1
|
He S, Schog S, Chen Y, Ji Y, Panitz S, Richtering W, Göstl R. Photoinduced Mechanical Cloaking of Diarylethene-Crosslinked Microgels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305845. [PMID: 37578840 DOI: 10.1002/adma.202305845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Indexed: 08/15/2023]
Abstract
The serial connection of multiple stimuli-responses in polymer architectures enables the logically conjunctive gating of functional material processes on demand. Here, a photoswitchable diarylethene (DAE) acts as a crosslinker in poly(N-vinylcaprolactam) microgels and allows the light-induced shift of the volume phase-transition temperature (VPTT). While swollen microgels below the VPTT are susceptible to force and undergo breakage-aggregation processes, collapsed microgels above the VPTT stay intact in mechanical fields induced by ultrasonication. Within a VPTT shift regime, photoswitching of the DAE transfers microgels from the swollen to the collapsed state and thereby gates their response to force as demonstrated by the light-gated activation of an embedded fluorogenic mechanophore. This photoinduced mechanical cloaking system operates on the polymer topology level and is thereby principally universally applicable.
Collapse
Affiliation(s)
- Siyang He
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Simon Schog
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056, Aachen, Germany
| | - Ying Chen
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yuxin Ji
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Sinan Panitz
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Walter Richtering
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056, Aachen, Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
2
|
Cui H, Zhang Y, Shen Y, Zhu S, Tian J, Li Q, Shen Y, Liu S, Cao Y, Shum HC. Dynamic Assembly of Viscoelastic Networks by Aqueous Liquid-Liquid Phase Separation and Liquid-Solid Phase Separation (AqLL-LS PS 2 ). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205649. [PMID: 36222390 DOI: 10.1002/adma.202205649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Living cells comprise diverse subcellular structures, such as cytoskeletal networks, which can regulate essential cellular activities through dynamic assembly and synergistic interactions with biomolecular condensates. Despite extensive efforts, reproducing viscoelastic networks for modulating biomolecular condensates in synthetic systems remains challenging. Here, a new aqueous two-phase system (ATPS) is proposed, which consists of poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX), to construct viscoelastic networks capable of being assembled and dissociated dynamically to regulate the self-assembly of condensates on-demand. Viscoelastic networks are generated using liquid-liquid phase-separated DEX droplets as templates and the following liquid-to-solid transition of the PNIPAM-rich phase. The resulting networks can dissolve liquid fused in sarcoma (FUS) condensates within 5 min. This work demonstrates rich phase-separation behaviors in a single ATPS through incorporating stimuli-responsive polymers. The concept can potentially be applied to other macromolecules through other stimuli to develop materials with rich phase behaviors and hierarchical structures.
Collapse
Affiliation(s)
- Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Yinan Shen
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Qingchuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Yi Shen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sihan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
3
|
Fandrich P, Annegarn M, Wiehemeier L, Ehring I, Kottke T, Hellweg T. Core-shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR. SOFT MATTER 2022; 18:5492-5501. [PMID: 35843118 DOI: 10.1039/d2sm00598k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While core-shell microgels have been intensively studied in their fully synthesized state, the formation mechanism of the shell has not been completely understood. Such insight is decisive for a customization of microgel properties for applications. In this work, microgels based on a N-isopropylmethacrylamide (NiPMAM) core and a N-n-propylacrylamide (NnPAM) shell are synthesized in a continuous flow reactor. The shell growth is studied depending on the solution's time of residence inside the reactor. PCS experiments reveal a significant decrease of the volume phase transition temperatures of the core and the shell, with increasing residence time. At early stages, a decreased swelling capacity is found before a discrete NnPAM shell is formed. Temperature-dependent FTIR spectroscopy shows that the decreased swelling capacity originates from a pronounced interpenetrated network (IPN) between NnPAM and NiPMAM. AFM images resolve heterogeneously distributed shell material after 3 min, pointing to an aggregation of NnPAM domains before the distinct shell forms. The combination of diffusional properties, AFM images and vibrational information confirms a deeply interpenetrated network already at early stages of the precipitation polymerization, in which the shell material heavily influences the swelling properties.
