1
|
Yang Z, Stein RA, Pink M, Madzelan P, Ngendahimana T, Rajca S, Wilson MA, Eaton SS, Eaton GR, Mchaourab HS, Rajca A. Cucurbit[7]uril Enhances Distance Measurements of Spin-Labeled Proteins. J Am Chem Soc 2023; 145:25726-25736. [PMID: 37963181 PMCID: PMC10961179 DOI: 10.1021/jacs.3c09184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We report complex formation between the chloroacetamide 2,6-diazaadamantane nitroxide radical (ClA-DZD) and cucurbit[7]uril (CB-7), for which the association constant in water, Ka = 1.9 × 106 M-1, is at least 1 order of magnitude higher than the previously studied organic radicals. The radical is highly immobilized by CB-7, as indicated by the increase in the rotational correlation time, τrot, by a factor of 36, relative to that in the buffer solution. The X-ray structure of ClA-DZD@CB-7 shows the encapsulated DZD guest inside the undistorted CB-7 host, with the pendant group protruding outside. Upon addition of CB-7 to T4 Lysozyme (T4L) doubly spin-labeled with the iodoacetamide derivative of DZD, we observe the increase in τrot and electron spin coherence time, Tm, along with the narrowing of interspin distance distributions. Sensitivity of the DEER measurements at 83 K increases by a factor 4-9, compared to the common spin label such as MTSL, which is not affected by CB-7. Interspin distances of 3 nm could be reliably measured in water/glycerol up to temperatures near the glass transition/melting temperature of the matrix at 200 K, thus bringing us closer to the goal of supramolecular recognition-enabled long-distance DEER measurements at near physiological temperatures. The X-ray structure of DZD-T4L 65 at 1.12 Å resolution allows for unambiguous modeling of the DZD label (0.88 occupancy), indicating an undisturbed structure and conformation of the protein.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Richard A. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Peter Madzelan
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
2
|
Zhang L, Xu Y, Wei W. Water-soluble organic macrocycles based on dye chromophores and their applications. Chem Commun (Camb) 2023; 59:13562-13570. [PMID: 37901908 DOI: 10.1039/d3cc04159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Traditional water-soluble organic macrocyclic receptors generally lack photofunctionality, thus monitoring the drug delivery and the phototheranostic applications of these host-guest macrocyclic systems has been greatly restricted. To address this issue, incorporating π-conjugated dye chromophores as building blocks into macrocyclic molecules is a straightforward and promising strategy. This approach not only imparts intrinsic optical features to the macrocycles themselves but also enhances the host-guest binding ability due to the large planar structures of the dyes. In this feature article, we focus on recent advances in water-soluble macrocyclic compounds based on organic dye chromophores, such as naphthalimide (NDI), perylene diimides (PDI), azobenzene (azo), tetraphenylethylene (TPE) and anthracene, and provide an overview of their various applications including molecular recognition, drug release, biological imaging, photothermal therapy, etc. We hope that this article could be helpful and instructive for the design of water-soluble dye-based macrocycles and the further development of their biomedical applications, particularly in combination with drug therapy and phototheranostics.
Collapse
Affiliation(s)
- Luying Zhang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yanqing Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
3
|
Li SH, Li BB, Zhao XL, Wu H, Chai RL, Li GY, Zhu D, He G, Zhang HF, Xie KK, Cheng B, Zhao Q. Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301934. [PMID: 37271893 DOI: 10.1002/smll.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[33 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[33 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 104 L m-2 h-1 ). This lantern[33 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bin-Bin Li
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xue-Lin Zhao
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Rui-Lin Chai
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Guang-Yue Li
- Department of Applied Chemistry, College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Di Zhu
- Tianjin Changlu Advanced Materials Research Institute Co., Ltd., Tianjin, 300350, China
| | - Guangrui He
- Tianjin Changlu Advanced Materials Research Institute Co., Ltd., Tianjin, 300350, China
| | - Hai-Fu Zhang
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ke-Ke Xie
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bowen Cheng
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qian Zhao
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
4
|
Yang Z, Stein RA, Pink M, Madzelan P, Ngendahimana T, Rajca S, Wilson MA, Eaton SS, Eaton GR, Mchaourab HS, Rajca A. Cucurbit[7]uril Enhances Distance Measurements of Spin-Labeled Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554361. [PMID: 37662277 PMCID: PMC10473685 DOI: 10.1101/2023.08.22.554361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We report complex formation between the chloroacetamide 2,6-diazaadamantane nitroxide radical (ClA-DZD) and cucurbit[7]uril (CB-7), for which the association constant in water, Ka = 1.9 × 106 M-1, is at least one order of magnitude higher than the previously studied organic radicals. The radical is highly immobilized by CB-7, as indicated by the increase of the rotational correlation time, τrot, by a factor of 36, relative to that in the buffer solution. The X-ray structure of ClA-DZD@CB-7 shows the encapsulated DZD guest inside the undistorted CB-7 host, with the pendant group protruding outside. Upon addition of CB-7 to T4 Lysozyme (T4L) doubly spin-labeled with the iodoacetamide derivative of DZD, we observe the increase in τrot and electron spin coherence time, Tm, along with the narrowing of inter-spin distance distributions. Sensitivity of the DEER measurements at 83 K increases by a factor 4 - 9, compared to the common spin label such as MTSL, which is not affected by CB-7. Inter-spin distances of 3-nm could be reliably measured in water/glycerol up to temperatures near the glass transition/melting temperature of the matrix at 200 K, thus bringing us closer to the goal of supramolecular recognition-enabled long-distance DEER measurements at near physiological temperatures. The X-ray structure of DZD-T4L 65 at 1.12 Å resolution allows for unambiguous modeling of the DZD label (0.88 occupancy), indicating undisturbed structure and conformation of the protein.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Richard A. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Peter Madzelan
