1
|
Wojciechowska A, Bregier Jarzębowska R, Komarnicka UK, Szuster Ciesielska A, Sułek M, Bojarska Junak A, Ramadan RM, Jezierska J. Solution structure, oxidative DNA damage, biological activity and molecular docking of ternary copper(II) L-argininato complexes. Biochimie 2024:S0300-9084(24)00264-5. [PMID: 39561889 DOI: 10.1016/j.biochi.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Continuing our search for metal drugs with markedly higher toxicity to cancer cells than to normal cells, we evaluated the effect of 2,2'-bipyridine (bpy) as a co-ligand in the compounds [Cu(μ-O,O'-NO3)(l-Arg)(bpy)]NO3}n (1), [CuCl(l-Arg)(bpy)]Cl·3H2O (2) (l-Arg= l-arginine), on DNA interaction, cytotoxic and antiproliferative activity, compared to the effects induced by other co-ligands i.e. 1,10-phenanthroline (phen) and SCN- ions, in similar Cu(II) compounds we have studied previously. Potentiometric, EPR and UV-Vis experiments were first used to structurally characterise the complexes formed in solutions 1 and 2 and in model Cu(II)/bpy/l-Arg systems. Gel electrophoresis in the presence of H2O2 was used to identify DNA damage by 1 and 2. In addition, cyclic voltammetry of both compounds was performed to confirm the existence of Cu(II)/Cu(I) redox pairs involved in the free radical mechanism of this DNA damage. The DNA binding constants of 1 and 2 were determined spectrophotometrically. The selectivity of the cytotoxic and antiproliferative activity of compounds 1 and 2 was tested in vitro against human lung adenocarcinoma (A549), liver cancer (HepG2) and normal cells in comparison with those previously observed by us for compounds consisting of phen and SCN- ligands. Molecular docking calculations were performed for [Cu(l-Arg)(bpy)]2+ (present in solutions of 1 and 2) interacting with B-DNA (aureolin), metalloproteinase (S. aureus) and penicillin-binding protein (E. coli) to determine the nature of the complex-receptor interaction, potential binding modes and energies.
Collapse
Affiliation(s)
- Agnieszka Wojciechowska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | | | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | | | - Michał Sułek
- Department of Virology and Immunology, M. Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Bojarska Junak
- Chair and Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Ramadan M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Julia Jezierska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
2
|
Hu G, Lv M, Guo B, Huang Y, Su Z, Qian Y, Xue X, Liu HK. Immunostimulation with chemotherapy of a ruthenium-arene complex via blockading CD47 signal in chronic myelogenous leukemia cells. J Inorg Biochem 2023; 243:112195. [PMID: 36996696 DOI: 10.1016/j.jinorgbio.2023.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Combination of novel immunomodulation and traditional chemotherapy has become a new tendency in cancer treatment. Increasing evidence suggests that blocking the "don't eat me" signal transmitted by the CD47 can promote the phagocytic ability of macrophages to cancer cells, which might be promising for improved cancer chemoimmunotherapy. In this work, we conjugated CPI-alkyne modified by Devimistat (CPI-613) with ruthenium-arene azide precursor Ru-N3 by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to construct Ru complex CPI-Ru. CPI-Ru exhibited satisfactory cytotoxicity towards the K562 cells while nearly non-toxic towards the normal HLF cells. CPI-Ru has been demonstrated to cause severe damage to mitochondria and DNA, ultimately inducing cancer cell death through the autophagic pathway. Moreover, CPI-Ru could significantly downregulate the expression of CD47 on the surface of K562 accompanied by the enhanced immune response by targeting the blockade of CD47. This work provides a new strategy for utilizing metal-based anticancer agents to block CD47 signal to achieve chemoimmunotherapy in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Guojing Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengdi Lv
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Binglian Guo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuanlei Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Mononuclear half-sandwich nd 7 metallo drug complexes based on bidentate N∩N dendritic scaffolds: DFT (B3LYP; BP86 and B3PW91) examination. J Mol Graph Model 2023; 120:108417. [PMID: 36706572 DOI: 10.1016/j.jmgm.2023.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Through an use of three functionals (B3PW91, B3LYP and BP86) associated to a generic basis set LanL2DZ for transition metals (as well as halogen atoms) and 6-311+G (d,p) for others atoms, an examination of the bonding properties of a series of mononuclear half-sandwich nd7 transition metal (anticancer) complexes based on N∩N dendritic scaffolds (L) has been done. Collectively, complexes studied have adopted the piano-stool environment. An examination of the performance of each functional has shown that for the most reliable geometrical analysis of Metal-Nitrogen and Metal-Halogen bonds, the B3LYP and B3PW91 functionalities are suitable respectively. Regardless of the halogen ligand adopted, the B3LYP metal-nitrogen bond lengths are the most widely overestimated. A correlation has been built between the retained charge on each divalent transition metal cation and its metal ion affinity (MIA). Topological examinations reveal the higher instability of metal-N bonds compared to metal-X ones (X = Cl and Br). By the mean of the energy decomposition analysis, a predominant electrostatic character of metal … halogen and [LCP]- … [MX]+ interaction has been demonstrated. The transition metal atom … (hydrophobic) surface (Cp*) interaction is most pronounced for the chloride rhodium complexes of rhodium (combined with (E)-N-(pyridin-2-ylmethylene) Propan-1-amine and 2,2'- dipyridylketone ligands and iridium combined with 2,2'- dipyridylketone ligand. The charge decomposition analysis displays the weakening of the [Formula: see text] bonds in the studied complexes.