Collapse
Affiliation(s)
- Pascal Fandrich
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| | - Marco Annegarn
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| | - Lars Wiehemeier
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| | - Ina Ehring
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
4
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Park Y, Hwang M, Kim M, Park E, Noda I, Jung YM. Characterization of the phase transition mechanism of P(NiPAAm-co-AAc) copolymer hydrogel using 2D correlation IR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119525. [PMID: 33582435 DOI: 10.1016/j.saa.2021.119525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
A thermo-responsive polymer, poly(N-isopropylacrylamide) (PNiPAAm), was copolymerized with acrylic acid (AAc) in this study. Its phase transitions during the heating and cooling processes were investigated using IR spectroscopy, principal component analysis (PCA), and two-dimensional correlation spectroscopy (2D-COS). During the heating process, the hydrogen bonding between side chain in P(NiPAAm-co-AAc) copolymer hydrogel and H2O was broken first, and then the formation of the intramolecular interaction in P(NiPAAm-co-AAc) copolymer hydrogel occurred. However, unlike the heating process, intensities of bands in the CH stretching region were changed before those in the CO stretching including the NH bending region during the cooling process. The results indicate that the phase transition of P(NiPAAm-co-AAc) copolymer hydrogel is an irreversible process at the molecular levels.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myeongwon Hwang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minkyoung Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Ge S, Li J, Geng J, Liu S, Xu H, Gu Z. Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. MATERIALS HORIZONS 2021; 8:1189-1198. [PMID: 34821911 DOI: 10.1039/d0mh01762k] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Developing smart temperature-sensitive hydrogels with a wide response range and highly stretchable and healable properties for simulation of the temperature perception function of human skin remains a great challenge. Here, a novel PNIPAm/PNAGA double-network hydrogel was developed by a self-assembly cross-linking strategy to achieve this goal. Benefiting from the double-network structure and a large number of multiple hydrogen bond interactions between the PNIPAm and PNAGA, the PNIPAm/PNAGA hydrogel realizes wide and adjustable dual temperature response behaviors of 0-32.5 °C (LCST) and 32.5-65 °C (UCST) and exhibits extraordinary mechanical properties with a maximum tensile strength of 51.48 kPa, elongation at break over 1400%, compressive stress over 1 MPa, and Young's modulus approximately 5.51 kPa, and excellent healable properties of nearly 100% temperature-sensitive repair rate. To the best of our knowledge, this is the highest mechanical strength of the reported PNIPNm-based dual temperature-sensitive hydrogels and simultaneously achieved the healable performance of dual temperature-sensitive hydrogels for the first time. The PNIPAm/PNAGA hydrogel displayed superior capability for simulation of the human skin to monitor various ambient temperatures, such as human skin temperature, hot and cold water, a refrigerator, room temperature and oven temperature, indicating promising applications in the fields of electronic skin, wearable device, bionics, etc.
Collapse
Affiliation(s)
- Sijia Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, China
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Kawaguchi H. On Going to a New Era of Microgel Exhibiting Volume Phase Transition. Gels 2020; 6:gels6030026. [PMID: 32824458 PMCID: PMC7559898 DOI: 10.3390/gels6030026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
The discovery of phenomena of volume phase transition has had a great impact not only on bulk gels but also on the world of microgels. In particular, research on poly(N-isopropylacrylamide) (PNIPAM) microgels, whose transition temperature is close to body temperature, has made remarkable progress in almost 35 years. This review presents some breakthrough findings in microgels that exhibit volume phase transitions and outlines recent works on the synthesis, structural analysis, and research direction of microgels.