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
5
|
Jin XY, Ge Q, Cong H, Zhang YQ, Zhao JL, Jiang N. Recent Breakthroughs in Supercapacitors Boosted by Macrocycles. CHEMSUSCHEM 2023; 16:e202300027. [PMID: 36946375 DOI: 10.1002/cssc.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Indexed: 06/04/2023]
Abstract
Supercapacitors are essential for electrochemical energy storage because of their high-power density, good cycle stability, fast charging and discharging rates, and low maintenance cost. Macrocycles, including cucurbiturils, calixarene, and cyclodextrins, are cage-like organic compounds (with a nanocavity that contains O and N heteroatoms) with unique potential in supercapacitors. Here, we review the applications of macrocycles in supercapacitor systems, and we illustrate the merits of organic macrocycles in electrodes and electrolytes for improving the electrochemical double-layer capacitors and pseudocapacitance via supramolecular strategies. Then, the observed relationships between electrochemical performance and macrocyclic structures are introduced. This comprehensive review describes recent progress on macrocycle-block supercapacitors for researchers.
Collapse
Affiliation(s)
- Xian-Yi Jin
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Qingmei Ge
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Hang Cong
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, 519080, Guangdong, P. R. China
| | - Nan Jiang
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| |
Collapse
|
6
|
Gao R, Ge Q, Cong H, Zhang Y, Zhao J. Preparation and Biomedical Applications of Cucurbit[n]uril-Based Supramolecular Hydrogels. Molecules 2023; 28:3566. [PMID: 37110800 PMCID: PMC10142449 DOI: 10.3390/molecules28083566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The cucurbit[n]uril supramolecular hydrogels are driven by weak intermolecular interactions, of which exhibit good stimuli responsiveness and excellent self-healing properties. According to the composition of the gelling factor, supramolecular hydrogels comprise Q[n]-cross-linked small molecules and Q[n]-cross-linked polymers. According to different driving forces, hydrogels are driven by the outer-surface interaction, the host-guest inclusion interaction, and the host-guest exclusion interaction. Host-guest interactions are widely used in the construction of self-healing hydrogels, which can spontaneously recover after being damaged, thereby prolonging their service life. The smart Q[n]s-based supramolecular hydrogel composed is a kind of adjustable and low-toxicity soft material. By designing the structure of the hydrogel or modifying the fluorescent properties, etc., it can be widely used in biomedicine. In this review, we mainly focus on the preparation of Q[n]-based hydrogels and their biomedical applications including cell encapsulation for biocatalysis, biosensors for high sensitivity, 3D printing for potential tissue engineering, drug release for sustained delivery, and interfacial adhesion for self-healing materials. In addition, we also presented the current challenges and prospects in this field.
Collapse
Affiliation(s)
- Ruihan Gao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yunqian Zhang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jianglin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| |
Collapse
|
7
|
Lin M, Lu X, Lu G, Jiang J. Photo-responsive Organogels Based on Stilbenedicarboxylic Acid and Octadecylamine. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Yang D, Luo Y, Wei Yuan S, Xia Chen L, Hua Ma P, Tao Z, Xiao X. A cucurbit[8]uril-based supramolecular polymer constructed outer surface interactions: use as a sensor, in cellular imaging and beyond. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Hu JH, Yu ZC, Zhang JY, Liu ZN, Hou RX, Xiong Y, Redshaw C, Tao Z, Xiao X. Supramolecular self-assembly between symmetric tetramethyl cucurbit[6]uril and dimethylphenylpiperazine hydrochloride. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zudi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022; 14:pharmaceutics14081733. [PMID: 36015356 PMCID: PMC9412871 DOI: 10.3390/pharmaceutics14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Hu JH, Cen R, Liu M, Shan PH, Prior TJ, Redshaw C, Huang Y, Tao Z, Xiao X. Cucurbit[6]uril-based supramolecular frameworks formed through outer surface interactions and application for iodine adsorption. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
14
|
Wei KN, Zhang QJ, Zhang YQ, Zeng X, Xiao X, Huang Y, Chen K, Tao Z. Clustering emission of cucurbit[n]urils in the solid- and solution-state induced by the outer surface interactions of cucurbit[n]urils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121015. [PMID: 35180484 DOI: 10.1016/j.saa.2022.121015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Atypical luminescent compounds that do not contain conventional chromophores emit light due to clustering and have important basic research value and a broad range of potential applications. To date, most atypical luminescent compounds are small molecules or polymers containing groups such as cyano, carbonyl and hydroxyl. In this work, driven by some sporadic and accidental luminescence phenomena observed for cucurbit[n]urils (Q[n]s), the luminescent properties and mechanism of Q[n]s in the solid- and solution-state were systematically studied and the clustering emission of Q[n]s confirmed. Our experiments have revealed that the self-induced outer-surface interactions of Q[n]s (OSIQ) are the most important driving force resulting in the clustering emission of Q[n]s. Substances that can weaken the effect of self-induced OSIQ, such as the presence of various aromatic compounds and anions, may weaken or quench the clustering emission of Q[n]s. This not only reveals the new characteristics and mechanism of the clustering emission of Q[n]s, but also provides new insights on how to utilize the clustering emission of Q[n]s and construct new types of macrocyclic luminescence systems.