Collapse
|
4
|
Lv M, Qian X, Li S, Gong J, Wang Q, Qian Y, Su Z, Xue X, Liu HK. Unlocking the potential of iridium and ruthenium arene complexes as anti-tumor and anti-metastasis chemotherapeutic agents. J Inorg Biochem 2023; 238:112057. [PMID: 36370504 DOI: 10.1016/j.jinorgbio.2022.112057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
It is a major challenge to design novel multifunctional metal-based chemotherapeutic agents for anti-tumor and anti-metastasis applications. Two complexes (OA-Ir and OA-Ru) were synthesized via CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction from nontoxic Ir-N3 or Ru-N3 species and low toxic alkynyl precursor OA-Alkyne, and exhibited satisfactory anti-tumor and anti-metastasis pharmacological effects. Conjugation of Oleanolic acid (OA) and metal-arene species significantly enhanced the cytotoxicity in A2780 cells compared to the precursors through mitochondrial-induced autophagy pathway. Moreover, the two complexes could inhibit the cell metastasis and invasion through damage of actin dynamics and down-regulation of MMP2/MMP9 proteins. Combination of two precursors improved the lipophilicity and biocompatibility, simultaneously enhanced the cell uptake and the mitochondrial accumulation of metal-arene complexes, which caused mitochondrial membrane potential damage, oxidative phosphorylation, ATP depletion and autophagy. Besides, OA-Ir and OA-Ru displayed excellent activity to disintegrate the 3D multicellular tumor spheroids, showing potential for the treatment of solid tumors. This work provides a new way for developing novel metal-based complexes via CuAAC reaction for simultaneously inhibiting tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Mengdi Lv
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoting Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shijie Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Gong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qun Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Rahaman SK, Mohammad M, Laskar RA, Siddiqui MR, Wabaidur SM, Islam MA, Alam SM, Ahmed F, Islam MM, Mir MH. A muconate bridged bipyridyl appended binuclear Cu(II) complex reveals dissimilar affinities to DNA and BSA protein. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
|
7
|
Kumar P, Mondal I, Kulshreshtha R, Patra AK. Development of novel ruthenium(II)-arene complexes displaying potent anticancer effects in glioblastoma cells. Dalton Trans 2021; 49:13294-13310. [PMID: 32936191 DOI: 10.1039/d0dt02167a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glioblastomas (GBs) are highly aggressive and malignant brain tumors, which are highly resistant to conventional multimodal treatments, leading to their abysmal prognosis. Herein, we designed two organometallic half-sandwich Ru(ii)-η6-p-cymene complexes containing Schiff bases derived from 3-aminoquinoline and 2-hydroxy-benzaldehyde (L1) and 2-hydroxy-naphthaldehyde (L2), namely [Ru(η6-p-cymene)(L1)Cl] (1) and [Ru(η6-p-cymene)(L2)Cl] (2), respectively, and studied their activity on GB cells. Both complexes were structurally characterized using single-crystal X-ray diffraction, which exhibited their half-sandwich three-legged piano-stool geometry. Furthermore, we studied their physicochemical behavior, solution speciation, aquation kinetics, and photo-substitution reactions using various spectroscopic methods. The complexes exhibited a moderate binding affinity with calf-thymus (CT)-DNA (Kb ∼ 105 M-1). The complexes effectively interacted with human serum albumin (HSA) (K ∼ 105 M-1) with preferential tryptophan binding, as determined via synchronous fluorescence studies. The in vitro studies showed their significant antiproliferative activity against an aggressive human GB cell line, LN-229 (IC50 = 22.8 μM), with moderate selectivity relative to normal mouse fibroblast L929 cells. Notably, [Ru(η6-p-cymene)(L1)Cl] (1) exhibited a higher selectivity index (S.I.) than [Ru(η6-p-cymene)(L2)Cl] (2) and cisplatin. We evaluated the clonogenic potential of the GB cells using a colony formation assay in the presence of complex 1. Excitingly, it showed ∼75% inhibition of the clonogenic potential of GB cells at the IC50 concentration. Complex 1 also effectively lowered the migratory potential of the GB cells, as assessed by the wound healing assay. The studied compound led to the apoptosis of GB cells, as evidenced by nuclear condensation, blebbing, and enhanced caspase 3/7 activity, and thus has anticipated utility in the treatment of GBs using photochemotherapy.
Collapse
Affiliation(s)
- Priyaranjan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | | | | | | |
Collapse
|
8
|
Vyas KM, Sharma D, Magani SKJ, Mobin SM, Mukhopadhyay S. In vitro evaluation of cytotoxicity and antimetastatic properties of novel arene ruthenium(II)‐tetrazolato compounds on human cancer cell lines. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Komal M. Vyas
- Discipline of Chemistry Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 India
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar 388120 India
| | - Deepu Sharma
- Department of Life Sciences, School of Natural Sciences Shiv Nadar University Greater Noida Uttar Pradesh 201314 India
| | - Sri Krishna Jayadev Magani
- Department of Life Sciences, School of Natural Sciences Shiv Nadar University Greater Noida Uttar Pradesh 201314 India
| | - Shaikh M. Mobin
- Discipline of Chemistry Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 India
| | - Suman Mukhopadhyay
- Discipline of Chemistry Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 India
- Discipline of Biosciences and Biomedical Engineering, School of Engineering Indian Institute of Technology Khandwa Road, Simrol Indore 453552 India
| |
Collapse
|
9
|
Bhattacharjee A, Das S, Das B, Roy P. Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational Theragnosis of Ovarian Cancer: where do we stand? Curr Med Chem 2020; 27:5675-5715. [PMID: 31419925 DOI: 10.2174/0929867326666190816232330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer is the second most common gynecologic malignancy, accounting for approximately 220,000 deaths annually worldwide. Despite radical surgery and initial high response rates to platinum- and taxane-based chemotherapy, most patients experience a relapse, with a median progression-free survival of only 18 months. Overall survival is approximately 30% at 5 years from the diagnosis. In comparison, patients out from breast cancer are more than 80 % after ten years from the disease discovery. In spite of a large number of published fundamental and applied research, and clinical trials, novel therapies are urgently needed to improve outcomes of the ovarian cancer. The success of new drugs development in ovarian cancer will strongly depend on both fully genomic disease characterization and, then, availability of biomarkers able to identify women likely to benefit from a given new therapy. METHODS In this review, the focus is given to describe how complex is the diseases under the simple name of ovarian cancer, in terms of cell tumor types, histotypes, subtypes, and specific gene mutation or differently expressed in the tumor with respect the healthy ovary. The first- and second-line pharmacological treatment clinically used over the last fifty years are also described. Noteworthy achievements in vitro and in vivo tested new drugs are also summarized. Recent literature related to up to date ovarian cancer knowledge, its detection by biomarkers and chemotherapy was searched from several articles on Pubmed, Google Scholar, MEDLINE and various Governmental Agencies till April 2019. RESULTS The papers referenced by this review allow a deep analysis of status of the art in the classification of the several types of ovarian cancer, the present knowledge of diagnosis based on biomarkers and imaging techniques, and the therapies developed over the past five decades. CONCLUSION This review aims at stimulating more multi-disciplinary efforts to identify a panel of novel and more specific biomarkers to be used to screen patients for a very early diagnosis, to have prognosis and therapy efficacy indications. The desired final goal would be to have available tools allowing to reduce the recurrence rate, increase both the disease progression free interval and of course the overall survival at five years from the diagnosis that today is still very low.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Oreste Luisi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico "Giovanni Paolo II" Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
11
|
Xue X, Qian C, Tao Q, Dai Y, Lv M, Dong J, Su Z, Qian Y, Zhao J, Liu HK, Guo Z. Using bio-orthogonally catalyzed lethality strategy to generate mitochondria-targeting anti-tumor metallodrugs in vitro and in vivo. Natl Sci Rev 2020; 8:nwaa286. [PMID: 34691728 PMCID: PMC8433091 DOI: 10.1093/nsr/nwaa286] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
Synthetic lethality was proposed nearly a century ago by geneticists and recently applied to develop precision anti-cancer therapies. To exploit the synthetic lethality concept in the design of chemical anti-cancer agents, we developed a bio-orthogonally catalyzed lethality (BCL) strategy to generate targeting anti-tumor metallodrugs both in vitro and in vivo. Metallodrug Ru-rhein was generated from two non-toxic species Ru-N3 and rhein-alkyne via exclusive endogenous copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction without the need of an external copper catalyst. The non-toxic species Ru-arene complex Ru-N3 and rhein-alkyne were designed to perform this strategy, and the mitochondrial targeting product Ru-rhein was generated in high yield (>83%) and showed high anti-tumor efficacy in vitro. This BCL strategy achieved a remarkable tumor suppression effect on the tumor-bearing mice models. It is interesting that the combination of metal-arene complexes with rhein via CuAAC reaction could transform two non-toxic species into a targeting anti-cancer metallodrug both in vitro and in vivo, while the product Ru-rhein was non-toxic towards normal cells. This is the first example that exclusive endogenous copper was used to generate metal-based anti-cancer drugs for cancer treatment. The anti-cancer mechanism of Ru-rhein was studied and autophagy was induced by increased reactive oxygen species and mitochondrial damage. The generality of this BCL strategy was also studied and it could be extended to other metal complexes such as Os-arene and Ir-arene complexes. Compared with the traditional methods for cancer treatment, this work presented a new approach to generating targeting metallodrugs in vivo via the BCL strategy from non-toxic species in metal-based chemotherapy.
