1
|
Gwinn R, Williams M, Latendresse TP, Slebodnick C, Troya D, Tarannum T, Thornton DA. Synthesis, Characterization, and the Effect of Lewis Bases on the Nuclearity of Iron Alkoxide Complexes. Inorg Chem 2024; 63:7692-7704. [PMID: 38608180 PMCID: PMC11061831 DOI: 10.1021/acs.inorgchem.3c04538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Inspired by the potential of alkoxides as weak-field ligands and their ability to bridge, we report herein a series of high-spin iron complexes supported by a bis-alkoxide framework PhDbf. A diiron complex [Fe2(PhDbf)2] (1a) is obtained upon metalation of the ligand, whereas addition of substituted pyridines affords five-coordinate mononuclear iron complexes [(R-Py)2Fe(PhDbf)] (2a-4a, R = H, p-tBu, p-CF3). The potential for nuclearity control of the metal complexes via auxiliary ligands is highlighted by the formation of asymmetric diiron species [(p-CF3-Py)Fe2(PhDbf)2] (5a) and [(m-CF3-Py)Fe2(PhDbf)2] (6a) with trifluoromethyl substituted pyridines, while electron-rich pyridines only produced monomeric species. Electronic properties analysis via UV-vis, electron paramagnetic resonance, 57Fe Mössbauer spectroscopy, and time-dependent density functional theory, along with redox capabilities of these complexes are reported to illustrate the effect of nuclearity on reactivity and the potential of these complexes to access higher oxidation states relevant in oxidative chemistry. Species 1a-5a, [(THF)2Fe(PhDbf)][PF6] (7), [PyFe(PhDbf)Cl] (2b), and [Py2Fe(PhDbf)][PF6] (2c) were characterized via SCXRD. Indirect evidence for the formation of dimeric Fe(III) species (1b, 5b, and 6b) is discussed.
Collapse
Affiliation(s)
- Reilly
K. Gwinn
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Matthew Williams
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Trevor P. Latendresse
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Carla Slebodnick
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Tasnema Tarannum
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Diana A. Thornton
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Bhutto SM, Hooper RX, McWilliams SF, Mercado BQ, Holland PL. Iron(iv) alkyl complexes: electronic structure contributions to Fe-C bond homolysis and migration reactions that form N-C bonds from N 2. Chem Sci 2024; 15:3485-3494. [PMID: 38455018 PMCID: PMC10915813 DOI: 10.1039/d3sc05939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
High-valent iron alkyl complexes are rare, as they are prone to Fe-C bond homolysis. Here, we describe an unusual way to access formally iron(iv) alkyl complexes through double silylation of iron(i) alkyl dinitrogen complexes to form an NNSi2 group. Spectroscopically validated computations show that the disilylehydrazido(2-) ligand stabilizes the formal iron(iv) oxidation state through a strongly covalent Fe-N π-interaction, in which one π-bond fits an "inverted field" description. This means that the two bonding electrons are localized more on the metal than the ligand, and thus an iron(ii) resonance structure is a significant contributor, similar to the previously-reported phenyl analogue. However, in contrast to the phenyl complex which has an S = 1 ground state, the ground state of the alkyl complex is S = 2, which places one electron in the π* orbital, leading to longer and weaker Fe-N bonds. The reactivity of these hydrazido(2-) complexes is dependent on the steric and electronic properties of the specific alkyl group. When the alkyl group is the bulky trimethylsilylmethyl, the formally iron(iv) species is stable at room temperature and no migration of the alkyl ligand is observed. However, the analogous complex with the smaller methyl ligand does indeed undergo migration of the carbon-based ligand to the NNSi2 group to form a new N-C bond. This migration is followed by isomerization of the hydrazido ligand, and the product exists as two isomers that have distinct η1 and η2 binding of the hydrazido group. Lastly, when the alkyl group is benzyl, the Fe-C bond homolyzes to give a three-coordinate hydrazido(2-) complex which is likely due to the greater stability of a benzyl radical compared to that for methyl or trimethylsilylmethyl. These studies demonstrate the availability of a hydrocarbyl migration pathway at formally iron(iv) centers to form new N-C bonds directly to N2, though product selectivity is highly dependent on the identity of the migrating group.
Collapse
Affiliation(s)
- Samuel M Bhutto
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Reagan X Hooper
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Sean F McWilliams
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Patrick L Holland
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| |
Collapse
|
3
|
Scott JS, Schneider JE, Tewelde EG, Gardner JG, Anferov SW, Filatov AS, Anderson JS. Combining Donor Strength and Oxidative Stability in Scorpionates: A Strongly Donating Fluorinated Mesoionic Tris(imidazol-5-ylidene)borate Ligand. Inorg Chem 2023; 62:21224-21232. [PMID: 38051936 DOI: 10.1021/acs.inorgchem.3c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Strongly donating scorpionate ligands support the study of high-valent transition metal chemistry; however, their use is frequently limited by oxidative degradation. To address this concern, we report the synthesis of a tris(imidazol-5-ylidene)borate ligand featuring trifluoromethyl groups surrounding its coordination pocket. This ligand represents the first example of a chelating poly(imidazol-5-ylidene) mesoionic carbene ligand, a scaffold that is expected to be extremely donating. The {NiNO}10 complex of this ligand, as well as that of a previously reported strongly donating tris(imidazol-2-ylidene)borate, has been synthesized and characterized. This new ligand's strong donor properties, as measured by the υNO of its {NiNO}10 complex and natural bonding orbital second-order perturbative energy analysis, are at par with those of the well-studied alkyl-substituted tris(imidazol-2-ylidene)borates, which are known to effectively stabilize high-valent intermediates. The good donor properties of this ligand, despite the electron-withdrawing trifluoromethyl substituents, arise from the strongly donating imidazol-5-ylidene mesoionic carbene arms. These donor properties, when combined with the robustness of trifluoromethyl groups toward oxidative decomposition, suggest this ligand scaffold will be a useful platform in the study of oxidizing high-valent transition-metal species.