Collapse
Affiliation(s)
- Haruma Kawaguchi
- Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 241-0814, Japan
| |
Collapse
|
9
|
Zhu J, Yao M, Huang S, Tian J, Niu Z. Thermal‐Gated Polymer Electrolytes for Smart Zinc‐Ion Batteries. Angew Chem Int Ed Engl 2020; 59:16480-16484. [DOI: 10.1002/anie.202007274] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Jiacai Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Minjie Yao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Shuo Huang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Jinlei Tian
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Zhu J, Yao M, Huang S, Tian J, Niu Z. Thermal‐Gated Polymer Electrolytes for Smart Zinc‐Ion Batteries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiacai Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage CenterCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Minjie Yao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage CenterCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Shuo Huang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage CenterCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jinlei Tian
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage CenterCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Renewable Energy Conversion and Storage CenterCollege of ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
11
|
Substituent effects on the halogen and pnictogen bonds characteristics in ternary complexes 4-YPhNH2···PH2F···ClX (Y = H, F, CN, CHO, NH2, CH3, NO2 and OCH3, and X = F, OH, CN, NC, FCC and NO2): A theoretical study. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1715-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Yan ZC, Biswas CS, Stadler FJ. Rheological Study on the Thermoreversible Gelation of Stereo-Controlled Poly( N-Isopropylacrylamide) in an Imidazolium Ionic Liquid. Polymers (Basel) 2019; 11:polym11050783. [PMID: 31052491 PMCID: PMC6571980 DOI: 10.3390/polym11050783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/04/2023] Open
Abstract
The thermoreversible sol-gel transition for an ionic liquid (IL) solution of isotactic-rich poly (N-isopropylacrylamides) (PNIPAMs) is investigated by rheological technique. The meso-diad content of PNIPAMs ranges between 47% and 79%, and molecular weight (Mn) is ~35,000 and ~70,000 g/mol for two series of samples. PNIPAMs are soluble in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide ([BMIM][TFSI]) at high temperatures but undergo a gelation with decreasing temperatures. The transition temperature determined from G’-G” crossover increases with isotacticity, consistent with the previous cloud-point result at the same scanning rate, indicating imide groups along the same side of backbones are prone to be aggregated for formation of a gel. The transition point based on Winter-Chambon criterion is on average higher than that of the G’-G” crossover method and is insensitive to tacticity and molecular weight, since it correlates with percolation of globules rather than the further formation of elastic network (G’ > G”). For the first time, the phase diagram composed of both G’-G” crossover points for gelation and cloud points is established in PNIPAM/IL mixtures. For low-Mn PNIPAMs, the crossover-point line intersects the cloud-point line. Hence, from solution to opaque gel, the sample will experience two different transitional phases, either clear gel or opaque sol. A clear gel is formed due to partial phase separation of isotactic segments that could act as junctions of network. However, when the partial phase separation is not faster than the formation of globules, an opaque sol will be formed. For high-Mn PNIPAMs, crossover points are below cloud points at all concentrations, so their gelation only follows the opaque sol route. Such phase diagram is attributed to the poorer solubility of high-Mn polymers for entropic reasons. The phase diagram composed of Winter-Chambon melting points, crossover points for melting, and clear points is similar with the gelation phase diagram, confirming the mechanism above.
Collapse
Affiliation(s)
- Zhi-Chao Yan
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| | - Chandra Sekhar Biswas
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
13
|
Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels. Polymers (Basel) 2019; 11:polym11040620. [PMID: 30960604 PMCID: PMC6523740 DOI: 10.3390/polym11040620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/03/2022] Open
Abstract
The effect of deuteration on the volume phase transition (VPT) temperature of poly (N-isopropylmethacrylamide) (pNIPMAM) microgels in aqueous suspension is determined via IR spectroscopy and size measurements by photon correlation spectroscopy (PCS). We study the effect of a hydrogenated and a deuterated solvent (H2O/D2O), and of the hydrogenated and (partially) deuterated monomer. Deuteration of the monomer or copolymerization with deuterated monomers shifts the volume phase transition temperature (VPTT) by up to 8.4 K to higher temperatures, in good agreement with known results for pNIPAM microgels. Moreover, the shape of the swelling curve is found to depend on deuteration, with the highest deuteration leading to the sharpest VPT. Finally, the quantitative agreement between FTIR spectroscopy and PCS evidences the spatial homogeneity of the microgel particles. Our results are rationalized in terms of the effect of deuteration on hydrogen bonding. They shall be of primary importance for any experimental measurements close to the VPT involving isotopic substitution, and in particular contrast variation small angle neutron scattering.