Collapse
Affiliation(s)
- Kai-Ni Wei
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qian-Jun Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China; The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China.
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Zhang ZH, Chen LX, Zhang YQ, Zhu QJ, Chen K, Tao Z. CdS-Based Catalysts Derived from TMeQ[6]/[Cd xCl y] n--Based Frameworks for Oxidation Benzylamine. Inorg Chem 2022; 61:5607-5615. [PMID: 35357176 DOI: 10.1021/acs.inorgchem.2c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anion-induced outer surface interaction of Q[n]s is an important driving force in the construction of Q[n]-based supramolecular frameworks. In this work, a symmetric tetramethyl-substituted cucurbit[6]uril (TMeQ[6]) is selected as the basic structural block. Using the anion-induced outer surface interaction of Q[n]s derived from [CdxCly]n- anions formed by Cd2+ cations in a HCl medium, four different TMeQ[6]-[CdxCly]n--based supramolecular frameworks are constructed. Three of the most common TMeQ[6]-[CdxCly]n--based supramolecular frameworks are selected for further vulcanization, and three different CdS/TMeQ[6]-based framework catalysts with different structures and properties are obtained. The catalytic activities of these three CdS/TMeQ[6]-based framework catalysts are investigated by the coupling photocatalytic reaction of aminobenzyl, and the results showed that the catalytic activities of the three catalysts are all higher than that of pure CdS. Therefore, this work establishes that it is possible to establish a method for synthesizing the Q[n]-based framework-supported catalysts by first synthesizing TMeQ[6]-[CdxCly]n--based supramolecular frameworks and then forming Q[n]-based framework supported catalysts by sulfurization or reduction.
Collapse
Affiliation(s)
- Zhi Hua Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Li Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yun Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Qian Jiang Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
16
|
Yang F, Li Y, Li R, Wang X, Cui X, Wei W, Xu Y. Fine-Tuning Macrocycle Cavity to Selectively Bind Guests in Water for Near-Infrared Photothermal Conversion. Org Chem Front 2022. [DOI: 10.1039/d2qo00443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational and specific synthesis of the required organic macrocycles to bind the size-matched targeted guests without undesired macrocyclic byproducts remains a great challenge. Herein, based on a new naphthalimide...
Collapse
|
17
|
Buczkowski A. Thermodynamic study of pH and sodium chloride impact on gemcitabine binding to cucurbit[7]uril in aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yao S, Brahmi R, Portier F, Putaux JL, Chen J, Halila S. Hierarchical Self-Assembly of Amphiphilic β-C-Glycosylbarbiturates into Multiresponsive Alginate-Like Supramolecular Hydrogel Fibers and Vesicle Hydrogel. Chemistry 2021; 27:16716-16721. [PMID: 34622999 DOI: 10.1002/chem.202102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 01/03/2023]
Abstract
Ordered molecular self-assembly of glycoamphiphiles has been regarded as an attractive, practical and bottom-up approach to obtain stable, structurally well-defined, and functional mimics of natural polysaccharides. This study describes a versatile and rational design of carbohydrate-based hydrogelators through N,N'-substituted barbituric acid-mediated Knoevenagel condensation onto unprotected carbohydrates in water. Amphiphilic N-substituted β-C-maltosylbarbiturates self-assembled into pH- and calcium-triggered alginate-like supramolecular hydrogel fibers with a multistimuli responsiveness to temperature, pH and competitive metal chelating agent. In addition, amphiphilic N,N'-disubstituted β-C-maltosylbarbiturates formed vesicle gels in pure water that were scarcely observed for glyco-hydrogelators. Finally, barbituric acid worked as a multitasking group allowing chemoselective ligation onto reducing-end carbohydrates, structural diversity, stimuli-sensitiveness, and supramolecular interactions by hydrogen bonding.