Collapse
Affiliation(s)
- Joseph S Scott
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Eyob G Tewelde
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel G Gardner
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Gao Y, Smith JM. Enabling Nucleophilic Reactivity in High-Spin Fe(II) Imido Complexes: From Elementary Steps to Cooperative Catalysis. Acc Chem Res 2023; 56:3392-3403. [PMID: 37955993 DOI: 10.1021/acs.accounts.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ConspectusTransition metal complexes featuring an M═NR bond have received great attention as critical intermediates in the synthesis of nitrogen-containing compounds. In general, the properties of the imido ligand in these complexes are dependent on the nature of the metal center. Thus, the imido ligand tends to be nucleophilic in early transition metal complexes and electrophilic in late transition metal complexes. Nonetheless, the supporting ligand can have a dramatic effect on its reactivity. For example, there are sporadic examples of nucleophilic late transition metal imido complexes, often based on strongly donating supporting ligands. Building on these earlier works, in this Article, we show that the imido ligand in a low-coordinate high-spin bis(carbene)borate Fe(II) complex is able to access previously unknown reaction pathways, ultimately leading to new catalytic transformations. We first focus on the synthesis, characterization, and stoichiometric reactivity of a highly nucleophilic Fe(II) imido complex. The entry point for this system is the intermediate-spin three-coordinate Fe(III) imido complex, which is generated from the reaction of an Fe(I) synthon with an organic azide. Alkali metal reduction leads to a series of M+ (M = Li, Na, K) coordinated and charge-separated (M = K(18-C-6)) high-spin Fe(II) imido complexes, all of which have been isolated and fully characterized. Combined with the electronic structure calculations, these results reveal that the alkali ions moderately polarize the Fe═N bond according to K+ ≈ Na+ < Li+. As a result, the basicity of the imido ligand increases from the charged separated complex to K+, Na+, and Li+ coordinated complexes, as validated by intermolecular proton transfer equilibria. The impact of the counterion on imido ligand reactivity is demonstrated through protonation, alkylation, and hydrogen atom abstraction reactions. The counterion also directs the outcome of [2 + 2] reactions with benzophenone, where alkali coordination facilitates double bond metathesis. Building from here, we describe how the unusual nucleophilicity of the high-spin Fe(II) imido complex revealed in stoichiometric reactions can be extended to new catalytic transformations. For example, a [2 + 2] cycloaddition reaction serves as the basis for the catalytic guanylation of carbodiimides under mild conditions. More interestingly, this complex also exhibits the first ene-like reactivity of an M═NR bond in reactions with alkynes, nitriles, and alkenes. These transformations form the basis of catalytic alkyne and nitrile α-deuteration and pKa-dictated alkene transposition reactions, respectively. Mechanistic studies reveal the critical role of metal-ligand cooperativity in facilitating these catalytic transformations and suggest the new avenues for transition metal imido complexes in catalysis that extend beyond classical nitrene transfer chemistry.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Zars E, Pick L, Swain A, Bhunia M, Carroll PJ, Munz D, Meyer K, Mindiola DJ. Iron-Catalyzed Intermolecular C-H Amination Assisted by an Isolated Iron-Imido Radical Intermediate. Angew Chem Int Ed Engl 2023:e202311749. [PMID: 37815099 DOI: 10.1002/anie.202311749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Here we report the use of a base metal complex [(tBu pyrpyrr2 )Fe(OEt2 )] (1-OEt2 ) (tBu pyrpyrr2 2- =3,5-tBu2 -bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3 -H bonds of 9,10-dihydroanthracene (2 a) using 2,4,6-trimethyl phenyl azide (3 a) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1-OEt2 with control in selectivity for single C-H amination versus double C-H amination. Catalytic C-H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBu pyrpyrr2 )Fe{=N(2,6-Me2 -4-tBu-C6 H2 )] (1-imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1-imido reacts with 2 a to produce the ferrous aniline adduct [(tBu pyrpyrr2 )Fe{NH(2,6-Me2 -4-tBu-C6 H2 )(C14 H11 )}] (1-aniline) in 45 % yield. Lastly, it was found that complexes 1-imido and 1-aniline are both competent intermediates in catalytic intermolecular C-H amination.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Lisa Pick
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Abinash Swain
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| |
Collapse
|
6
|
Xiong J, Liu Q, Lavina B, Hu MY, Zhao J, Alp EE, Deng L, Ye S, Guo Y. Spin polarization assisted facile C-H activation by an S = 1 iron(iv)-bisimido complex: a comprehensive spectroscopic and theoretical investigation. Chem Sci 2023; 14:2808-2820. [PMID: 36937578 PMCID: PMC10016330 DOI: 10.1039/d2sc06273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
High valent iron terminal imido species (Fe[double bond, length as m-dash]NR) have been shown to be key reactive intermediates in C-H functionalization. However, the detailed structure-reactivity relationship in Fe[double bond, length as m-dash]NR species derived from studies of structurally well-characterized high-valent Fe[double bond, length as m-dash]NR complexes are still scarce, and the impact of imido N-substituents (electron-donating vs. electron-withdrawing) on their electronic structures and reactivities has not been thoroughly explored. In this study, we report spectroscopic and computational studies on a rare S = 1 iron(iv)-bisimido complex featuring trifluoromethyl groups on the imido N-substituents, [(IPr)Fe(NC(CF3)2Ph)2] (2), and two closely related S = 0 congeners bearing alkyl and aryl substituents, [(IPr)Fe(NC(CMe3)2Ph)2] (3) and [(IPr)Fe(NDipp)2] (1), respectively. Compared with 1 and 3, 2 exhibits a decreased Fe[double bond, length as m-dash]NR bond covalency due to the electron-withdrawing and the steric effect of the N-substituents, which further leads to a pseudo doubly degenerate ground electronic structure and spin polarization induced β spin density on the imido nitrogens. This unique electronic structure, which differs from those of the well-studied Fe(iv)-oxido complexes and many previously reported Fe(iv)-imido complexes, provides both kinetic and thermodynamic advantages for facile C-H activation, compared to the S = 0 counterparts.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Qing Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
- Center for Advanced Radiation Sources, University of Chicago Chicago Illinois 60439 USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
7
|
Gao Y, Pink M, Smith JM. Alkali Metal Ions Dictate the Structure and Reactivity of an Iron(II) Imido Complex. J Am Chem Soc 2022; 144:1786-1794. [DOI: 10.1021/jacs.1c11429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M. Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Yang PC, Yu KP, Hsieh CT, Zou J, Fang CT, Liu HK, Pao CW, Deng L, Cheng MJ, Lin CY. Stabilization of a high-spin three-coordinate Fe(III) imidyl complex by radical delocalization. Chem Sci 2022; 13:9637-9643. [PMID: 36091897 PMCID: PMC9400638 DOI: 10.1039/d2sc02699f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
High-spin, late transition metal imido complexes have attracted significant interest due to their group transfer reactivity and catalytic C−H activation of organic substrates. Reaction of a new two-coordinate iron complex,...