Collapse
Affiliation(s)
- Xuling Xue
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Chenggen Qian
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Tao
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yuanxin Dai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengdi Lv
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jingwen Dong
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi Su
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Ke Liu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Santolaya J, Busto N, Martínez-Alonso M, Espino G, Grunenberg J, Barone G, García B. Experimental and theoretical characterization of the strong effects on DNA stability caused by half-sandwich Ru(II) and Ir(III) bearing thiabendazole complexes. J Biol Inorg Chem 2020; 25:1067-1083. [PMID: 32951085 DOI: 10.1007/s00775-020-01823-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022]
Abstract
The synthesis and characterization of two half-sandwich complexes of Ru(II) and Ir(III) with thiabendazole as ancillary ligand and their DNA binding ability were investigated using experimental and computational methods. 1H NMR and acid-base studies have shown that aquo-complexes are the reactive species. Kinetic studies show that both complexes bind covalently to DNA through the metal site and non covalently through the ancillary ligand. Thermal stability studies, viscosity, circular dichroism measurements and quantum chemical calculations have shown that the covalent binding causes breaking of the H-bonding between base pairs, bringing about DNA denaturation and compaction. Additionally, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations shed light into the binding features of the Ru(II) and Ir(III) complexes and their respective enantiomers toward double-helical DNA, highlighting the important role played by the NˆN ancillary ligand once the complexes are covalently linked to DNA. Moreover, metal quantification in the nucleus of SW480 colon adenocarcinoma cells were carried out by inductively coupled plasma-mass spectrometry (ICP-MS), both complexes are more internalized than cisplatin after 4 h of exposition. However, in spite of the dramatic changes in the helicity of the DNA secondary structure induced by these complexes and their nuclear localization, antiproliferative studies have revealed that both, Ru(II) and Ir(III) complexes, cannot be considered cytotoxic. This unexpected behavior can be justified by the fast formation of aquo-complexes, which may react with components of the cell culture medium or the cytoplasm compartment in such a way that they may become deactivated before reaching DNA.
Collapse
Affiliation(s)
- Javier Santolaya
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Natalia Busto
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Marta Martínez-Alonso
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, CNRS, 75005, Paris, France
| | - Gustavo Espino
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Jörg Grunenberg
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Begoña García
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
13
|
Huang C, Ma Z, Lin J, Gong X, Zhang F, Wu X, Wang F, Zheng W, Zhao Y, Wu K. Tandem Mass Spectrometry Reveals Preferential Ruthenation of Thymines in Human Telomeric G-Quadruplex DNA by an Organometallic Ruthenium Anticancer Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Ziqi Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xianxian Gong
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fengfeng Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei Zheng
- Peking University Health Science Center, Beijing 100191, People’s Republic of China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| |
Collapse
|
14
|
Chen J, Tao Q, Wu J, Wang M, Su Z, Qian Y, Yu T, Wang Y, Xue X, Liu HK. A lysosome-targeted ruthenium(II) polypyridyl complex as photodynamic anticancer agent. J Inorg Biochem 2020; 210:111132. [DOI: 10.1016/j.jinorgbio.2020.111132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022]
|
15
|
|
16
|
Novel ruthenium and palladium complexes as potential anticancer molecules on SCLC and NSCLC cell lines. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01129-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Berrocal-Martin R, Sanchez-Cano C, Chiu CKC, Needham RJ, Sadler PJ, Magennis SW. Metallation-Induced Heterogeneous Dynamics of DNA Revealed by Single-Molecule FRET. Chemistry 2020; 26:4980-4987. [PMID: 31999015 DOI: 10.1002/chem.202000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 11/09/2022]
Abstract
The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s-1 , relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.
Collapse
Affiliation(s)
- Raul Berrocal-Martin
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Cookson K C Chiu
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Russell J Needham
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
18
|
Khan S, Alothman ZA, Mohammad M, Islam MS, Slawin A, Wabaidur SM, Islam MM, Mir MH. Synthesis and characterization of a hydrogen bonded metal-organic cocrystal: Exploration of its DNA binding study. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Stanic-Vucinic D, Nikolic S, Vlajic K, Radomirovic M, Mihailovic J, Cirkovic Velickovic T, Grguric-Sipka S. The interactions of the ruthenium(II)-cymene complexes with lysozyme and cytochrome c. J Biol Inorg Chem 2020; 25:253-265. [PMID: 32020293 DOI: 10.1007/s00775-020-01758-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/14/2020] [Indexed: 11/24/2022]
Abstract
The reactions of four cymene-capped ruthenium(II) compounds with pro-apoptotic protein, cytochrome c (Cyt), and anti-proliferative protein lysozyme (Ly) in carbonate buffer were investigated by ESI-MS, UV-vis absorption, and CD spectroscopy. The complexes with two chloride ligands (C2 and C3) were more reactive toward proteins than those with only one (C1 and C4), and the complex with S,N-chelating ligand (C4) was less reactive than one with O,N-chelating ligand (C1). Dehalogenated complexes are most likely species, initially coordinating proteins for all tested complexes. During the time, protein adducts vividly exchanged non-arene organic ligand L with CO32- and OH-, while cymene moiety was retained. In water, only dehalogenated adducts were identified suggesting that in vivo, in the presence of various anions, dynamic ligand exchange could generate different intermediate protein species. Although all complexes reduced Cyt, the reduction was not dependent on their reactivity to protein, implying that initially noncovalent binding to Cyt occurs, causing its reduction, followed by coordination to protein. Cyt reduction was accompanied with rupture of ferro-Met 80 and occupation of this hem coordination site by a histidine His-33/26. Therefore, in Cyt with C2 and C3, less intensive reduction of hem iron leaves more unoccupied target residues for Ru coordination, leading to more efficient formation of covalent adducts, in comparison to C1 and C4. This study contributes to development of new protein-targeted Ru(II) cymene complexes, and to the design of new cancer therapies based on targeted delivery of Ru(II) arene complexes bound on pro-apoptotic/anti-proliferative proteins as vehicles.