Collapse
Affiliation(s)
- Shun Yao
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Robin Brahmi
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Jing Chen
- Zhejiang International Scientific and, Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Sami Halila
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
19
|
Guo H, Yang S, Cao L, Chen L, Gao R, Huang Y, Xue B, Tao Z. Multiple Stimuli-Responsive Supramolecular Hydrogels Constructed by Decamethylcucurbit[5]uril-para-phenylenediamine Exclusion Complex. Macromol Rapid Commun 2021; 42:e2100431. [PMID: 34480770 DOI: 10.1002/marc.202100431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Indexed: 11/12/2022]
Abstract
The hydrogels composed of decamethylcucurbit[5]uril (Me10 Q[5]) and para-phenylenediamine (p-PDA) are first reported herein. They are the first Q[5]-based supramolecular hydrogels, the formation of which is driven by portal exclusion between Me10 Q[5] and p-PDA. The composition, structure, and properties of the Me10 Q[5]/p-PDA-based hydrogels are investigated by various techniques. Since the 1D supramolecular chain forms via portal exclusion between Me10 Q[5] and p-PDA is the key to the formation of the hydrogels, any competitive species, such as metal ions, organic molecules, and amino acids, which can affect the portal exclusion, can change the behavior of the Me10 Q[5]/p-PDA-based hydrogels. Hence, the hydrogels can be used for various applications. Importantly, the results may provide a new research direction for the preparation of Q[n]-based hydrogels via portal exclusion of Q[n]s with guests.
Collapse
Affiliation(s)
- Hanling Guo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Shengdu Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Long Cao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Lixia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ruihan Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Bai Xue
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
20
|
Supramolecular hydrogelation via host-guest anion recognition: Lamellar hydrogel materials for the release of cationic cargo. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Huang Y, Gao R, Liu M, Chen L, Ni X, Xiao X, Cong H, Zhu Q, Chen K, Tao Z. Cucurbit[
n
]uril‐Based Supramolecular Frameworks Assembled through Outer‐Surface Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202002666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Rui‐Han Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Li‐Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Xin‐Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Qian‐Jiang Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control School of Environmental Science and Engineering Nanjing University of Information Science & Technology 210044 Nanjing China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| |
Collapse
|
22
|
Liang J, Gvilava V, Jansen C, Öztürk S, Spieß A, Lin J, Xing S, Sun Y, Wang H, Janiak C. Cucurbituril‐verkapselnde metallorganische Gerüstverbindung über Mechanochemie: Adsorbentien mit verbesserter Leistung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun Liang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Vasily Gvilava
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Secil Öztürk
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Alex Spieß
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Jingxiang Lin
- The School of Ocean Science and Biochemistry Engineering Fuqing Branch of Fujian Normal University Fuqing 350300 China
| | - Shanghua Xing
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Yangyang Sun
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Hao Wang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
| | - Christoph Janiak
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| |
Collapse
|
23
|
Liang J, Gvilava V, Jansen C, Öztürk S, Spieß A, Lin J, Xing S, Sun Y, Wang H, Janiak C. Cucurbituril-Encapsulating Metal-Organic Framework via Mechanochemistry: Adsorbents with Enhanced Performance. Angew Chem Int Ed Engl 2021; 60:15365-15370. [PMID: 33974329 PMCID: PMC8362037 DOI: 10.1002/anie.202100675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Indexed: 12/25/2022]
Abstract
The first examples of monolithic crystalline host-guest hybrid materials are described. The reaction of 1,3,5-benzenetricarboxylic acid (H3 BTC) and Fe(NO3 )3 ⋅9 H2 O in the presence of decamethylcucurbit[5]uril ammonium chloride (MC5⋅2 NH4 Cl⋅4 H2 O) directly affords MC5@MIL-100(Fe) hybrid monoliths featuring hierarchical micro-, meso- and macropores. Particularly, this "bottle-around-ship" synthesis and one-pot shaping are facilitated by a newly discovered Fe-MC5 flowing gel formed by mechanochemistry. The designed MC5@MIL-100(Fe) hybrid material with MC5 as active domains shows enhanced CH4 and lead(II) uptake performance, and selective capture of lead(II) cations at low concentrations. This shows that host-guest hybrid materials can exhibit synergic properties that out-perform materials based on individual components.