Collapse
Affiliation(s)
- Po-Chun Yang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Kuan-Po Yu
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Junjie Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Chia-Te Fang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 300092 Taiwan
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chun-Yi Lin
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| |
Collapse
|
9
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Richards CA, Rath NP, Neely JM. Iron-Catalyzed Alkyne Carboamination via an Isolable Iron Imide Complex. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Corey A. Richards
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Jamie M. Neely
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
11
|
Park Y, Semproni SP, Zhong H, Chirik PJ. Synthesis, Electronic Structure, and Reactivity of a Planar Four‐Coordinate, Cobalt–Imido Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoonsu Park
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Scott P. Semproni
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Hongyu Zhong
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Paul J. Chirik
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| |
Collapse
|
12
|
Park Y, Semproni SP, Zhong H, Chirik PJ. Synthesis, Electronic Structure, and Reactivity of a Planar Four‐Coordinate, Cobalt–Imido Complex. Angew Chem Int Ed Engl 2021; 60:14376-14380. [DOI: 10.1002/anie.202104320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/16/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Yoonsu Park
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Scott P. Semproni
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Hongyu Zhong
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Paul J. Chirik
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| |
Collapse
|
13
|
Gao Y, Carta V, Pink M, Smith JM. Catalytic Carbodiimide Guanylation by a Nucleophilic, High Spin Iron(II) Imido Complex. J Am Chem Soc 2021; 143:5324-5329. [PMID: 33793235 DOI: 10.1021/jacs.1c02068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduction of the three-coordinate iron(III) imido [Ph2B(tBuIm)2Fe═NDipp] (1) affords [Ph2B(tBuIm)2Fe═NDipp][K(18-C-6)THF2] (2), a rare example of a high-spin (S = 2) iron(II) imido complex. Unusually for a late metal imido complex, the imido ligand in 2 has nucleophilic character, as demonstrated by the reaction with DippNH2, which establishes an equilibrium with the bis(anilido) complex [Ph2B(tBuIm)2Fe(NHDipp)2][K(18-C-6)THF2] (3). In an unusual transformation, formal insertion of iPrN═C═NiPr into the Fe═N(imido) bond yields the guanidinate [Ph2B(tBuIm)2Fe(iPrN)2CNDipp][K(18-C-6)THF2] (4). Reaction of 4 with excess DippNH2 provides 3, along with the guanidine (iPrNH)2C═NDipp. As suggested by these stoichiometric reactions, 2 is an efficient catalyst for the guanylation of carbodiimides, converting a wide range of aniline substrates under mild conditions.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Bezdek MJ, Pelczer I, Chirik PJ. Coordination-Induced N–H Bond Weakening in a Molybdenum Pyrrolidine Complex: Isotopic Labeling Provides Insight into the Pathway for H 2 Evolution. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Máté J. Bezdek
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - István Pelczer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Reactions of a Bis(vinyltrimethylsilane)nickel(0) N-Heterocyclic carbene complex with organic azides. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Sengupta D, Sandoval-Pauker C, Schueller E, Encerrado-Manriquez AM, Metta-Magaña A, Lee WY, Seshadri R, Pinter B, Fortier S. Isolation of a Bimetallic Cobalt(III) Nitride and Examination of Its Hydrogen Atom Abstraction Chemistry and Reactivity toward H 2. J Am Chem Soc 2020; 142:8233-8242. [PMID: 32279486 DOI: 10.1021/jacs.0c00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)x][(ketguan)Co(N3)2] (ketguan = [(tBu2CN)C(NDipp)2]-, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride Na(THF)4{[(ketguan)Co(N3)]2(μ-N)} (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a CoIII═N═CoIII canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other group 9 bridging nitride complexes, no radical character is detected at the bridging N atom of 1. Indeed, 1 is unreactive toward weak C-H donors and even cocrystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1·CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [(ketguan)Co(N3)(py)]2 (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/Co(III) bridged imido species [(ketguan)Co(py)][(ketguan)Co](μ-NH)(μ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ∼ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5 ± 0.1, supportive of a HAA formation pathway. The reactivity of our system was further probed by photolyzing benzene/pyridine solutions of 4a under H2 and D2 atmospheres (150 psi), which leads to the exclusive formation of the bis(imido) complexes [(ketguan)Co(μ-NH)]2 (6) and [(ketguan)Co(μ-ND)]2 (6-D), respectively, as a result of dihydrogen activation. These results provide unique insights into the chemistry and electronic structure of late 3d metal nitrides while providing entryway into C-H activation pathways.
Collapse
Affiliation(s)
- Debabrata Sengupta
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | | | - Emily Schueller
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ram Seshadri
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
17
|
Wasada-Tsutsui Y, Wasada H, Suzuki T, Katayama A, Kajita Y, Inomata T, Ozawa T, Masuda H. Efficient Electronic Structure to Stabilize N2
-Bridged Dinuclear Complexes Intended for N2
Activation: Iminophosphorane Iron(I) and Cobalt(I). Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuko Wasada-Tsutsui
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Hiroaki Wasada
- Faculty of Regional Studies; Gifu University; Yanagido Gifu 501-1193 Japan
| | - Tatsuya Suzuki
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Akira Katayama
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Yuji Kajita
- Department of Applied Chemistry; Faculty of Engineering; Aichi Institute of Technology; 1247 Yachigusa, Yakusa-cho Toyota 470-0392 Japan
| | - Tomohiko Inomata
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomohiro Ozawa
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Hideki Masuda
- Department of Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
- Department of Applied Chemistry; Faculty of Engineering; Aichi Institute of Technology; 1247 Yachigusa, Yakusa-cho Toyota 470-0392 Japan
| |
Collapse
|
18
|
Baek Y, Hennessy ET, Betley TA. Direct Manipulation of Metal Imido Geometry: Key Principles to Enhance C-H Amination Efficacy. J Am Chem Soc 2019; 141:16944-16953. [PMID: 31550162 DOI: 10.1021/jacs.9b09015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the catalytic C-H amination mediated by an isolable CoIII imido complex (TrL)Co(NR) supported by a sterically demanding dipyrromethene ligand (TrL = 5-mesityl-1,9-(trityl)dipyrrin). Metalation of (TrL)Li with CoCl2 in THF afforded a high-spin (S = 3/2) three-coordinate complex (TrL)CoCl. Chemical reduction of (TrL)CoCl with potassium graphite yielded the high-spin (S = 1) CoI synthon (TrL)Co which is stabilized through an intramolecular η6-arene interaction. Treatment of (TrL)Co with a stoichiometric amount of 1-azidoadamantane (AdN3) furnished a three-coordinate, diamagnetic CoIII imide (TrL)Co(NAd) as confirmed by single-crystal X-ray diffraction, revealing a rare trigonal pyramidal geometry with an acute Co-Nimido-C angle 145.0(3)°. Exposure of 1-10 mol % of (TrL)Co to linear alkyl azides (RN3) resulted in catalytic formation of substituted N-heterocycles via intramolecular C-H amination of a range of C-H bonds, including primary C-H bonds. The mechanism of the C-N bond formation was probed via initial rate kinetic analysis and kinetic isotope effect experiments [kH/kD = 38.4(1)], suggesting a stepwise H-atom abstraction followed by radical recombination. In contrast to the previously reported C-H amination mediated by (ArL)Co(NR) (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin), (TrL)Co(NR) displays enhanced yields and rates of C-H amination without the aid of a cocatalyst, and no catalyst degradation to a tetrazene species was observed, as further supported by the pyridine inhibition effect on the rate of C-H amination. Furthermore, (TrL)Co(NAd) exhibits an extremely low one-electron reduction potential (E°red = -1.98 V vs [Cp2Fe]+/0) indicating that the highly basic terminal imido unit contributes to the driving force for H-atom abstraction.