Collapse
|
14
|
Umapathi R, Kumar K, Rani GM, Venkatesu P. Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. J Colloid Interface Sci 2019; 541:1-11. [DOI: 10.1016/j.jcis.2019.01.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
|
15
|
Tacticity effect on the upper critical solution temperature behavior of Poly(N-isopropylacrylamide) in an imidazolium ionic liquid. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Chakraborty I, Mukherjee K, De P, Bhattacharyya R. Monitoring Coil–Globule Transitions of Thermoresponsive Polymers by Using NMR Solvent Relaxation. J Phys Chem B 2018; 122:6094-6100. [DOI: 10.1021/acs.jpcb.8b02179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Sun W, Wu P. The structure and volume phase transition behavior of poly(N-vinylcaprolactam)-based hybrid microgels containing carbon nanodots. Phys Chem Chem Phys 2018; 19:127-134. [PMID: 27901139 DOI: 10.1039/c6cp06862f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, we investigated the internal structure and the volume phase transition (VPT) behavior of poly(N-vinylcaprolactam-co-vinylimidazole)/polymerizable carbon nanodot (P(VCL-co-VIM)/PCND) microgels with different amounts of PCNDs. Our study shows that compared to the pure P(VCL-co-VIM) microgel, the hybrid microgels undergo a two-step VPT as the temperature increases and a core-shell(-corona) structure of the hybrid microgels is formed by copolymerization with PCNDs. A change in the amount of PCNDs has effects on both of the volume phase transition temperature and internal structure of microgels. Moreover, based on FT-IR in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectral (2Dcos) analyses, the difference in VPT behavior between the shell and the core (corona) structure of the hybrid microgels at the molecular level is elucidated. The core/shell of the hybrid microgels fixed with hydrophilic PCNDs has a higher transition temperature during heating and a more compact structure due to the additional crosslinkers PCNDs.
Collapse
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
18
|
Dalgicdir C, Rodríguez-Ropero F, van der Vegt NFA. Computational Calorimetry of PNIPAM Cononsolvency in Water/Methanol Mixtures. J Phys Chem B 2017; 121:7741-7748. [DOI: 10.1021/acs.jpcb.7b05960] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cahit Dalgicdir
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany
| | - Francisco Rodríguez-Ropero
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
19
|
Hebbeker P, Steinschulte AA, Schneider S, Plamper FA. Balancing Segregation and Complexation in Amphiphilic Copolymers by Architecture and Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4091-4106. [PMID: 28221801 DOI: 10.1021/acs.langmuir.6b04602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Segregation is a well-known principle for micellization, as solvophobic components try to minimize interactions with other entities (such as solvent) by self-assembly. An opposite principle is based on complexation (or coacervation), leading to the coassembly/association of different components. Most cases in the literature rely on only one of these modes, though the classical micellization scheme (such as spherical micelles, wormlike micelles, and vesicles) can be enriched by a subtle balance of segregation and complexation. Because of their counteraction, micellar constructs with unprecedented structure and behavior could be obtained. In this feature, systems are highlighted, which are between both mechanisms, and we study concentration, architecture, and confinement effects. Systems with inter- and intramolecular interactions are presented, and the effects of polymer topology and monomer sequence on the resulting structures are discussed. It is shown that complexation can lead to altered micellization behavior as the complex of one hydrophobic and one hydrophilic component can have a very low surface tension toward the solvent. Then, the more soluble component is enriched at the surface of the complex and acts as a microsurfactant. Although segregation dominates for amphiphilic copolymers in solution, the effect of the complexation can be enhanced by branching (change of architecture). Another possibility to enhance the complexation is by confining copolymers in a (pseudo-) 2D environment (like the one available at liquid-liquid interfaces). These observations show how new structural features can be achieved by tuning the subtle balance between segregation and complexation/solubilization.