Collapse
Affiliation(s)
- Dragana Stanic-Vucinic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Stefan Nikolic
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Katarina Vlajic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Mirjana Radomirovic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Jelena Mihailovic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia.,Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, Korea.,Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia
| | - Sanja Grguric-Sipka
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia.
| |
Collapse
|
20
|
Kumar P, Swagatika S, Dasari S, Tomar RS, Patra AK. Modulation of ruthenium anticancer drugs analogs with tolfenamic acid: Reactivity, biological interactions and growth inhibition of yeast cell. J Inorg Biochem 2019; 199:110769. [DOI: 10.1016/j.jinorgbio.2019.110769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
|
21
|
Mansour AM, Ragab MS. DNA/lysozyme binding propensity and nuclease properties of benzimidazole/2,2'-bipyridine based binuclear ternary transition metal complexes. RSC Adv 2019; 9:30879-30887. [PMID: 35529371 PMCID: PMC9072361 DOI: 10.1039/c9ra07188a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
In the present contribution, new binuclear ternary complexes; [M2(bpy)4L](ClO4)4 (M = Co(ii) (1) and Ni(ii) (2); bpy = 2,2'-bipyridine; L = 1,1'-(hexane-1,6-diyl)bis[2-(pyridin-2-yl)1H-benzimidazole] and [Cu2(bpy)2(OH2)2L](BF4)4 (3) were synthesized, characterized and screened for their antimicrobial activity and cytotoxicity against human liver carcinoma cells (HepG-2) as well as non-malignant human embryonic kidney cells (HEK-293). The structural studies were complemented by density functional theory (DFT) calculations. DNA binding of 1-3 was spectrophotometrically studied. The DNA cleavage ability of 1-3 towards the supercoiled plasmid DNA (pBR322 DNA) was examined through gel electrophoresis. Compound 3 has the highest cytotoxic activity (IC50 = 3.5 μg mL-1) against HepG-2 among the investigated complexes and is non cytotoxic to noncancerous HEK-293. Complexes (1 and 2) exhibited toxicity to HEK-293 with IC50 values of 30.3 and 23.5 μg mL-1 in that order. While compound 1 showed antifungal activity against Cryptococcus neoformans, complex 2 exhibited its toxicity against Candida albicans.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street, Giza Cairo 12613 Egypt
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street, Giza Cairo 12613 Egypt
| |
Collapse
|
22
|
Rono CK, Chu WK, Darkwa J, Meyer D, Makhubela BCE. Triazolyl RuII, RhIII, OsII, and IrIII Complexes as Potential Anticancer Agents: Synthesis, Structure Elucidation, Cytotoxicity, and DNA Model Interaction Studies. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charles K. Rono
- Department of Chemistry, University of Johannesburg, Kingsway Campus, 2006 Auckland Park, South Africa
| | - William K. Chu
- Department of Chemistry, University of Johannesburg, Kingsway Campus, 2006 Auckland Park, South Africa
| | - James Darkwa
- Department of Chemistry, University of Johannesburg, Kingsway Campus, 2006 Auckland Park, South Africa
| | - Debra Meyer
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, 2006 Auckland Park, South Africa
| | - Banothile C. E. Makhubela
- Department of Chemistry, University of Johannesburg, Kingsway Campus, 2006 Auckland Park, South Africa
| |
Collapse
|
23
|
Diao J, Bai F, Wang Y, Han Q, Xu X, Zhang H, Luo Q, Wang Y. Engineering of pectin-dopamine nano-conjugates for carrying ruthenium complex: A potential tool for biomedical applications. J Inorg Biochem 2019; 191:135-142. [DOI: 10.1016/j.jinorgbio.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 11/27/2022]
|
24
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
25
|
Soldevila-Barreda JJ, Metzler-Nolte N. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chem Rev 2019; 119:829-869. [PMID: 30618246 DOI: 10.1021/acs.chemrev.8b00493] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum-containing drugs (e.g., cisplatin) are among the most frequently used chemotherapeutic agents. Their tremendous success has spurred research and development of other metal-based drugs, with notable achievements. Generally, the vast majority of metal-based drug candidates in clinical and developmental stages are stoichiometric agents, i.e., each metal complex reacts only once with their biological target. Additionally, many of these metal complexes are involved in side reactions, which not only reduce the effective amount of the drug but may also cause toxicity. On a separate note, transition metal complexes and nanoparticles have a well-established history of being potent catalysts for selective molecular transformations, with examples such as the Mo- and Ru-based catalysts for metathesis reactions (Nobel Prize in 2005) or palladium catalysts for C-C bond forming reactions such as Heck, Negishi, or Suzuki reactions (Nobel Prize in 2010). Also, notably, no direct biological equivalent of these transformations exists in a biological environment such as bacteria or mammalian cells. It is, therefore, only logical that recent interest has focused on developing transition-metal based catalytic systems that are capable of performing transformations inside cells, with the aim of inducing medicinally relevant cellular changes. Because unlike in stoichiometric reactions, a catalytically active compound may turn over many substrate molecules, only very small amounts of such a catalytic metallodrug are required to achieve a desired pharmacologic effect, and therefore, toxicity and side reactions are reduced. Furthermore, performing catalytic reactions in biological systems also opens the door for new methodologies to study the behavior of biomolecules in their natural state, e.g., via in situ labeling or by increasing/depleting their concentration at will. There is, of course, an art to the choice of catalysts and reactions which have to be compatible with biological conditions, namely an aqueous, oxygen-containing environment. In this review, we aim to describe new developments that bring together the far-distant worlds of transition-metal based catalysis and metal-based drugs, in what is termed "catalytic metallodrugs". Here we will focus on transformations that have been performed on small biomolecules (such as shifting equilibria like in the NAD+/NADH or GSH/GSSG couples), on non-natural molecules such as dyes for imaging purposes, or on biomacromolecules such as proteins. Neither reactions involving release (e.g., CO) or transformation of small molecules (e.g., 1O2 production), degradation of biomolecules such as proteins, RNA or DNA nor light-induced medicinal chemistry (e.g., photodynamic therapy) are covered, even if metal complexes are centrally involved in those. In each section, we describe the (inorganic) chemistry involved, as well as selected examples of biological applications in the hope that this snapshot of a new but quickly developing field will indeed inspire novel research and unprecedented interactions across disciplinary boundaries.