Collapse
Affiliation(s)
- Yunjung Baek
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Elisabeth T Hennessy
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
19
|
Ishizuka T, Kogawa T, Makino M, Shiota Y, Ohara K, Kotani H, Nozawa S, Adachi SI, Yamaguchi K, Yoshizawa K, Kojima T. Formation of a Ruthenium(V)-Imido Complex and the Reactivity in Substrate Oxidation in Water through the Nitrogen Non-Rebound Mechanism. Inorg Chem 2019; 58:12815-12824. [PMID: 31553593 DOI: 10.1021/acs.inorgchem.9b01781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A RuII-NH3 complex, 2, was oxidized through a proton-coupled electron transfer (PCET) mechanism with a CeIV complex in water at pH 2.5 to generate a RuV═NH complex, 5. Complex 5 was characterized with various spectroscopies, and the spin state was determined by the Evans method to be S = 1/2. The reactivity of 5 in substrate C-H oxidation was scrutinized in acidic water, using water-soluble organic substrates such as sodium ethylbenzene-sulfonate (EBS), which gave the corresponding 1-phenylethanol derivative as the product. In the substrate oxidation, complex 5 was converted to the corresponding RuIII-NH3 complex, 3. The formation of 1-phenylethanol derivative from EBS and that of 3 indicate that complex 5 as the oxidant does not perform nitrogen-atom transfer, in sharp contrast to other high-valent metal-imido complexes reported so far. Oxidation of cyclobutanol by 5 afforded only cyclobutanone as the product, indicating that the substrate oxidation by 5 proceeds through a hydride-transfer mechanism. In the kinetic analysis on the C-H oxidation, we observed kinetic isotope effects (KIEs) on the C-H oxidation with use of deuterated substrates and remarkably large solvent KIE (sKIE) in D2O. These positive KIEs indicate that the rate-determining step involves not only cleavage of the C-H bond of the substrate but also proton transfer from water molecules to 5. The unique hydride-transfer mechanism in the substrate oxidation by 5 is probably derived from the fact that the RuIV-NH2 complex (4) formed from 5 by 1e-/1H+ reduction is unstable and quickly disproportionates into 3 and 5.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Taichi Kogawa
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Misaki Makino
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering , Kyushu University , Motooka, Nishi-Ku , Fukuoka 819-0395 , Japan
| | - Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Hiroaki Kotani
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Shunsuke Nozawa
- Photon Factory , Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) , 1-1 Oho , Tsukuba , Ibaraki 305-0801 , Japan
| | - Shin-Ichi Adachi
- Photon Factory , Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) , 1-1 Oho , Tsukuba , Ibaraki 305-0801 , Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering , Kyushu University , Motooka, Nishi-Ku , Fukuoka 819-0395 , Japan
| | - Takahiko Kojima
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| |
Collapse
|
20
|
Hakey BM, Darmon JM, Akhmedov NG, Petersen JL, Milsmann C. Reactivity of Pyridine Dipyrrolide Iron(II) Complexes with Organic Azides: C–H Amination and Iron Tetrazene Formation. Inorg Chem 2019; 58:11028-11042. [PMID: 31364852 DOI: 10.1021/acs.inorgchem.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jonathan M. Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| |
Collapse
|
21
|
Cheng J, Liu J, Leng X, Lohmiller T, Schnegg A, Bill E, Ye S, Deng L. A Two-Coordinate Iron(II) Imido Complex with NHC Ligation: Synthesis, Characterization, and Its Diversified Reactivity of Nitrene Transfer and C-H Bond Activation. Inorg Chem 2019; 58:7634-7644. [PMID: 31083985 PMCID: PMC6750749 DOI: 10.1021/acs.inorgchem.9b01147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Iron
terminal imido species are typically implicated as reaction intermediates
in iron-catalyzed transformations. While a large body of work has
been devoted to mid- and high-valent iron imidos, to date the chemistry
of iron(II) imidos has remained largely unexplored due to the difficulty
in accessing them. Herein, we present a study on the two-coordinate
iron(II) imido complex [(IPr)Fe(NArTrip)] (3; IPr = 1,3-bis(2′,6′-diisopropylphenyl)imidazol-2-ylidene;
ArTrip = 2,6-bis(2′,4′,6′-triisopropylphenyl)phenyl)
prepared from the reaction of an iron(0) complex with the bulky azide
ArTripN3. Spectroscopic investigations in combination
with DFT calculations established a high-spin S =
2 ground spin state for 3, consistent with its long Fe–N
multiple bond of 1.715(2) Å revealed by X-ray diffraction analysis.
Complex 3 exhibits unusual activity of nitrene transfer
and C–H bond activation in comparison to the reported iron
imido complexes. Specifically, the reactions of 3 with
CH2=CHArCF3, an electron-deficient alkene,
and CO, a strong π acid, readily afford nitrene transfer products,
ArCF3CH=CHNHArTrip and ArTripNCO, respectively, yet no similar reaction occurs when 3 is treated with electron-rich alkenes and PMe3. Moreover, 3 is inert toward the weak C(sp3)–H bonds
in 1,4-cyclohexadiene, THF, and toluene, whereas it can cleave the
stronger C(sp)–H bond in p-trifluoromethylphenylacetylene
to form an iron(II) amido alkynyl complex. Interestingly, intramolecular
C(sp3)–H bond functionalization was observed by
adding (p-Tol)2CN2 to 3. The unique reactivity of 3 is attributed to
its low-coordinate nature and the high negative charge population
on the imido N atom, which render its iron–imido unit nucleophilic
in nature. The two-coordinate iron(II)
imido complex (IPr)Fe(NArTrip) (3) exhibits
a high-spin ground state (S = 2) and was found to
be reactive toward electron-deficient alkene, diazo compounds, terminal
alkyne, et al., in which diversified reactivities of nitrene transfer,
C−H bond activation, and C−N bond formation have been
observed. The reactivity pattern reflects the nucleophilic nature
of the imido moiety of the high-spin iron(II) complex.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Jian Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Thomas Lohmiller
- Berlin Joint EPR Lab , Helmholtz-Zentrum Berlin für Materialien und Energie , Berlin , Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion , Mülheim an der Ruhr D-45470 , Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , Mülheim an der Ruhr D-45470 , Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , Mülheim an der Ruhr D-45470 , Germany
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
22
|
Abstract
Reduction of (ArL)CoIIBr (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin) with potassium graphite afforded the novel CoI synthon (ArL)CoI. Treatment of (ArL)CoI with a stoichiometric amount of various alkyl azides (N3R) furnished three-coordinate CoIII alkyl imidos (ArL)Co(NR), as confirmed by single-crystal X-ray diffraction (R: CMe2Bu, CMe2(CH2)2CHMe2). The exclusive formation of four-coordinate cobalt tetrazido complexes (ArL)Co(κ2-N4R2) was observed upon addition of excess azide, inhibiting any subsequent C-H amination. However, when a weak C-H bond is appended to the imido moiety, as in the case of (4-azido-4-methylpentyl)benzene, intramolecular C-H amination kinetically outcompetes formation of the corresponding tetrazene species to generate 2,2-dimethyl-5-phenylpyrrolidine in a catalytic fashion without requiring product sequestration. The imido (ArL)Co(NAd) exists in equilibrium in the presence of pyridine with a four-coordinate cobalt imido (ArL)Co(NAd)(py) ( Ka = 8.04 M-1), as determined by 1H NMR titration experiments. Kinetic studies revealed that pyridine binding slows down the formation of the tetrazido complex by blocking azide coordination to the CoIII imido. Further, (ArL)Co(NR)(py) displays enhanced C-H amination reactivity compared to that of the pyridine-free complex, enabling higher catalytic turnover numbers under milder conditions. The mechanism of C-H amination was probed via kinetic isotope effect experiments [ kH/ kD = 10.2(9)] and initial rate analysis with para-substituted azides, suggesting a two-step radical pathway. Lastly, the enhanced reactivity of (ArL)Co(NR)(py) can be correlated to a higher spin-state population, resulting in a decreased crystal field due to a geometry change upon pyridine coordination.
