined the proton activity of solutions containing high concentrations of molecular crowding agents to ascertain whether the increase in pK(a) of an iM is caused by alteration of this activity in buffered solutions. We determined that crowding agents alone increase the apparent pK(a) of a number of small molecules as well as iMs but that increases to iM pK(a) were greater than that expected from a shift in proton activity.
Collapse
Affiliation(s)
- Samantha M Reilly
- Department of Chemistry and Biochemistry, University of Mississippi , University, Mississippi 38677, United States
| | | | | | | |
Collapse
|
31
|
Marchand A, Granzhan A, Iida K, Tsushima Y, Ma Y, Nagasawa K, Teulade-Fichou MP, Gabelica V. Ligand-induced conformational changes with cation ejection upon binding to human telomeric DNA G-quadruplexes. J Am Chem Soc 2015; 137:750-6. [PMID: 25525863 DOI: 10.1021/ja5099403] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rational design of ligands targeting human telomeric DNA G-quadruplexes is a complex problem due to the structural polymorphism that these sequences can adopt in physiological conditions. Moreover, the ability of ligands to switch conformational equilibria between different G-quadruplex structures is often overlooked in docking approaches. Here, we demonstrate that three of the most potent G-quadruplex ligands (360A, Phen-DC3, and pyridostatin) induce conformational changes of telomeric DNA G-quadruplexes to an antiparallel structure (as determined by circular dichroism) containing only one specifically coordinated K(+) (as determined by electrospray mass spectrometry) and, hence, presumably only two consecutive G-quartets. Control ligands TrisQ, known to bind preferentially to hybrid than to antiparallel structures, and L2H2-6M(2)OTD, known not to disrupt the hybrid-1 structure, did not show such K(+) removal. Instead, binding of the cyclic oxazole L2H2-6M(2)OTD was accompanied by the uptake of one additional K(+). Also contrasting with telomeric G-quadruplexes, the parallel-stranded Pu24-myc G-quadruplex, to which Phen-DC3 is known to bind by end-stacking, did not undergo cation removal upon ligand binding. Our study therefore evidences that very affine ligands can induce conformational switching of the human telomeric G-quadruplexes to an antiparallel structure and that this conformational change is accompanied by removal of one interquartet cation.
Collapse
Affiliation(s)
- Adrien Marchand
- IECB, ARNA Laboratory, University of Bordeaux , 33600 Pessac, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Verdian Doghaei A, Housaindokht M, Bozorgmehr M. Molecular crowding effects on conformation and stability of G-quadruplex DNA structure: Insights from molecular dynamics simulation. J Theor Biol 2015; 364:103-12. [DOI: 10.1016/j.jtbi.2014.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022]
|
33
|
Xu B, Zhao C, Chen Y, Tateishi-Karimata H, Ren J, Sugimoto N, Qu X. Methyl Substitution Regulates the Enantioselectivity of Supramolecular Complex Binding to Human Telomeric G-Quadruplex DNA. Chemistry 2014; 20:16467-72. [DOI: 10.1002/chem.201404854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Indexed: 01/23/2023]
|
34
|
Feng S, Wu F, Xu J, Chen Y, Zhou X. Regulation of DNA strand displacement using a G-quadruplex-mediated toehold. RSC Adv 2014. [DOI: 10.1039/c4ra09516b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Yang X, Han Q, Zhang Y, Wu J, Tang X, Dong C, Liu W. Determination of free tryptophan in serum with aptamer--comparison of two aptasensors. Talanta 2014; 131:672-7. [PMID: 25281158 DOI: 10.1016/j.talanta.2014.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 01/02/2023]
Abstract
Two aptasensors based on graphene oxide (GO) and molecular beacon were designed for the detection of L-tryptophan (L-Trp) using L-Trp aptamer (Trp3a-1). The fluorescein (FAM) labeled Trp3a-1 was absorbed by GO, which resulted in the fluorescence quenching, and exhibiting minimal background fluorescence. Upon the addition of L-Trp, Trp3a-1 was not absorbed quickly. This effect allows for a quantitative assay of L-Trp over the concentration range of 10-500 μM and with a detection limit of 6.84 μM. However, due to the unspecific adsorption of GO, the GO based aptasensor can't be applied in complex matrixes. In respect of molecular beacon based aptasensor, FRET between Trp3a-1 labeled with FAM and CS-Trp3a-1 labeled with BHQ-1(black hole quencher-1) which is partially complementary with the aptamer was used to detect L-Trp. L-Trp binding could induce the disassociation of CS-Trp3a-1, resulted in the enhancement of fluorescence in solution. With an excellent linear relationship in 10-500 μM and a detection limit of 6.97 μM in 25% serum, the aptasensor is expected to be improved for the detection of free L-Trp in other complex samples.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qingxin Han
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yange Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiang Wu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunxu Dong
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
36
|
Parrotta L, Ortuso F, Moraca F, Rocca R, Costa G, Alcaro S, Artese A. Targeting unimolecular G-quadruplex nucleic acids: a new paradigm for the drug discovery? Expert Opin Drug Discov 2014; 9:1167-87. [PMID: 25109710 DOI: 10.1517/17460441.2014.941353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION G-quadruplexes (G4s) are targets of great interest because of their roles in crucial biological processes, such as aging and cancer. G4s are based on the formation of G-quartets, stabilised by Hoogsteen-type hydrogen bonds and by interaction with cations between the tetrads. These biologically relevant conformations were first discovered in eukaryotic chromosomal telomeric DNA, but have also been found in the proximal location of promoters in a number of human genes. Therefore, the extensive analysis of an intriguing target could move towards the rational drug design of new selective anticancer agents. AREAS COVERED The authors review G4 structural characterisation, with detailed insight related to the polymorphism issue. The authors describe the topologically distinct G4 structural forms and the factors involved in their interconversion mechanisms, such as the sequence of the oligonucleotides, the strand stoichiometry and orientation, the syn-anti conformation of the guanine glycosidic bonds and the G4 loop types and the environmental factors. Furthermore, the authors report several studies related to folding and unfolding kinetic profiles in order to understand the conformational view of monomolecular G4 formations. EXPERT OPINION G4 unimolecular nucleic acids can be considered as valid targets for the rational drug development of novel anticancer agents. Structural biology represents an essential link between the biology and medicinal chemistry knowledge in this field. In silico methods have already been demonstrated to be useful, especially if well integrated with biophysical tests. If this proves successful, the G4-targeting paradigm could also be extended to drug discovery beyond neoplastic pathologies.