Collapse
Affiliation(s)
- Joan Josep Soldevila-Barreda
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| |
Collapse
|
26
|
Cheng Y, Zeng W, Cheng Y, Zhang J, Zou T, Wu K, Wang F. Selective binding of an organoruthenium complex to G-rich human telomeric sequence by tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2152-2158. [PMID: 30252980 DOI: 10.1002/rcm.8292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Human telomeric DNA is reported to be a potential target for anticancer organometallic ruthenium(II) complexes, however, the interaction sites were not clearly discriminated and identified. METHODS In the current study, tandem mass spectrometry (MS/MS) using collision-induced dissociation (CID) was firstly introduced to identify the interaction sites of an organometallic ruthenium(II) complex [(η6 -biphenyl)Ru(en)Cl][PF6 ] (1; en = ethylenediamine) with 5'-T1 T2 A3 G4 G5 G6 -3' (I), the repeating unit of human telomeric DNA, in both positive- and negative-ion mode at a low reaction molar ratio (1/I = 0.2) which was applied to preserve the site selectivity. RESULTS Mass spectrometric results showed that mono-ruthenated I was the main product under the conditions. In positive-ion mode, MS/MS results indicated that ruthenium complex 1 binds to T2 or G6 in strand I. However, in negative-ion mode, no efficient information was obtained for exact identification of ruthenation sites which may be attributed to losses of fragment ions due to charge neutralization by the coordination of the positively charged ruthenium complex to the short MS/MS fragments. CONCLUSIONS This is the first report of using top-down MS to characterize the interactions of organometallic ruthenium(II) complexes and human telomeric DNA. Thymine can be thermodynamically competitive with guanine for binding to ruthenium complexes even at low reaction molar ratio, which inspired us to explore in greater depth the significance of thymine binding.
Collapse
Affiliation(s)
- Yiyu Cheng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy Sciences, Beijing, 100049, PR China
| | - Yang Cheng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Jishuai Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Tao Zou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy Sciences, Beijing, 100049, PR China
| |
Collapse
|
27
|
Mansour AM. Antifungal activity, DNA and lysozyme binding affinity of Pd(II) and Pt(II) complexes bearing N,N-pyridylbenzimidazole ligand. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1517256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Wu Q, Liu LY, Li S, Wang FX, Li J, Qian Y, Su Z, Mao ZW, Sadler PJ, Liu HK. Rigid dinuclear ruthenium-arene complexes showing strong DNA interactions. J Inorg Biochem 2018; 189:30-39. [PMID: 30218888 DOI: 10.1016/j.jinorgbio.2018.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
Abstract
Six novel dinuclear Ru(II)-arene complexes [Ru2(η6-p-cymene)2(1,3-bib)2Cl2]×2·Solvent (X = Cl- (1), I- (2), NO3- (3), BF4- (4), PF6- (5), CF3SO3- (6); 1,3-bib = 1,3-di(1H-imidazol-1-yl) benzene) were synthesized and fully characterized by FT-IR, 1H NMR, ESI-MS, Elemental Analysis (EA) and Powder X-ray Diffraction (PXRD). Single crystal X-ray diffractions studies showed that 3 and 4 have rigid bowl-like structures, where one counter-anion (NO3- for 3 and BF4- for 4) was trapped inside the cavity to balance the charge, respectively. Even complexes 1-6 showed only moderate or little anti-proliferative activity toward cancer cells, strong interactions with DNA molecules through intercalation, however, were confirmed by UV-Vis, CD and fluorescence spectroscopy. Apoptosis and cell cycle arrest studies for complex 2 with cancer A549 cells indicated concentration-dependent late apoptosis and the G1/G0 phase arrest. Interactions with the tripeptide glutathione (γ-L-Glu-L-Cys-Gly, GSH) might explain the relatively low antiproliferative potency of these complexes. This class of rigid dinuclear cations hold potential as DNA-targeting anticancer agents if their uptake and delivery could be under controlled.
Collapse
Affiliation(s)
- Qi Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shunli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ji Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
29
|
Liu S, Liang A, Wu K, Zeng W, Luo Q, Wang F. Binding of Organometallic Ruthenium Anticancer Complexes to DNA: Thermodynamic Base and Sequence Selectivity. Int J Mol Sci 2018; 19:ijms19072137. [PMID: 30041439 PMCID: PMC6073332 DOI: 10.3390/ijms19072137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
Organometallic ruthenium(II) complexes [(η⁶-arene)Ru(en)Cl][PF₆] (arene = benzene (1), p-cymene (2), indane (3), and biphenyl (4); en = ethylenediamine) are promising anticancer drug candidates both in vitro and in vivo. In this paper, the interactions between ruthenium(II) complexes and 15-mer single- and double-stranded oligodeoxynucleotides (ODNs) were thermodynamically investigated using high performance liquid chromatography (HPLC) and electrospray ionization mass spectroscopy (ESI-MS). All of the complexes bind preferentially to G₈ on the single strand 5'-CTCTCTT₇G₈T₉CTTCTC-3' (I), with complex 4 containing the most hydrophobic ligand as the most reactive one. To the analogs of I (changing T₇ and/or T₉ to A and/or C), complex 4 shows a decreasing affinity to the G₈ site in the following order: -AG₈T- (K: 5.74 × 10⁴ M-1) > -CG₈C- > -TG₈A- > -AG₈A- > -AG₈C- > -TG₈T- (I) ≈ -CG₈A- (K: 2.81 × 10⁴ M-1). In the complementary strand of I, the G bases in the middle region are favored for ruthenation over guanine (G) bases in the end of oligodeoxynucleotides (ODNs). These results indicate that both the flanking bases (or base sequences) and the arene ligands play important roles in determining the binding preference, and the base- and sequence-selectivity, of ruthenium complex in binding to the ODNs.