Collapse
Affiliation(s)
- Yunjung Baek
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
23
|
Zhao X, Liang S, Fan X, Yang T, Yu W. Iron-Catalyzed Intramolecular C–H Amination of α-Azidyl Amides. Org Lett 2019; 21:1559-1563. [DOI: 10.1021/acs.orglett.8b03927] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaopeng Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Siyu Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xing Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Tonghao Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
24
|
McLoughlin EA, Waldie KM, Ramakrishnan S, Waymouth RM. Protonation of a Cobalt Phenylazopyridine Complex at the Ligand Yields a Proton, Hydride, and Hydrogen Atom Transfer Reagent. J Am Chem Soc 2018; 140:13233-13241. [PMID: 30285438 DOI: 10.1021/jacs.8b06156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protonation of the Co(I) phenylazopyridine (azpy) complex [CpCo(azpy)] 2 occurs at the azo nitrogen of the 2-phenylazopyridine ligand to generate the cationic Co(I) complex [CpCo(azpyH)]+ 3 with no change in oxidation state at Co. The N-H bond of 3 exhibits diverse hydrogen transfer reactivity, as studies with a variety of organic acceptors demonstrate that 3 can act as a proton, hydrogen atom, and hydride donor. The thermodynamics of all three cleavage modes for the N-H bond (i.e., proton, hydride, and hydrogen atom) were examined both experimentally and computationally. The N-H bond of 3 exhibits a p Ka of 12.1, a hydricity of Δ G°H- = 89 kcal/mol, and a bond dissociation free energy (BDFE) of Δ G°H• = 68 kcal/mol in CD3CN. Hydride transfer from 3 to the trityl cation (Δ G°H- = 99 kcal/mol) is exergonic but takes several hours to reach completion, indicating that 3 is a relatively poor hydride donor, both kinetically and thermodynamically. Hydrogen atom transfer from 3 to 2,6-di- tert-butyl-4-(4'-nitrophenyl)phenoxyl radical (tBu2NPArO·, Δ G°H• = 77.8 kca/mol) occurs rapidly, illustrating the competence of 3 as a hydrogen atom donor.
Collapse
Affiliation(s)
- Elizabeth A McLoughlin
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kate M Waldie
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | | | - Robert M Waymouth
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
25
|
Bezdek MJ, Chirik PJ. Proton-Coupled Electron Transfer to a Molybdenum Ethylene Complex Yields a β-Agostic Ethyl: Structure, Dynamics and Mechanism. J Am Chem Soc 2018; 140:13817-13826. [DOI: 10.1021/jacs.8b08460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Máté J. Bezdek
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
26
|
Bagchi V, Kalra A, Das P, Paraskevopoulou P, Gorla S, Ai L, Wang Q, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Comparative Nitrene-Transfer Chemistry to Olefinic Substrates Mediated by a Library of Anionic Mn(II) Triphenylamido-Amine Reagents and M(II) Congeners (M = Fe, Co, Ni) Favoring Aromatic over Aliphatic Alkenes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01941] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Patrina Paraskevopoulou
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Saidulu Gorla
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
27
|
McWilliams SF, Bill E, Lukat-Rodgers G, Rodgers KR, Mercado BQ, Holland PL. Effects of N 2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. J Am Chem Soc 2018; 140:8586-8598. [PMID: 29957940 PMCID: PMC6115203 DOI: 10.1021/jacs.8b04828] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Distinguishing the reactivity differences between N2 complexes having different binding modes is crucial for the design of effective N2-functionalizing reactions. Here, we compare the reactions of a K-bridged, dinuclear FeNNFe complex with a monomeric Fe(N2) complex where the bimetallic core is broken up by the addition of chelating agents. The new anionic iron(0) dinitrogen complex has enhanced electron density at the distal N atoms of coordinated N2, and though the N2 is not as weakened in this monomeric compound, it is much more reactive toward silylation by (CH3)3SiI (TMSI). Double silylation of N2 gives a three-coordinate iron(III) hydrazido(2-) complex, which is finely balanced between coexisting S = 1/2 and S = 3/2 states that are characterized by crystallography, spectroscopy, and computations. These results give insight into the interdependence between binding modes, alkali dependence, reactivity, and magnetic properties within an iron system that functionalizes N2.
Collapse
Affiliation(s)
- Sean F. McWilliams
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Eckhard Bill
- Max-Planck-Insitut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| |
Collapse
|
28
|
Powers IG, Andjaba JM, Luo X, Mei J, Uyeda C. Catalytic Azoarene Synthesis from Aryl Azides Enabled by a Dinuclear Ni Complex. J Am Chem Soc 2018; 140:4110-4118. [PMID: 29488760 DOI: 10.1021/jacs.8b00503] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ian G. Powers
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John M. Andjaba
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xuyi Luo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
van Leest NP, Epping RF, van Vliet KM, Lankelma M, van den Heuvel EJ, Heijtbrink N, Broersen R, de Bruin B. Single-Electron Elementary Steps in Homogeneous Organometallic Catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Das UK, Daifuku SL, Iannuzzi TE, Gorelsky SI, Korobkov I, Gabidullin B, Neidig ML, Baker RT. Iron(II) Complexes of a Hemilabile SNS Amido Ligand: Synthesis, Characterization, and Reactivity. Inorg Chem 2017; 56:13766-13776. [PMID: 29112382 DOI: 10.1021/acs.inorgchem.7b01802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report an easily prepared bis(thioether) amine ligand, SMeNHSMe, along with the synthesis, characterization, and reactivity of the paramagnetic iron(II) bis(amido) complex, [Fe(κ3-SMeNSMe)2] (1). Binding of the two different thioethers to Fe generates both five- and six-membered rings with Fe-S bonds in the five-membered rings (av 2.54 Å) being significantly shorter than those in the six-membered rings (av 2.71 Å), suggesting hemilability of the latter thioethers. Consistent with this hypothesis, magnetic circular dichroism (MCD) and computational (TD-DFT) studies indicate that 1 in solution contains a five-coordinate component [Fe(κ3-SMeNSMe)(κ2-SMeNSMe)] (2). This ligand hemilability was demonstrated further by reactivity studies of 1 with 2,2'-bipyridine, 1,2-bis(dimethylphosphino)ethane, and 2,6-dimethylphenyl isonitrile to afford iron(II) complexes [L2Fe(κ2-SMeNSMe)2] (3-5). Addition of a Brønsted acid, HNTf2, to 1 produces the paramagnetic, iron(II) amine-amido cation, [Fe(κ3-SMeNSMe)(κ3-SMeNHSMe)](NTf2) (6; Tf = SO2CF3). Cation 6 readily undergoes amine ligand substitution by triphos, affording the 16e- complex [Fe(κ2-SMeNSMe)(κ3-triphos)](NTf2) (7; triphos = bis(2-diphenylphosphinoethyl)phenylphosphine). These complexes are characterized by elemental analysis; 1H NMR, Mössbauer, IR, and UV-vis spectroscopy; and single-crystal X-ray diffraction. Preliminary results of amine-borane dehydrogenation catalysis show complex 7 to be a selective and particularly robust precatalyst.