Collapse
Affiliation(s)
- Lucia Parrotta
- Università degli Studi "Magna Græcia", Dipartimento di Scienze della Salute , Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro , Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Liu C, Feng X, Xu Y, Liu BF. Ultrafast Microfluidic Mixer for Tracking the Early Folding Kinetics of Human Telomere G-Quadruplex. Anal Chem 2014; 86:4333-9. [DOI: 10.1021/ac500112d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ying Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youzhi Xu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
38
|
Zhang JY, Zheng KW, Xiao S, Hao YH, Tan Z. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA. J Am Chem Soc 2014; 136:1381-90. [PMID: 24392825 DOI: 10.1021/ja4085572] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently reported that a DNA:RNA hybrid G-quadruplex (HQ) forms during transcription of DNA that bears two or more tandem guanine tracts (G-tract) on the nontemplate strand. Putative HQ-forming sequences are enriched in the nearby 1000 nt region right downstream of transcription start sites in the nontemplate strand of warm-blooded animals, and HQ regulates transcription under both in vitro and in vivo conditions. Therefore, knowledge of the mechanism of HQ formation is important for understanding the biological function of HQ as well as for manipulating gene expression by targeting HQ. In this work, we studied the mechanism of HQ formation using an in vitro T7 transcription model. We show that RNA synthesis initially produces an R-loop, a DNA:RNA heteroduplex formed by a nascent RNA transcript and the template DNA strand. In the following round of transcription, the RNA in the R-loop is displaced, releasing the RNA in single-stranded form (ssRNA). Then the G-tracts in the RNA can jointly form HQ with those in the nontemplate DNA strand. We demonstrate that the structural cascade R-loop → ssRNA → HQ offers opportunities to intercept HQ formation, which may provide a potential method to manipulate gene expression.
Collapse
Affiliation(s)
- Jia-yu Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Sugimoto N. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:205-73. [PMID: 24380597 DOI: 10.1016/b978-0-12-800046-5.00008-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
40
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
41
|
Recent progress in G-quadruplex DNA in deep eutectic solvent. Methods 2013; 64:52-8. [DOI: 10.1016/j.ymeth.2013.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/20/2022] Open
|
42
|
Affiliation(s)
- Yuhao Du
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Hubei; Wuhan; 430072; P. R. China
| |
Collapse
|
43
|
Buscaglia R, Miller MC, Dean WL, Gray RD, Lane AN, Trent JO, Chaires JB. Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection. Nucleic Acids Res 2013; 41:7934-46. [PMID: 23804761 PMCID: PMC3763525 DOI: 10.1093/nar/gkt440] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the ‘hybrid’ conformation to an all-parallel ‘propeller’ conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation.
Collapse
Affiliation(s)
- Robert Buscaglia
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock, Louisville, KY, 40202
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhao C, Ren J, Qu X. G-quadruplexes form ultrastable parallel structures in deep eutectic solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1183-1191. [PMID: 23282194 DOI: 10.1021/la3043186] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
G-quadruplex DNA is highly polymorphic. Its conformation transition is involved in a series of important life events. These controllable diverse structures also make G-quadruplex DNA a promising candidate as catalyst, biosensor, and DNA-based architecture. So far, G-quadruplex DNA-based applications are restricted done in aqueous media. Since many chemical reactions and devices are required to be performed under strictly anhydrous conditions, even at high temperature, it is challenging and meaningful to conduct G-quadruplex DNA in water-free medium. In this report, we systemically studied 10 representative G-quadruplexes in anhydrous room-temperature deep eutectic solvents (DESs). The results indicate that intramolecular, intermolecular, and even higher-order G-quadruplex structures can be formed in DES. Intriguingly, in DES, parallel structure becomes the G-quadruplex DNA preferred conformation. More importantly, compared to aqueous media, G-quadruplex has ultrastability in DES and, surprisingly, some G-quadruplex DNA can survive even beyond 110 °C. Our work would shed light on the applications of G-quadruplex DNA to chemical reactions and DNA-based devices performed in an anhydrous environment, even at high temperature.