Collapse
Affiliation(s)
- Pascal Hebbeker
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Alexander A Steinschulte
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Stefanie Schneider
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Felix A Plamper
- Institute of Physical Chemistry II, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
20
|
Hanyková L, Spěváček J, Radecki M, Zhigunov A, Kouřilová H, Sedláková Z. Phase transition in hydrogels of thermoresponsive semi-interpenetrating and interpenetrating networks of poly(N,N-diethylacrylamide) and polyacrylamide. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Hatano I, Mochizuki K, Sumi T, Koga K. Hydrophobic Polymer Chain in Water That Undergoes a Coil-to-Globule Transition Near Room Temperature. J Phys Chem B 2016; 120:12127-12134. [DOI: 10.1021/acs.jpcb.6b08347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- I. Hatano
- Research
Institute for Interdisciplinary Science and ‡Department of Chemistry, Faculty
of Science, Okayama University, Okayama 700-8530, Japan
| | - K. Mochizuki
- Research
Institute for Interdisciplinary Science and ‡Department of Chemistry, Faculty
of Science, Okayama University, Okayama 700-8530, Japan
| | - T. Sumi
- Research
Institute for Interdisciplinary Science and ‡Department of Chemistry, Faculty
of Science, Okayama University, Okayama 700-8530, Japan
| | - K. Koga
- Research
Institute for Interdisciplinary Science and ‡Department of Chemistry, Faculty
of Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
22
|
Richtering W, Potemkin II, Rudov AA, Sellge G, Trautwein C. Could multiresponsive hollow shell–shell nanocontainers offer an improved strategy for drug delivery? Nanomedicine (Lond) 2016; 11:2879-2883. [DOI: 10.2217/nnm-2016-0327] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- DWI-Leibniz Institute for Interactive Materials e.V., 52056 Aachen, Germany
| | - Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- DWI-Leibniz Institute for Interactive Materials e.V., 52056 Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
23
|
Park Y, Hashimoto C, Ozaki Y, Jung YM. Understanding the phase transition of linear poly(N-isopropylacrylamide) gel under the heating and cooling processes. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Ye Z, Li Y, An Z, Wu P. Exploration of Doubly Thermal Phase Transition Process of PDEGA-b-PDMA-b-PVCL in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6691-6700. [PMID: 27299984 DOI: 10.1021/acs.langmuir.6b01785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding of phase transition mechanism of thermoresponsive polymers is the basis for the rational design of smart materials with predictable properties. Linear ABC triblock terpolymer poly(di(ethylene glycol)ethyl ether acrylate)-b-poly(N,N-dimethylacrylamide)-b-poly(N-vinylcaprolactam) (PDEGA-b-PDMA-b-PVCL) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The doubly thermal phase transition of PDEGA-b-PDMA-b-PVCL in aqueous solution was investigated by a combination of nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), turbidimetry, and dynamic light scattering (DLS). The terpolymer self-assembles into micelles with PDEGA being the core-forming block during the first lower critical solution temperature (LCST) transition corresponding to PDEGA, which is followed by a second LCST transition corresponding to PVCL, resulting in the formation of micellar aggregates. The PDMA middle segment plays an important role as an isolation zone to prevent cooperative dehydration of the PDEGA and PVCL segments, and therefore, two independent LCST transitions corresponding to PDEGA and PVCL were observed. Furthermore, FT-IR with perturbation correlation moving window (PCMW) and two-dimensional spectroscopy (2DCOS) was applied to elucidate the two-step phase transition mechanism of this terpolymer. It was observed that the CH, ester carbonyl, and ether groups of PDEGA change prior to the CH and amide carbonyl groups of PVCL, further supporting that the two phase transitions corresponding to PDEGA and PVCL indeed occur without mutual interferences.
Collapse
Affiliation(s)
- Zhangxin Ye
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| | - Youcheng Li
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| |
Collapse
|
25
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Exothermic nonreversing process in the phase transition of poly(N-isopropylacrylamide) studied with stochastic temperature-modulated DSC. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Schmid AJ, Dubbert J, Rudov AA, Pedersen JS, Lindner P, Karg M, Potemkin II, Richtering W. Multi-Shell Hollow Nanogels with Responsive Shell Permeability. Sci Rep 2016; 6:22736. [PMID: 26984478 PMCID: PMC4794761 DOI: 10.1038/srep22736] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/18/2016] [Indexed: 12/23/2022] Open
Abstract
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.