Collapse
Affiliation(s)
- Uttam K Das
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Stephanie L Daifuku
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Theresa E Iannuzzi
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Serge I Gorelsky
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Michael L Neidig
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
31
|
Wilding MJT, Iovan DA, Betley TA. High-Spin Iron Imido Complexes Competent for C-H Bond Amination. J Am Chem Soc 2017; 139:12043-12049. [PMID: 28777558 PMCID: PMC5821117 DOI: 10.1021/jacs.7b06682] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reduction of previously reported (ArL)FeCl with potassium graphite furnished a low-spin (S = 1/2) iron complex (ArL)Fe which features an intramolecular η6-arene interaction and can be utilized as an FeI synthon (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin). Treatment of (ArL)Fe with adamantyl azide or mesityl azide led to the formation of the high-spin (S = 5/2), three-coordinate imidos (ArL)Fe(NAd) and (ArL)Fe(NMes), respectively, as determined by EPR, zero-field 57Fe Mössbauer, magnetometry, and single crystal X-ray diffraction. The high-spin iron imidos are reactive with a variety of substrates: (ArL)Fe(NAd) reacts with azide yielding a ferrous tetrazido (ArL)Fe(κ2-N4Ad2), undergoes intermolecular nitrene transfer to phosphine, abstracts H atoms from weak C-H bonds (1,4-cyclohexadiene, 2,4,6-tBu3C6H2OH) to afford ferrous amido product (ArL)Fe(NHAd), and can mediate intermolecular C-H amination of toluene [PhCH3/PhCD3 kH/kD: 15.5(3); PhCH2D kH/kD: 11(1)]. The C-H bond functionalization reactivity is rationalized from a two-step mechanism wherein each step occurs via maximal energy and orbital overlap between the imido fragment and the C-H bond containing substrate.
Collapse
Affiliation(s)
- Matthew J. T. Wilding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Diana A. Iovan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Theodore A. Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
32
|
Rodríguez-Lugo RE, de Bruin B, Trincado M, Grützmacher H. A Stable Aminyl Radical Coordinated to Cobalt. Chemistry 2017; 23:6795-6802. [PMID: 28164405 DOI: 10.1002/chem.201605624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 11/09/2022]
Abstract
A family of cobalt complexes bearing the trop2 NH [bis(5-H-dibenzo[a,d]cyclohepten-5-yl)-amine] and 2,2'-bpy (2,2'-bipyridine) chelate ligands were prepared and fully characterized. The compounds [Co(trop2 N)(bpy)], [Co(trop2 NH)(bpy)]+ , and [Co(trop2 N)(bpy)]+ are cobalt complexes interrelated by one-electron redox processes and/or proton transfer. Two limiting resonance structures can be used to describe the paramagnetic complex [Co(trop2 N)(bpy)]+ : [CoII (trop2 N- )(bpy)]+ (CoII amido) and [CoI (trop2 N⋅ )(bpy)]+ (CoI -aminyl radical). Structural data, DFT calculations, and reactivity toward H-abstraction indicate a slightly higher contribution of the aminyl radical form to the ground state of [Co(trop2 N)(bpy)]+ . The results described here complete the series of Group 9 metal aminyl radical complexes bearing the diolefin amine ligand trop2 NH.
Collapse
Affiliation(s)
- Rafael E Rodríguez-Lugo
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland.,Current address: Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, 1020-A, Caracas, Venezuela.,Current address: Departamento de Química, Universidad Simón Bolívar (USB), Valle de Sartenejas, 1080-A, Caracas, Venezuela
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Monica Trincado
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| |
Collapse
|
33
|
Gouré E, Senthilnathan D, Coin G, Albrieux F, Avenier F, Dubourdeaux P, Lebrun C, Maldivi P, Latour JM. Redox Self-Adaptation of a Nitrene Transfer Catalyst to the Substrate Needs. Angew Chem Int Ed Engl 2017; 56:4305-4309. [DOI: 10.1002/anie.201612472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Eric Gouré
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
| | - Dhurairajan Senthilnathan
- Univ. Grenoble Alpes, CNRS UMR 5819, CEA; SyMMES; 38000 Grenoble France
- Center for Computational Chemistry, CRD; PRIST University Vallam; Thanjavur Tamilnadu India
| | - Guillaume Coin
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
| | | | - Frédéric Avenier
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
- LCBB, ICMMO (UMR 8182); Univ. Paris Sud; Université Paris Saclay; 91405 Orsay France
| | | | - Colette Lebrun
- Univ. Grenoble Alpes, CNRS UMR 5819, CEA; SyMMES; 38000 Grenoble France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CNRS UMR 5819, CEA; SyMMES; 38000 Grenoble France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
| |
Collapse
|
34
|
Gouré E, Senthilnathan D, Coin G, Albrieux F, Avenier F, Dubourdeaux P, Lebrun C, Maldivi P, Latour JM. Redox Self-Adaptation of a Nitrene Transfer Catalyst to the Substrate Needs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eric Gouré
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
| | - Dhurairajan Senthilnathan
- Univ. Grenoble Alpes, CNRS UMR 5819, CEA; SyMMES; 38000 Grenoble France
- Center for Computational Chemistry, CRD; PRIST University Vallam; Thanjavur Tamilnadu India
| | - Guillaume Coin
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
| | | | - Frédéric Avenier
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
- LCBB, ICMMO (UMR 8182); Univ. Paris Sud; Université Paris Saclay; 91405 Orsay France
| | | | - Colette Lebrun
- Univ. Grenoble Alpes, CNRS UMR 5819, CEA; SyMMES; 38000 Grenoble France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CNRS UMR 5819, CEA; SyMMES; 38000 Grenoble France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA; LCBM/pmb; 38000 Grenoble France
| |
Collapse
|
35
|
Patra R, Coin G, Castro L, Dubourdeaux P, Clémancey M, Pécaut J, Lebrun C, Maldivi P, Latour JM. Rational design of Fe catalysts for olefin aziridination through DFT-based mechanistic analysis. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01283g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental and DFT-based mechanistic studies are used to optimise Fe catalysts for aziridination.