Collapse
Affiliation(s)
- Suyan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Haribabu J, Sabapathi G, Tamizh MM, Balachandran C, Bhuvanesh NSP, Venuvanalingam P, Karvembu R. Water-Soluble Mono- and Binuclear Ru(η6-p-cymene) Complexes Containing Indole Thiosemicarbazones: Synthesis, DFT Modeling, Biomolecular Interactions, and In Vitro Anticancer Activity through Apoptosis. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Gopal Sabapathi
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Manoharan Muthu Tamizh
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Arumbakkam, Chennai 600 106, India
| | - Chandrasekar Balachandran
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
31
|
Pal M, Nandi U, Mukherjee D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. Eur J Med Chem 2018; 150:419-445. [DOI: 10.1016/j.ejmech.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
|
32
|
Synthesis, characterization and anticancer activity in vitro and in vivo evaluation of an iridium (III) polypyridyl complex. Eur J Med Chem 2018; 145:338-349. [PMID: 29331805 DOI: 10.1016/j.ejmech.2017.11.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
|
33
|
Liu HK, Kostrhunova H, Habtemariam A, Kong Y, Deeth RJ, Brabec V, Sadler PJ. "Head-to-head" double-hamburger-like structure of di-ruthenated d(GpG) adducts of mono-functional Ru-arene anticancer complexes. Dalton Trans 2018; 45:18676-18688. [PMID: 27830851 DOI: 10.1039/c6dt03356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Guanine bases in DNA are targets for some Ru-arene anticancer complexes. We have investigated the structure of the novel di-ruthenated d(GpG) adduct Ru2-GpG (where Ru = {(η6-biphenyl)-Ru(en)}2+ (1')) in aqueous solution. 2D NMR results indicate that there are two conformers, supported by modeling studies. The major conformer I is a novel double-hamburger-like structure with a "head-to-head" (HH) base arrangement involving hydrophobic interactions between neighboring arene rings, the first example of a HH d(GpG) adduct constructed by weak interactions. Hence there are significant differences compared to Pt-d(GpG) adducts formed by cisplatin. There is no obviously rigid bending for the major conformer I. The minor conformer II of Ru2-GpG has a back-to-back structure, with two ruthenated guanine bases flipped away from each other. 19-23 base-pair oligodeoxyribonucleotides containing central TGGT sequences di-ruthenated by 1 show no directional bending, only slightly distorted di-ruthenated duplexes, consistent with the NMR data for conformer I. The structural differences and similarities of d(GpG) residues which are di-ruthenated or cross-linked by platination are discussed in the context of the biological activity of these metal complexes.
Collapse
Affiliation(s)
- Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Yaqiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Robert J Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
34
|
Li FF, Chen HY, Jin Y, Zhao QH, Xie MJ. Synthesis, X-Ray Structure and In Vitro Cytotoxic Activity of a New Dinuclear Cobalt(III) Complex with Diazine Ligands. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Mansour AM, Shehab OR. Lysozyme and DNA binding affinity of Pd(ii) and Pt(ii) complexes bearing charged N,N-pyridylbenzimidazole bidentate ligands. Dalton Trans 2018; 47:3459-3468. [DOI: 10.1039/c7dt04347c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The 2-pyridylbenzimidazole Pt(ii) complex functionalized with triphenylphosphonium interacts covalently with lysozyme via the loss of labile ligands and the departure of the TPP+ part.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Cairo 12613
- Egypt
| | - Ola R. Shehab
- Department of Chemistry
- Faculty of Science
- Cairo University
- Cairo 12613
- Egypt
| |
Collapse
|
36
|
Ganeshpandian M, Palaniandavar M, Muruganantham A, Ghosh SK, Riyasdeen A, Akbarsha MA. Ruthenium(II)–arene complexes of diimines: Effect of diimine intercalation and hydrophobicity on DNA and protein binding and cytotoxicity. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mani Ganeshpandian
- School of ChemistryBharathidasan University Tiruchirappalli 620 024 Tamil Nadu India
| | | | - Amsaveni Muruganantham
- Theoretical Chemistry Section, Bhabha Atomic Research CentreHomi Bhabha National Institute Mumbai 400 085 India
| | - Swapan K. Ghosh
- Theoretical Chemistry Section, Bhabha Atomic Research CentreHomi Bhabha National Institute Mumbai 400 085 India
| | - Anvarbatcha Riyasdeen
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620 024 Tamil Nadu India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi‐Doerenkamp Center for Alternatives to Use of Animals in Life Science EducationBharathidasan University Tiruchirappalli 620 024 Tamil Nadu India
| |
Collapse
|
37
|
Alves de Souza CE, Alves de Souza HDM, Stipp MC, Corso CR, Galindo CM, Cardoso CR, Dittrich RL, de Souza Ramos EA, Klassen G, Carlos RM, Correia Cadena SMS, Acco A. Ruthenium complex exerts antineoplastic effects that are mediated by oxidative stress without inducing toxicity in Walker-256 tumor-bearing rats. Free Radic Biol Med 2017. [PMID: 28629835 DOI: 10.1016/j.freeradbiomed.2017.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study evaluated the in vivo antitumor effects and toxicity of a new Ru(II) compound, cis-(Ru[phen]2[ImH]2)2+ (also called RuphenImH [RuC]), against Walker-256 carcinosarcoma in rats. After subcutaneous inoculation of Walker-256 cells in the right pelvic limb, male Wistar rats received 5 or 10mgkg-1 RuC orally or intraperitoneally (i.p.) every 3 days for 13 days. A positive control group (2mgkg-1 cisplatin) and negative control group (vehicle) were also used. Tumor progression was checked daily. After treatment, tumor weight, plasma biochemistry, hematology, oxidative stress, histology, and tumor cell respiration were evaluated. RuC was effective against tumors when administered i.p. but not orally. The highest i.p. dose of RuC (10mgkg-1) significantly reduced tumor volume and weight, induced oxidative stress in tumor tissue, reduced the respiration of tumor cells, and induced necrosis but did not induce apoptosis in the tumor. No clinical signs of toxicity or death were observed in tumor-bearing or healthy rats that were treated with RuC. These results suggest that RuC has antitumor activity through the modulation of oxidative stress and impairment of oxidative phosphorylation, thus promoting Walker-256 cell death without causing systemic toxicity. These effects make RuC a promising anticancer drug for clinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil
| | | | | | | | | | - Giseli Klassen
- Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Rose Maria Carlos
- Department of Chemistry, Federal São Carlos University, São Carlos, Brazil
| | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
38
|
Wang HY, Qian Y, Wang FX, Habtemariam A, Mao ZW, Sadler PJ, Liu HK. Ruthenium(II)-Arene Metallacycles: Crystal Structures, Interaction with DNA, and Cytotoxicity. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hong-Yan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046, Jiang Su Nanjing P. R. China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046, Jiang Su Nanjing P. R. China
| | - Fang-Xin Wang
- School of Chemistry; Sun Yat-Sen University; 510275, Guang Dong Guangzhou P. R. China
| | - Abraha Habtemariam
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| | - Zong-Wan Mao
- School of Chemistry; Sun Yat-Sen University; 510275, Guang Dong Guangzhou P. R. China
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046, Jiang Su Nanjing P. R. China
| |
Collapse
|
39
|
Li J, Zhang P, Xu Y, Su Z, Qian Y, Li S, Yu T, Sadler PJ, Liu HK. A novel strategy to construct Janus metallamacrocycles with both a Ru–arene face and an imidazolium face. Dalton Trans 2017; 46:16205-16215. [DOI: 10.1039/c7dt03374e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a novel strategy to synthesize Janus metallocyclic Ru–arene complexes with both a Ru–arene face and a didentate imidazolium face, which possess unusual structures and properties.