Collapse
Affiliation(s)
- Jun Liang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Vasily Gvilava
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Christian Jansen
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Secil Öztürk
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Alex Spieß
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Jingxiang Lin
- The School of Ocean Science and Biochemistry EngineeringFuqing Branch of Fujian Normal UniversityFuqing350300China
| | - Shanghua Xing
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Yangyang Sun
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Hao Wang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
| | - Christoph Janiak
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| |
Collapse
|
24
|
Dračínský M, Hurtado CS, Masson E, Kaleta J. Stuffed pumpkins: mechanochemical synthesis of host-guest complexes with cucurbit[7]uril. Chem Commun (Camb) 2021; 57:2132-2135. [PMID: 33605291 DOI: 10.1039/d1cc00240f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Solvent-free mechanochemical synthesis (ball-milling) was used to prepare inclusion complexes with cucurbit[7]uril and four model guest molecules (adamantane, adamantyl-1-amine hydrochloride, toluidine hydrochloride, and p-phenylenediamine dihydrochloride). Successful formation of individual inclusions was independently confirmed by one- and two-dimensional solid-state NMR techniques and differential scanning calorimetry. Mechanochemical synthesis represents an alternative path towards new types of cucurbit[n]uril/guest inclusion complexes that are not accessible due to limited solubility of the individual components.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
| | - Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
| |
Collapse
|
25
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
26
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021; 60:6617-6623. [DOI: 10.1002/anie.202014399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
27
|
Huang Y, Gao RH, Liu M, Chen LX, Ni XL, Xiao X, Cong H, Zhu QJ, Chen K, Tao Z. Cucurbit[n]uril-Based Supramolecular Frameworks Assembled through Outer-Surface Interactions. Angew Chem Int Ed Engl 2021; 60:15166-15191. [PMID: 32330344 DOI: 10.1002/anie.202002666] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Porous materials, especially metal-organic frameworks, covalent organic frameworks, and supramolecular organic frameworks, are widely used in heterogeneous catalysis, adsorption, and ion exchange. Cucurbit[n]urils (Q[n]s) suitable building units for porous materials because they possess cavities with neutral electrostatic potential, portal carbonyls with negative electrostatic potential, and outer surfaces with positive electrostatic potential, which may result in the formation of Q[n]-based supramolecular frameworks (QSFs) assembled through the interaction of guests within Q[n]s, the coordination of Q[n]s with metal ions, and outer-surface interaction of Q[n]s (OSIQ). This review summarizes the various QSFs assembled via OSIQs. The QSFs can be classified as being assembled by 1) self-induced OSIQ, 2) anion-induced OSIQ, and 3) aromatic-induced OSIQ. The design and construction of QSFs with novel structures and specific functional properties may establish a new research direction in Q[n] chemistry.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Rui-Han Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Li-Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Qian-Jiang Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, 550025, Guiyang, China
| |
Collapse
|
28
|
Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R. Exploration of the Solid-State Sorption Properties of Shape-Persistent Macrocyclic Nanocarbons as Bulk Materials and Small Aggregates. J Am Chem Soc 2020; 142:8763-8775. [DOI: 10.1021/jacs.0c01117] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tobias A. Schaub
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Organic Chemistry, Ruprecht-Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Ephraim A. Prantl
- Department of Organic Chemistry, Johannes Gutenberg-University Mainz, Mainz 55128, Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry, University Bonn, Bonn 53115, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, University Bonn, Bonn 53115, Germany
| | - Checkers R. Marshall
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Erik J. Leonhardt
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Terri C. Lovell
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K. Brozek
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Siegfried R. Waldvogel
- Department of Organic Chemistry, Johannes Gutenberg-University Mainz, Mainz 55128, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University Bonn, Bonn 53115, Germany
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
29
|
Synthesis, Adsorption, and Recognition Properties of a Solid Symmetric Tetramethylcucurbit[6]uril-Based Porous Supramolecular Framework. J CHEM-NY 2020. [DOI: 10.1155/2020/9619461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, we reported a porous supramolecular framework (A) constructed of a symmetric tetramethylcucurbit[6]uril (TMeQ[6]) in aqueous HCl solutions; the driving force was the outer surface interaction of cucurbit[n]urils, as well as hydrogen bonding between latticed water molecules and portal carbonyl oxygens of TMeQ[6]. Adsorption experimental results revealed that the porous supramolecular framework can absorb certain fluorophore guests (FGs) to form luminescent assemblies (FG@As) by fluorescence enhancement or colour change, and some of them can respond to certain volatile organic compounds. Thus, the TMeQ[6]-based supramolecular framework could be used as a sensor for certain gas or volatile compounds.
Collapse
|
30
|
Effect of hydrogen bonding and hydrophobicity on gel emulsions by benzenesulphonamide moiety-based amphiphiles: entrapment and release of vitamin B12. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01102-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
EPR Spectroscopy: A Powerful Tool to Analyze Supramolecular Host•Guest Complexes of Stable Radicals with Cucurbiturils. Molecules 2020; 25:molecules25040776. [PMID: 32054033 PMCID: PMC7070855 DOI: 10.3390/molecules25040776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 01/22/2023] Open
Abstract
Stable organic free radicals are increasingly studied compounds due to the multiple and unusual properties imparted by the single electron(s). However, being paramagnetic, classical methods such as NMR spectroscopy can hardly be used due to relaxation and line broadening effects. EPR spectroscopy is thus better suited to get information about the immediate surroundings of the single electrons. EPR has enabled obtaining useful data in the context of host•guest chemistry, and a classical example is reported here for the stable (2,2,6,6-tetramethyl-4-oxo-piperidin-1-yl)oxyl or 4-oxo-TEMPO nitroxide (TEMPONE) inside the macrocycle host cucurbit[7]uril (CB[7]). Generally and also observed here, a contraction of the spectrum is observed as a result of the reduced nitrogen coupling constant due to inclusion complexation in the hydrophobic cavity of the host. Simulations of EPR spectra allowed determining the corresponding binding constant pointing to a weaker affinity for CB[7], compared to TEMPO with CB[7]. We complement this work by the results of EPR spectroscopy of a biradical: bis-TEMPO-bis-ketal (bTbk) with cucurbit[8]uril (CB[8]). Initial investigations pointed to very weak effects on the spectrum of the guest and incorrectly led us to conclude an absence of binding. However, simulations of EPR spectra combined with NMR data of reduced bTbk allowed showing inclusion complexation. EPR titrations were performed, and the corresponding binding constant was determined. 1H NMR spectra with reduced bTbk suggested a shuttle mechanism, at nearly one equivalent of CB[8], for which the host moves rapidly between two stations.