Collapse
|
36
|
Kikuchi T, Kobayashi K, Tsuge K, Kitagawa S, Tanaka K. Asymmetric dimerization of aniline-ruthenium-dioxolene complex driven by stepwise PCET. Dalton Trans 2016; 45:14030-4. [PMID: 27535700 DOI: 10.1039/c6dt02573k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The base-assisted oxidation of an aniline-Ru-quinone complex produced an anilinyl radical-Ru-semiquinone. Furthermore, base-assisted oxidation of the radical complex resulted in selective C-N bond formation through an intermolecular coupling between nitrogen and carbon atoms at the para-position of the anilinyl ligand.
Collapse
Affiliation(s)
- T Kikuchi
- Institute for Integrated Cell-Material Sciences, Kyoto University, 105 Jibu-cho, Fushimi-ku, Kyoto 612-8374, ACT Kyoto #507, Japan.
| | | | | | | | | |
Collapse
|
37
|
Bellows SM, Brennessel WW, Holland PL. Effects of Ligand Halogenation on the Electron Localization, Geometry and Spin State of Low-Coordinate (β-Diketiminato)iron Complexes. Eur J Inorg Chem 2016; 2016:3344-3355. [PMID: 28835739 PMCID: PMC5563838 DOI: 10.1002/ejic.201600112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/05/2022]
Abstract
This contribution explores the influences of incorporating electron-withdrawing CF3 and halide groups into β-diketiminate iron complexes of tetrazene and isocyanide. The synthesis of a new halogenated β-diketimine (LCF3,ClH) was accomplished via two different methods, including a novel microwave-assisted synthesis that improves the yield of the difficult condensation. Treatment of an iron(II) complex of this ligand with reductant and azide gives two diiron complexes with novel tetrazenes as bridging ligands. Structural and Mössbauer data show that the bridging tetrazene is a radical anion. The halogenation of the supporting ligand also influences iron(I) complexes of the type LFe(CNtBu)2, which are low-spin and square-planar with alkyl substituents but high-spin and pseudotetrahedral with halogen substituents. DFT calculations suggest that the changes from halogenation come from a combination of steric and electronic effects, and that the electronic influence of ligand halogenation is minor.
Collapse
Affiliation(s)
- Sarina M Bellows
- Department of Chemistry, University of Rochester, 120 Trustee Rd, Rochester, NY 14627 USA
| | - William W Brennessel
- Department of Chemistry, University of Rochester, 120 Trustee Rd, Rochester, NY 14627 USA
| | - Patrick L Holland
- Department of Chemistry, Yale University 225, Prospect St, New Haven, CT 06520 USA, Homepage: http://holland.chem.yale.edu
- Department of Chemistry, University of Rochester, 120 Trustee Rd, Rochester, NY 14627 USA
| |
Collapse
|
38
|
Spasyuk DM, Carpenter SH, Kefalidis CE, Piers WE, Neidig ML, Maron L. Facile hydrogen atom transfer to iron(iii) imido radical complexes supported by a dianionic pentadentate ligand. Chem Sci 2016; 7:5939-5944. [PMID: 30034736 PMCID: PMC6024611 DOI: 10.1039/c6sc01433j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/28/2016] [Indexed: 12/28/2022] Open
Abstract
Facile hydrogen atom transfer from toluene.
A dianionic tetrapodal pentadentate diborate ligand is introduced. This ligand forms a high spin neutral iron(ii) complex that reacts with a variety of organoazides to yield transient Fe(iii) imido radicals that are extremely potent hydrogen atom abstractors. The nature of these species is supported by full characterization of the Fe(iii) amido products, kinetic studies, density functional computations and Mössbauer spectroscopy on the –C6H4-p-tBu substituted derivative.
Collapse
Affiliation(s)
- Denis M Spasyuk
- University of Calgary , Department of Chemistry , 2500 University Drive N.W. , Calgary , Alberta , Canada T2N 1N4 .
| | - Stephanie H Carpenter
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA
| | - Christos E Kefalidis
- LPCNO , Université de Toulouse , INSA , UPS , CNRS , 135 avenue de Rangueil , F-31077 Toulouse , France
| | - Warren E Piers
- University of Calgary , Department of Chemistry , 2500 University Drive N.W. , Calgary , Alberta , Canada T2N 1N4 .
| | - Michael L Neidig
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA
| | - Laurent Maron
- LPCNO , Université de Toulouse , INSA , UPS , CNRS , 135 avenue de Rangueil , F-31077 Toulouse , France
| |
Collapse
|
39
|
Stienen C, Gondzik S, Gehlhaar A, Haack R, Wölper C, Jansen G, Schulz S. (MeZn)2(μ-η2:η2-N6Ph2): A Powerful Starting Reagent for the Synthesis of Metal Hexazene Complexes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Stienen
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Sebastian Gondzik
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Alexander Gehlhaar
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Rebekka Haack
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Christoph Wölper
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Georg Jansen
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Stephan Schulz
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| |
Collapse
|
40
|
Hohloch S, Kriegel BM, Bergman RG, Arnold J. Group 5 chemistry supported by β-diketiminate ligands. Dalton Trans 2016; 45:15725-15745. [DOI: 10.1039/c6dt01770c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
β-Diketiminate (BDI) ligands are widely used supporting ligands in modern organometallic chemistry and are capable of stabilizing various metal complexes in multiple oxidation states and coordination environments.