Collapse
Affiliation(s)
- Ji Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Peipei Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Yan Xu
- College of Chemistry and Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Shunli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| | - Tao Yu
- Department of Chemistry
- Tennessee Tech University
- Cookeville
- USA
| | | | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| |
Collapse
|
40
|
Du J, Zhang E, Zhao Y, Zheng W, Zhang Y, Lin Y, Wang Z, Luo Q, Wu K, Wang F. Discovery of a dual-targeting organometallic ruthenium complex with high activity inducing early stage apoptosis of cancer cells. Metallomics 2016; 7:1573-83. [PMID: 26446567 DOI: 10.1039/c5mt00122f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium based complexes are promising antitumour candidates due to their lower toxicity and better water-solubility compared to the platinum antitumour complexes. An epidermal growth factor receptor (EGFR) has been found to be overexpressed in a large set of tumour cells. In this work, a series of organoruthenium complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesised and characterised. These complexes exhibited excellent inhibitory activity against EGFR and high affinity to interact with DNA via minor groove binding, featuring dual-targeting properties. In vitro screening demonstrated that the as-prepared ruthenium complexes are anti-proliferating towards a series of cancer cell lines, in particular the non-small-cell lung cancer cell line A549. Fluorescence-activated cell sorting analysis and fluorescence microscopy revealed that the most active complex 3 induced much more early-stage cell apoptosis than its cytotoxic arene ruthenium analogue and the EGFR-inhibiting 4-anilinoquinazolines, verifying the synergetic effect of the two mono-functional pharmacophores.
Collapse
Affiliation(s)
- Jun Du
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, The Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China
| | - Erlong Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, The Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China and Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yu Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhaoying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
41
|
|
42
|
Zou T, Zhang JJ, Cao B, Tong KC, Lok CN, Che CM. Deubiquitinases as Anticancer Targets of Gold Complexes. Isr J Chem 2016. [DOI: 10.1002/ijch.201600044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Taotao Zou
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 P.R. China
| | - Jing-Jing Zhang
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Bei Cao
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Chemical Biology Centre and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong S.A.R.P.R. China
- HKU Shenzhen Institute of Research and Innovation; Shenzhen 518053 P.R. China
| |
Collapse
|
43
|
Seršen S, Šket P, Plavec J, Turel I. Interactions of two cytotoxic organoruthenium(II) complexes with G-quadruplex. J Inorg Biochem 2016; 160:70-7. [DOI: 10.1016/j.jinorgbio.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
44
|
Li L, Guo W, Wu K, Wu X, Zhao L, Zhao Y, Luo Q, Wang Y, Liu Y, Zhang Q, Wang F. A comparative study on the interactions of human copper chaperone Cox17 with anticancer organoruthenium(II) complexes and cisplatin by mass spectrometry. J Inorg Biochem 2016; 161:99-106. [PMID: 27235272 DOI: 10.1016/j.jinorgbio.2016.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
Herein we report investigation of the interactions between anticancer organoruthenium complexes, [(η(6)-arene)Ru(en)(Cl)]PF6 (en=ethylenediamine, arene=p-cymene (1) or biphenyl (2)), and the human copper chaperone protein Cox17 by mass spectrometry with cisplatin as a reference. The electrospray ionization mass spectrometry (ESI-MS) results indicate much weaker binding of the ruthenium complexes than that of cisplatin to apo-Cox172s-s, the functional state of Cox17. Up to tetra-platinated Cox17 adducts were identified while only mono-ruthenated and a little amount of di-ruthenated Cox17 adducts were detected even for the reactions with 10-fold excess of the Ru complexes. However, ESI-MS analysis coupled with liquid chromatography of tryptic digests of metalated proteins identified only three platination sites as Met4, Cys27 and His47 residues, possibly due to the lower abundance or facile dissociation of Pt bindings at other sites. Complexes 1 and 2 were found to bind to the same three residues with Met4 as the major site. Inductively coupled plasma mass spectrometry results revealed that ~7mol Pt binding to 1mol apo-Cox172s-s molecules, compared to only 0.17 (1) and 0.10 (2) mol Ru to 1mol apo-Cox172s-s. This is in line with the circular dichroism results that much larger unfolding extent of α-helix of apo-Cox172s-s was observed upon cisplatin binding than that upon organoruthenium bindings. These results collectively indicate that Cox17 might not participate in the action of these anticancer organoruthenium complexes, and further verify the distinct anticancer mechanism of the organoruthenium(II) complexes from cisplatin.
Collapse
Affiliation(s)
- Lijie Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, PR China
| | - Wei Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xuelei Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Linhong Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuanyuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yangzhong Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qingwu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, PR China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
45
|
Zhang Y, Zheng W, Luo Q, Zhao Y, Zhang E, Liu S, Wang F. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands. Dalton Trans 2016; 44:13100-11. [PMID: 26106875 DOI: 10.1039/c5dt01430a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China.