Collapse
|
32
|
Ma M, Feng Z, Zhao M, Du Z, Li Z, Chen W, Wang X, Xing P, Hao A. Fabrication of macrocyclic organogel utilizing solvent balance and its application in vascular supporting materials. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Ruleva AY, Tsvetkov VB, Fedorov YV, Chernikova EY, Shepel NE, Godovikov IA, Fedorova OA. Energy transfer process in an unsymmetrical crown-containing bisstyryl dye incorporated in the cavities of CB[7] and 2-hydroxypropyl-β-CD. NEW J CHEM 2020. [DOI: 10.1039/c9nj05915f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular complex of an unsymmetrical crown-containing bisstyryl dye with CB[7] and 2-hydroxypropyl-β-CD can operate as an energy transfer system.
Collapse
Affiliation(s)
- Anna Y. Ruleva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
| | - Vladimir B. Tsvetkov
- I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
- Biophysics Department
- Research and Clinical Center of Physical Chemical Medicine
| | - Yuri V. Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
| | - Ekaterina Y. Chernikova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
| | - Nikolay E. Shepel
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
| | - Ivan A. Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
| | - Olga A. Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
34
|
Tian FY, Cheng RX, Zhang YQ, Tao Z, Zhu QJ. Specific Recognition of Methanol Using a Symmetric Tetramethylcucurbit[6]uril-Based Porous Supramolecular Assembly Incorporating Adsorbed Dyes. Aust J Chem 2020. [DOI: 10.1071/ch19586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A symmetric tetramethylcucurbit[6]uril-based porous supramolecular assembly was prepared in an aqueous H2SO4 solution (5M). The driving force for the formation of this assembly is mainly the outer surface interaction of Q[n], which includes the ion-dipole interaction of SO42− anions and the positive electrostatic potential of the outer surface of the symmetric tetramethylcucurbit[6]uril (TMeQ[6]), the dipole-dipole interactions between the positive electrostatic potential of the outer surface of TMeQ[6] and portal carbonyl oxygens of TMeQ[6], and the hydrogen bonding between lattice water molecules and portal carbonyl oxygen atoms in TMeQ[6]. The TMeQ[6]-based porous supramolecular assembly exhibits the characteristics of absorbed fluorophore guests (FGs), such as dyes and polycyclic compounds with different fluorescence characteristics. Moreover, the resulting luminescent assemblies (FG@As) can respond to certain volatile organic compounds; in particular, the luminescent assemblies of rhodamine B or pyrene display a unique fluorescence enhancement in response to methanol.
Collapse
|
35
|
Blanco-Gómez A, Cortón P, Barravecchia L, Neira I, Pazos E, Peinador C, García MD. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem Soc Rev 2020; 49:3834-3862. [DOI: 10.1039/d0cs00109k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic supramolecular chemistry pursues not only the construction of new matter, but also control over its inherently dynamic behaviour.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Pablo Cortón
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Liliana Barravecchia
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Iago Neira
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Elena Pazos
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Peinador
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Marcos D. García
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| |
Collapse
|
36
|
Choi S, Mukhopadhyay RD, Kim Y, Hwang I, Hwang W, Ghosh SK, Baek K, Kim K. Fuel‐Driven Transient Crystallization of a Cucurbit[8]uril‐Based Host–Guest Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seoyeon Choi
- Division of Advanced Materials SciencePohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Rahul Dev Mukhopadhyay
- Center for Self-assembly and Complexity (CSC)Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Younghoon Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - In‐Chul Hwang
- Center for Self-assembly and Complexity (CSC)Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Wooseup Hwang
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Suman Kr Ghosh
- Center for Self-assembly and Complexity (CSC)Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kangkyun Baek
- Center for Self-assembly and Complexity (CSC)Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC)Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Division of Advanced Materials SciencePohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
37
|
Choi S, Mukhopadhyay RD, Kim Y, Hwang IC, Hwang W, Ghosh SK, Baek K, Kim K. Fuel-Driven Transient Crystallization of a Cucurbit[8]uril-Based Host-Guest Complex. Angew Chem Int Ed Engl 2019; 58:16850-16853. [PMID: 31544353 DOI: 10.1002/anie.201910161] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Transient self-assembling systems often suffer from accumulation of chemical wastes that interfere with the formation of pristine self-assembled products in subsequent cycles. Herein, we report the transient crystallization of a cucurbit[8]uril-based host-guest complex, preventing the accumulation of chemical wastes. Base-catalyzed thermal decarboxylation of trichloroacetic acid that chemically fuels the crystallization process dissolves the crystals, and produces volatile chemical wastes that are spontaneously removed from the solution. With such self-clearance process, no significant damping in the formation of the crystals was observed. The morphology and structural integrity of the crystals was also maintained in subsequent cycles. The concept may be further extended to obtain other temporally functional materials, quasicrystals, etc., based on stimuli-responsive guest molecules.