Collapse
Affiliation(s)
- Chuanqi Zhao
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | |
Collapse
|
45
|
Huang Z, Ren J, Yang W, Qu X. Molecular crowding-facilitated synthesis of DNA-templated Ag nanoclusters with enhanced fluorescence emission and quantum yield. Chem Commun (Camb) 2013; 49:10856-8. [DOI: 10.1039/c3cc46025h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Fujimoto T, Nakano SI, Sugimoto N, Miyoshi D. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions. J Phys Chem B 2012; 117:963-72. [PMID: 23153339 DOI: 10.1021/jp308402v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.
Collapse
Affiliation(s)
- Takeshi Fujimoto
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
47
|
Telomere- and telomerase-interacting protein that unfolds telomere G-quadruplex and promotes telomere extension in mammalian cells. Proc Natl Acad Sci U S A 2012. [PMID: 23184978 DOI: 10.1073/pnas.1200232109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomere extension by telomerase is essential for chromosome stability and cell vitality. Here, we report the identification of a splice variant of mammalian heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), hnRNP A2*, which binds telomeric DNA and telomerase in vitro. hnRNP A2* colocalizes with telomerase in Cajal bodies and at telomeres. In vitro assays show that hnRNP A2* actively unfolds telomeric G-quadruplex DNA, exposes 5 nt of the 3' telomere tail and substantially enhances the catalytic activity and processivity of telomerase. The expression level of hnRNP A2* in tissues positively correlates with telomerase activity, and overexpression of hnRNP A2* leads to telomere elongation in vivo. Thus, hnRNP A2* plays a positive role in unfolding telomere G-quadruplexes and in enhancing telomere extension by telomerase.
Collapse
|
48
|
Li Y, Xu Y, Feng X, Liu BF. A rapid microfluidic mixer for high-viscosity fluids to track ultrafast early folding kinetics of G-quadruplex under molecular crowding conditions. Anal Chem 2012; 84:9025-32. [PMID: 23020167 DOI: 10.1021/ac301864r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tracking the folding kinetics of macromolecules under molecular crowding conditions represents a tremendous challenge due to the high viscosity of the solution. In this paper, we report a unique T-type microfluidic mixer with seven consecutive ω-shaped baffles for fast mixing of high-viscosity fluids. Numerical simulations and experimental characterizations proved that the micromixer could achieve a mixing time of 579.4 μs for solutions with viscosities about 33.6 times that of pure water. Over a 1000-fold improvement in mixing dead time was accomplished in comparison to those reported previously. We further used this highly efficient micromixer to track the early folding kinetics of human telomere G-quadruplex under molecular crowding conditions. Results indicated an exponential process in the initial folding phase of G-quadruplex, and the G-quadruplex formed a more compact structure under higher degrees of molecular crowding conditions.
Collapse
Affiliation(s)
- Ying Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
49
|
Miyoshi D, Fujimoto T, Sugimoto N. Molecular Crowding and Hydration Regulating of G-Quadruplex Formation. Top Curr Chem (Cham) 2012; 330:87-110. [DOI: 10.1007/128_2012_335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Petraccone L, Pagano B, Giancola C. Studying the effect of crowding and dehydration on DNA G-quadruplexes. Methods 2012; 57:76-83. [PMID: 22406490 DOI: 10.1016/j.ymeth.2012.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/01/2023] Open
Abstract
Intracellular environment is crowded with biomolecules that occupy a significant fraction (up to 40%) of the cellular volume, with a total concentration in the range 300-400mg/ml. Recently, the effect of crowding/dehydrating agents on the DNA G-quadruplexes has become a subject of an increasing interest. Crowding and/or dehydrating agents have been used to simulate how G-quadruplexes behave under cell-mimicking conditions characterized by a large excluded volume and a lower water activity. Indeed, the presence of both steric crowding and a lower water activity can affect G-quadruplex stability, their folding/unfolding kinetics, as well as their binding processes with proteins or small ligands. Many of these effects can be explored experimentally by measuring the dependence of the conformational stability, isomerisation kinetics and equilibria on the concentration of cosolutes which do not interact with the molecules (G-quadruplexes) under investigation. Spectroscopic methodologies, like circular dichroism, UV and fluorescence, have been widely employed to study G-quadruplexes in dilute solution. Here we focus on some aspects that need to be taken into account when employing such techniques in the presence of large amount of a cosolute. Additionally, we discuss possible problems/artifacts that arise in setting experiments in presence of these commonly employed cosolutes and in interpreting the results.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | | | | |
Collapse
|