| | | | | | | | | | | | | |
Collapse
|
46
|
[(η(6)-p-cymene)Ru(H2O)3](2+) binding capability of aminohydroxamates - A solution and solid state study. J Inorg Biochem 2016; 160:236-45. [PMID: 26971623 DOI: 10.1016/j.jinorgbio.2016.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/11/2016] [Accepted: 02/25/2016] [Indexed: 01/06/2023]
Abstract
Complex forming capabilities of [(η(6)-p-cymene)Ru(H2O)3](2+) with aminohydroxamates (2-amino-N-hydroxyacetamide (α-alahaH), 3-amino-N-hydroxypropanamide (β-alahaH) and 4-amino-N-hydroxybutanamide (γ-abhaH)) having the primary amino group in different chelatable position to the hydroxamic function were studied by pH-potentiometry, NMR and MS methods. Formation of stable [O,O] and mixed [O,O][N,N] chelated mono- and dinuclear species is detected in partially slow with α-alahaH and β-alahaH or in fast processes with γ-abhaH and the formation constants of the complexes present in aqueous solution are reported. Synthesis, spectral (NMR, IR) and ESI mass spectrometric characterization of novel dinuclear α-alaninehydroximato complexes containing the half-sandwich type Ru(II) core is described. The crystal and molecular structure of [{(η(6)-p-cymene)Ru}2(μ(2)-α-alahaH-1)(H2O)Br]Br∙H2O (1) and [{(η(6)-p-cymene)Ru}2(μ(2)-α-alahaH-1)(H2O)Cl]BF4∙H2O (2) was determined by single crystal X-ray diffraction method. In the complexes one half-sandwich core is coordinated by a hydroxamate [O,O] chelate while the other one by [Namino,Nhydroxamate] fashion of the bridging ligand. In both cases the remaining coordination sites of one of the Ru cores are taken by a halide ion whiles the other one by a water molecule. Reaction of 2 with 9-methylguanine indicates the N7 coordination of this simple DNA model. Complexes 1 and 2 were tested for their in vitro cytotoxicity using human-derived cancer cell lines (A2780, MCF-7, SKOV-3, HCT-116, HeLa) and showed no anti-proliferative activity in the micromolar concentration range.
Collapse
|
47
|
Sriskandakumar T, Behyan S, Habtemariam A, Sadler PJ, Kennepohl P. Electrophilic Activation of Oxidized Sulfur Ligands and Implications for the Biological Activity of Ruthenium(II) Arene Anticancer Complexes. Inorg Chem 2015; 54:11574-80. [DOI: 10.1021/acs.inorgchem.5b02493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Shirin Behyan
- The University of British Columbia, Department of Chemistry, Vancouver, BC V6T 1Z1, Canada
| | - Abraha Habtemariam
- University of Warwick, Department
of Chemistry, Coventry CV4 7AL, United Kingdom
| | - Peter J. Sadler
- University of Warwick, Department
of Chemistry, Coventry CV4 7AL, United Kingdom
| | - Pierre Kennepohl
- The University of British Columbia, Department of Chemistry, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
48
|
Vázquez M, Font-Bardia M, Martínez M. Kinetico-mechanistic studies of substitution reactions on cross-bridged cyclen Co(III) complexes with nucleosides and nucleotides. Dalton Trans 2015; 44:18643-55. [PMID: 26455445 DOI: 10.1039/c5dt01816a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetico-mechanistic studies on the substitution reactivity of the [Co{(μ-ET)cyclen}(H2O)2](3+) complex cation at pH values within the 6.0-7.0 range with biologically significant ligands have been carried out. The substitution processes have been found to occur exclusively on the mono-hydroxobridged [(Co{(μ-ET)cyclen}(H2O))2(μ-OH)](5+) species formed after equilibration of the cobalt complex in the relevant medium. The studies conducted on the substitution of the aqua/hydroxo ligands of this dinuclear species are indicative of a dominant role of outer-sphere complexation, involving hydrogen-bonding interactions. The values of the outer-sphere complex formation equilibrium constant are in line with the intervention of both the exiting aqua ligands and the NH groups at the encapsulating {(μ-ET)cyclen} ligand. These complexes result in the preferential formation of O- or N-bonded nucleotides depending on the structure of the base moiety of the ligand. Even the entry of the different donor bonded nucleotides is hampered by the hydrogen-bonding interaction with the dangling moiety of an already coordinated ligand. In general the overall substitution processes occur at a faster rate than those published for the fully alkylated encapsulating {(Me)2(μ-ET)cyclen} ligand derivative, as expected for the still available base-catalysing NH groups in the {(μ-ET)cyclen} ligand.
Collapse
Affiliation(s)
- Marta Vázquez
- Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.
| | | | | |
Collapse
|
49
|
Zou T, Sadler PJ. Speciation of precious metal anti-cancer complexes by NMR spectroscopy. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 16:7-15. [PMID: 26547416 DOI: 10.1016/j.ddtec.2015.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
Understanding the mechanism of action of anti-cancer agents is of paramount importance for drug development. NMR spectroscopy can provide insights into the kinetics and thermodynamics of the binding of metallodrugs to biomolecules. NMR is most sensitive for highly abundant I=1/2 nuclei with large magnetic moments. Polarization transfer can enhance NMR signals of insensitive nuclei at physiologically-relevant concentrations. This paper reviews NMR methods for speciation of precious metal anti-cancer complexes, including platinum-group and gold-based anti-cancer agents. Examples of NMR studies involving interactions with DNA and proteins in particular are highlighted.
Collapse
Affiliation(s)
- Taotao Zou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
50
|
Liu S, Wu K, Zheng W, Zhao Y, Luo Q, Xiong S, Wang F. Identification and discrimination of binding sites of an organoruthenium anticancer complex to single-stranded oligonucleotides by mass spectrometry. Analyst 2015; 139:4491-6. [PMID: 25028701 DOI: 10.1039/c4an00807c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We here report the identification of the binding sites of an organometallic ruthenium anticancer complex [(η(6)-biphenyl)Ru(en)Cl](+) (1) to single-stranded oligodeoxynucleotides (ODNs) 5'-CCCA4G5C6CC-3' (I) and 5'-CCC3G4A5CCC-3' (II) by mass spectrometry. The MS analysis of exonuclease ladders demonstrated that the 5'-exonuclease bovine spleen phosphodiesterase digestion of I and II mono-ruthenated by complex 1 was arrested solely at A4 and partially at C3 and G4, respectively, and that the 3'-exonuclease snake venom phosphodiesterase digestion of the ruthenated ODNs was arrested solely at G5 and G4, respectively, due to the ruthenation. These results did not allow unambiguous identification of ruthenation sites on the metallated ODNs. In contrast, tandem mass spectrometry analysis with CID fragmentation of the mono-ruthenated ODNs provided sequential and complementary [a(i) - B]/wi fragments, leading to unambiguous identification of G5 in I and G4 in II as the ruthenation sites on the ODN adducts, which is in line with the high selectivity of the complex towards guanine base as reported previously. These findings suggest that caution should be raised with regard to the identification of the binding sites of metal complexes, in particular complexes with bulky ligands, like biphenyl in complex 1, to DNA by MS analysis of exonuclease ladders of the metallated adducts, because the bulky ligands may adopt such an orientation that they block the exonuclease cleavage of the 5'- or 3'-side phosphodiester bonds adjacent to the binding sites, leading to digestion stalling at the nucleotides before the binding sites.
Collapse
Affiliation(s)
- Suyan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | | | | | | | | | | | | |
Collapse
|