Collapse
Affiliation(s)
- Seoyeon Choi
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Rahul Dev Mukhopadhyay
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Younghoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - In-Chul Hwang
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Wooseup Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Suman Kr Ghosh
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Kangkyun Baek
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
Qi B, Du L, Yao F, Xu S, Deng X, Zheng M, He S, Zhang H, Zhou X. Shape-Controlled Dodecaborate Supramolecular Organic-Framework-Supported Ultrafine Trimetallic PtCoNi for Catalytic Hydrolysis of Ammonia Borane. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23445-23453. [PMID: 31252463 DOI: 10.1021/acsami.9b02963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
On the basis of the unique chaotropic supramolecular assembly of cucurbit[5]uril (CB5) and dodecahydro- closo-dodecaborate anion [ closo-B12H12]2-, we have developed an efficient and universal platform to fabricate shape-controlled dodecaborate-based supramolecular organic frameworks (BOFs) decorated with ultrafine monodispersed trimetallic alloys. Simply by regulating the molar ratio of CB5 and [ closo-B12H12]2-, a series of fascinating morphologies, such as flowerlike structures, nanorods, nanocubes, and nanosheets, were successfully constructed. These obtained BOFs were proved to be good substrate supports for in situ synthesis of trimetallic PtCoNi nanoalloys, where the final PtCoNi-BOFs materials were obtained efficiently as a precipitate from aqueous solutions, and showed excellent catalytic performance in ammonia borane hydrolysis with a high turnover frequency of 1490 molH2 molPt-1 min-1 and a low activation energy of 15.79 kJ mol-1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Suhang He
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , Bremen 28759 , Germany
| | | | | |
Collapse
|
39
|
Thomas SS, Tang H, Bohne C. Noninnocent Role of Na+ Ions in the Binding of the N-Phenyl-2-naphthylammonium Cation as a Ditopic Guest with Cucurbit[7]uril. J Am Chem Soc 2019; 141:9645-9654. [DOI: 10.1021/jacs.9b03691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Suma S. Thomas
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Hao Tang
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Cornelia Bohne
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
40
|
Xu L, Fang G, Yu Y, Ma Y, Ye Z, Li Z. Molecular mechanism of heterogeneous supramolecular catalysis of metal-free cucurbituril solid for epoxide alcoholysis. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
A novel CB[6]-based supramolecular assembly exhibiting highly selective multi-responsive fluorescence sensing for trace amounts of Fe3+ ions and acetone molecules. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Neira I, García MD, Peinador C, Kaifer AE. Terminal Carboxylate Effects on the Thermodynamics and Kinetics of Cucurbit[7]uril Binding to Guests Containing a Central Bis(Pyridinium)-Xylylene Site. J Org Chem 2019; 84:2325-2329. [DOI: 10.1021/acs.joc.8b02993] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Iago Neira
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Marcos D. García
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Angel E. Kaifer
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| |
Collapse
|
43
|
Qiao H, Jia J, Chen W, Di B, Scherman OA, Hu C. Magnetic Regulation of Thermo-Chemotherapy from a Cucurbit[7]uril-Crosslinked Hybrid Hydrogel. Adv Healthc Mater 2019; 8:e1801458. [PMID: 30548830 DOI: 10.1002/adhm.201801458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 12/27/2022]
Abstract
The fabrication, characterization, and therapy efficiency of a noncovalent-bonded hydrogel network, which is assembled by utilizing cucurbit[7]uril as a supramolecular linker to "stick" superparamagnetic γ-Fe2 O3 nanoparticles onto the polymer backbone of catechol-functionalized chitosan are described. The unique barrel-shaped structure of cucurbit[7]uril not only facilitates host-guest recognition with the catechol derivatives, but also forms robust electrostatic interactions between its carbonyl portals and the γ-Fe2 O3 nanoparticles in a supramolecular manner, which leaves the physical and chemical properties of the nanoparticles intact. The γ-Fe2 O3 nanoparticles display vibrational movement and heat generation under an alternating magnetic field, endowing the formed hybrid supramolecular hydrogel with both thermo- and chemotherapy modalities, which are demonstrated both in vitro and in vivo. Here, a facile strategy is introduced to construct noncovalent interactions between a polymer matrix and the incorporated nanoparticles, which is amendable to a wide range of biomedical and industrial applications.