Collapse
Affiliation(s)
| | | | | | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
| |
Collapse
|
41
|
Wang L, Hu L, Zhang H, Chen H, Deng L. Three-Coordinate Iron(IV) Bisimido Complexes with Aminocarbene Ligation: Synthesis, Structure, and Reactivity. J Am Chem Soc 2015; 137:14196-207. [DOI: 10.1021/jacs.5b09579] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Wang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Lianrui Hu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hezhong Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Hui Chen
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liang Deng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
42
|
Zhao P, Lei H, Ni C, Guo JD, Kamali S, Fettinger JC, Grandjean F, Long GJ, Nagase S, Power PP. Quasi-three-coordinate iron and cobalt terphenoxide complexes {Ar(iPr8)OM(μ-O)}2 (Ar(iPr8) = C6H-2,6-(C6H2-2,4,6-(i)Pr3)2-3,5-(i)Pr2; M = Fe or Co) with M(III)2(μ-O)2 core structures and the peroxide dimer of 2-oxepinoxy relevant to benzene oxidation. Inorg Chem 2015; 54:8914-22. [PMID: 26331405 DOI: 10.1021/acs.inorgchem.5b00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bis(μ-oxo) dimeric complexes {Ar(iPr8)OM(μ-O)}2 (Ar(iPr8) = C6H-2,6-(C6H2-2,4,6-(i)Pr3)2-3,5-(i)Pr2; M = Fe (1), Co (2)) were prepared by oxidation of the M(I) half-sandwich complexes {Ar(iPr8)M(η(6)-arene)} (arene = benzene or toluene). Iron species 1 was prepared by reacting {Ar(iPr8)Fe(η(6)-benzene)} with N2O or O2, and cobalt species 2 was prepared by reacting {Ar(iPr8)Co(η(6)-toluene)} with O2. Both 1 and 2 were characterized by X-ray crystallography, UV-vis spectroscopy, magnetic measurements, and, in the case of 1, Mössbauer spectroscopy. The solid-state structures of both compounds reveal unique M2(μ-O)2 (M = Fe (1), Co(2)) cores with formally three-coordinate metal ions. The Fe···Fe separation in 1 bears a resemblance to that in the Fe2(μ-O)2 diamond core proposed for the methane monooxygenase intermediate Q. The structural differences between 1 and 2 are reflected in rather differing magnetic behavior. Compound 2 is thermally unstable, and its decomposition at room temperature resulted in the oxidation of the Ar(iPr8) ligand via oxygen insertion and addition to the central aryl ring of the terphenyl ligand to produce the 5,5'-peroxy-bis[4,6-(i)Pr2-3,7-bis(2,4,6-(i)Pr3-phenyl)oxepin-2(5H)-one] (3). The structure of the oxidized terphenyl species is closely related to that of a key intermediate proposed for the oxidation of benzene.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Hao Lei
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Chengbao Ni
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Jing-Dong Guo
- Fukui Institute for Fundamental Chemistry, Kyoto University , Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Saeed Kamali
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Fernande Grandjean
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri , Rolla, Missouri 65409-0010, United States
| | - Gary J Long
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri , Rolla, Missouri 65409-0010, United States
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University , Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Philip P Power
- Department of Chemistry, University of California , Davis, California 95616, United States
| |
Collapse
|
43
|
Lindley BM, Wolczanski PT, Cundari TR, Lobkovsky EB. First-Row Transition Metal and Lithium Pyridine-ene-amide Complexes Exhibiting N- and C-Isomers and Ligand-Based Activation of Benzylic C–H Bonds. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian M. Lindley
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced
Scientific Computing and Modeling (CASCaM), University of North Texas, Box 305070, Denton, Texas 76203-5070, United States
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
44
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 778] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
45
|
Zhang L, Liu Y, Deng L. Three-Coordinate Cobalt(IV) and Cobalt(V) Imido Complexes with N-Heterocyclic Carbene Ligation: Synthesis, Structure, and Their Distinct Reactivity in C–H Bond Amination. J Am Chem Soc 2014; 136:15525-8. [DOI: 10.1021/ja509731z] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Long Zhang
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yuesheng Liu
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
46
|
Morris WD, Wolczanski PT, Sutter J, Meyer K, Cundari TR, Lobkovsky EB. Iron and chromium complexes containing tridentate chelates based on nacnac and imino- and methyl-pyridine components: triggering C-X bond formation. Inorg Chem 2014; 53:7467-84. [PMID: 25010819 DOI: 10.1021/ic500807y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nacnac-based tridentate ligands containing a pyridyl-methyl and a 2,6-dialkyl-phenylamine (i.e., (2,6-R2-C6H3N═C(Me)CH═C(Me)NH(CH2py); R = Et, {Et(nn)PM}H; R = (i)Pr, {(i)Pr(nn)PM}H) were synthesized by condensation routes. Treatment of M{N(TMS)2}THFn (M = Cr, n = 2; M = Fe, Co, n = 1; TMS = trimethylsilane; THF = tetrahydrofuran) with {(i)Pr(nn)PM}H) afforded {(i)Pr(nn)PM}MN(TMS)2 (1-M(iPr); M = Cr, Fe); {Et(nn)PM}MN(TMS)2 (1-M(Et); M = Fe, Co) was similarly obtained. {R(nn)PM}FeBr (R = (i)Pr, Et; 2-Fe(R)) were prepared from FeBr2 and {R(nn)PM}Li, and alkylated to generate {R(nn)PM}Fe(neo)Pe (R = (i)Pr, Et; 3-Fe(R)). Carbonylation of 3-Fe(R) provided {(i)Pr(nn)PM}Fe(CO(neo)Pe)CO (4-Fe(iPr)), and carbonylations of 1-Fe(R) (R = Et, (i)Pr) and 1-Cr(iPr) induced deamination to afford {R(nn)PI}Fe(CO)2 (R = (i)Pr, 5-Fe(iPr); Et, 5-Fe(Et)), where PI is pyridine-imine, and {κ(2)-N,N-pyrim-pyr}Cr(CO)4 (6-Cr(iPr)), in which the aryl-amide side of the nacnac attacked the incipient PI group. Carbon-carbon bonds were formed at the imine carbon of the {R(nn)PI} ligand. Addition of [{(i)Pr(nn)PI}(2-)](K(+)(THF)x)2 to FeCl3 generated {(i)Pr(nn)CHpy}2Fe2Cl2 (7-Fe(iPr)), and TMSN3 induced the deamination of 1-Fe(Et), but with disproportionation to provide {[Et(nn)CHpy]2}Fe (8-Fe(Et)). Ph2CN2 induced C-C bond formation with 1-Fe(iPr) via its thermal degradation to ultimately afford {(i)Pr(nn)CHpy}2(FeN═CPh2)2 (9-Fe(iPr)). The compounds were examined by X-ray crystallography (1-M(iPr), M = Cr, Fe; 1-Co(Et); 2-Fe(iPr); 4-Fe(iPr); 5-Fe(iPr); 6-Cr(iPr); 7-Fe(iPr); 8-Fe(Et); 9-Fe(iPr)), Mössbauer spectroscopy, and NMR spectroscopy. Structural parameters assessing redox noninnocence are discussed, as are structural and mechanistic consequences of the various electronic environments.
Collapse
Affiliation(s)
- Wesley D Morris
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | |
Collapse
|
47
|
Zhang H, Ouyang Z, Liu Y, Zhang Q, Wang L, Deng L. (Aminocarbene)(Divinyltetramethyldisiloxane)Iron(0) Compounds: A Class of Low-Coordinate Iron(0) Reagents. Angew Chem Int Ed Engl 2014; 53:8432-6. [DOI: 10.1002/anie.201404677] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/08/2022]
|
48
|
Zhang H, Ouyang Z, Liu Y, Zhang Q, Wang L, Deng L. (Aminocarbene)(Divinyltetramethyldisiloxane)Iron(0) Compounds: A Class of Low-Coordinate Iron(0) Reagents. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Gloaguen Y, Rebreyend C, Lutz M, Kumar P, Huber M, van der Vlugt JI, Schneider S, de Bruin B. An Isolated Nitridyl Radical-Bridged {Rh(N.)Rh} Complex. Angew Chem Int Ed Engl 2014; 53:6814-8. [DOI: 10.1002/anie.201403445] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 11/08/2022]
|
50
|
Gloaguen Y, Rebreyend C, Lutz M, Kumar P, Huber M, van der Vlugt JI, Schneider S, de Bruin B. An Isolated Nitridyl Radical-Bridged {Rh(N.)Rh} Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|