Collapse
Affiliation(s)
- Haishi Qiao
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| | - Jing Jia
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical University Nanjing 210009 China
| | - Wei Chen
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| | - Bin Di
- Key Laboratory of Drug Quality Control and PharmacovigilanceChina Pharmaceutical University Nanjing 210009 China
| | - Oren A. Scherman
- Melville Laboratory for Polymer SynthesisDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Chi Hu
- Department of Pharmaceutical EngineeringChina Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
44
|
Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019; 19:e1800259. [PMID: 30295012 PMCID: PMC6333493 DOI: 10.1002/mabi.201800259] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Supramolecular hydrogels are a class of self-assembled network structures formed via non-covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol-gel and/or gel-sol transition upon subtle changes in their surroundings. Such stimuli-responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli-responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self-assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC,
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham 27710, NC
| |
Collapse
|
45
|
Zhang S, Grimm L, Miskolczy Z, Biczók L, Biedermann F, Nau WM. Binding affinities of cucurbit[n]urils with cations. Chem Commun (Camb) 2019; 55:14131-14134. [DOI: 10.1039/c9cc07687e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High binding constants of 19 inorganic cations with the cucurbit[n]uril homologues (CBn, n = 5, 6, 7, 8) in water were determined and the far-reaching consequences and interferences of the high affinities (millimolar to micromolar) are discussed.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Life Sciences and Chemistry
- Jacobs University
- Bremen
- Germany
| | - Laura Grimm
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- 1519 Budapest
- Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- 1519 Budapest
- Hungary
| | - Frank Biedermann
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry
- Jacobs University
- Bremen
- Germany
| |
Collapse
|
46
|
Sinha S, Saha ND, Sasmal R, Joshi D, Chandrasekhar S, Bosco MS, Agasti SS. Reversible encapsulations and stimuli-responsive biological delivery from a dynamically assembled cucurbit[7]uril host and nanoparticle guest scaffold. J Mater Chem B 2018; 6:7329-7334. [PMID: 32226626 PMCID: PMC7100906 DOI: 10.1039/c8tb01596a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The positive outcome of any therapeutic molecule requires control over its delivery rate. When delivered without control, administration of large doses is required to stimulate a therapeutic effect, frequently leading to increased toxicity or undesirable side effects. Recent advances introduced "smart" materials that actively release drugs in response to environmental stimuli. Although a variety of endogenous and exogenous triggers are reported, they are either difficult to control or lack tissue penetration depth. We report here a dynamic drug delivery scaffold based on a cucurbit[7]uril (CB[7]) host and benzylammonium functionalized gold nanoparticle (AuNP) guest that utilizes a bioorthogonal small molecule to achieve therapeutic control. In addition to their ability to reach deep tissue, small molecule activation is benefitted by their external controllability. Through cell culture studies we demonstrate that the host-guest supramolecular scaffold provides a nontoxic platform that effectively encapsulates a variety of therapeutic molecules and controls the payload release upon exposure to a high-affinity competitive guest molecule. This study presents a new strategy for controlling drug release rate through the use of competitive interactions of orthogonally presented guest molecules with immediate advantages in dosage control.
Collapse
Affiliation(s)
- Santu Sinha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Divyesh Joshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Soumya Chandrasekhar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Monica Swetha Bosco
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sarit S. Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
47
|
Ganguly S, Parveen R, Dastidar P. Rheoreversible Metallogels Derived from Coordination Polymers. Chem Asian J 2018; 13:1474-1484. [PMID: 29582575 DOI: 10.1002/asia.201800274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/23/2018] [Indexed: 11/07/2022]
Abstract
A series of mixed-ligand-based CdII /CoII coordination polymers (CPs) that were derived from two bis(pyridyl)-bis(amide) ligands, 4,4'-oxybis(N-(pyridin-3-yl)benzamide) (LP) and 4,4'-oxybis(N-(pyridin-4-yl)benzamide) (LP1), and a variety of dicarboxylates isophthalates, terephthalates, 1,2-carboxytranscinamates, and 1,3- and 1,4-phenylene dicarboxylates were synthesized based on a rationale that they would occlude solvate guests inside their crystal lattice, thereby rendering these CPs suitable as metallogelators. The CPs were characterized by using single-crystal X-ray diffraction, elemental analysis, powder X-ray diffraction (PXRD), FTIR spectroscopy, and thermogravimetric analysis (TGA). Structural analyses revealed that the majority of the CPs were lattice-occluded molecular solids, which provided us with an opportunity to study their gelation behavior. We observed that, out of eight CPs that were tested, seven were able to produce metallogels. A thorough study of the rheological behavior of the metallogels was performed and CPG1, CPG2, CPG4, and CPG5 were found to exhibit rheoreversible behavior, which was further confirmed by rheological experiments. Interestingly, ligand LP was found to form an aqueous gel, which was exploited to produce silver nanoparticles.
Collapse
Affiliation(s)
- Sumi Ganguly
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja Subodh Chandra Mullick Road, Kolktata, 700032, West Bengal, India
| | - Rumana Parveen
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja Subodh Chandra Mullick Road, Kolktata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja Subodh Chandra Mullick Road, Kolktata, 700032, West Bengal, India
| |
Collapse
|
48
|
Tan J, Liao Z, Tian C, Shao J. Inclusion complexes based α,ω-imidazolium based oligosiloxane (Im-PDMS) and cucurbit[7]uril (CB[7]) in aqueous solution. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Macartney DH. Cucurbit[n]uril Host-Guest Complexes of Acids, Photoacids, and Super Photoacids. Isr J Chem 2017. [DOI: 10.1002/ijch.201700096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Donal H. Macartney
- Department of Chemistry; Queen's University; 90 Bader Lane, Kingston ON Canada K7L3N6
| |
Collapse
|
50
|
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017; 173:37-49. [DOI: 10.1016/j.carbpol.2017.05.086] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 11/29/2022]
|