Collapse
Affiliation(s)
- Andreas J Schmid
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Janine Dubbert
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.,DWI-Leibnitz Institute for Interactive Materials e.V., 52056 Aachen, Germany
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Peter Lindner
- Institut Laue Langevin (ILL), 71 avenue des Martyrs, 38000 Grenoble, France
| | - Matthias Karg
- Physical Chemistry I, University of Bayreuth, 85440 Bayreuth, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.,DWI-Leibnitz Institute for Interactive Materials e.V., 52056 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
28
|
Hou L, Chen Q, An Z, Wu P. Understanding the thermosensitivity of POEGA-based star polymers: LCST-type transition in water vs. UCST-type transition in ethanol. SOFT MATTER 2016; 12:2473-2480. [PMID: 26822827 DOI: 10.1039/c5sm03054d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lower critical solution temperature (LCST) transition in water and the upper critical solution temperature (UCST) transition in ethanol of poly(oligo(ethylene glycol) acrylate) (POEGA)-based core cross-linked star (CCS) polymers have been investigated and compared by employing turbidity, dynamic light scattering (DLS), (1)H NMR and FTIR measurements. Macroscopic phase transitions in water and in ethanol were observed to occur when passing through the transition temperature, as revealed by DLS and turbidity measurements. Analysis by IR indicated that the interactions between the polymer chains and solvent molecules in water are stronger than those in ethanol such that the CCS polymer arm chains in water adopt more extended conformations. Moreover, hydrophobic interaction among the aliphatic groups plays a predominant role in the LCST-type transition in water whereas weak solvation of the polymer chains results in the UCST-type transition in ethanol. Additionally, the LCST-type transition in water was observed to be much more abrupt and complete than the UCST-type transition in ethanol, as suggested by (1)H NMR and IR at the molecular level. Finally, an abnormal "forced hydration" phenomenon was observed during the LCST transition upon heating. This study provides a detailed understanding of the subtle distinctions between the thermal transitions of CCS polymers in two commonly used solvents, which may be useful to guide future materials design for a wide range of applications.
Collapse
Affiliation(s)
- Lei Hou
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Qijing Chen
- Institute of Nanochemistry and Nanobiology, College of Environmental Science and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental Science and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
29
|
Hou L, Wu P. On the abnormal “forced hydration” behavior of P(MEA-co-OEGA) aqueous solutions during phase transition from infrared spectroscopic insights. Phys Chem Chem Phys 2016; 18:15593-601. [DOI: 10.1039/c6cp01244b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the phase separation of POEGA in water, C–H groups exhibit dehydration, whereas CO and C–O–C groups present “forced hydration”.
Collapse
Affiliation(s)
- Lei Hou
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- and Laboratory of Advanced Materials
- Fudan University
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- and Laboratory of Advanced Materials
- Fudan University
| |
Collapse
|
30
|
The biological stimuli for governing the phase transition temperature of the “smart” polymer PNIPAM in water. Colloids Surf B Biointerfaces 2015; 135:588-595. [DOI: 10.1016/j.colsurfb.2015.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023]
|
31
|
Hou L, Wu P. Comparison of LCST-transitions of homopolymer mixture, diblock and statistical copolymers of NIPAM and VCL in water. SOFT MATTER 2015; 11:2771-81. [PMID: 25698362 DOI: 10.1039/c5sm00026b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The LCST-transitions of linear, well-defined polymers of N-isopropylacrylamide (NIPAM) and N-vinylcaprolactam (VCL), including a homopolymer mixture, diblock and statistical copolymers, in water are explored and compared by applying turbidity and FTIR measurements in combination with two-dimensional correlation spectroscopy (2Dcos). Only one transition is observed in all polymer systems, suggesting a dependent aggregation of poly(N-isopropylacrylamide) (PNIPAM) and poly(N-vinylcaprolactam) (PVCL) parts in the phase transition processes. With the help of 2Dcos analysis, it is discovered that the hydrophobic interaction among C-H groups is the driving force for simultaneous collapse of the two distinct thermo-responsive segments. Additionally, the delicate differences within the LCST-transitions thereof have been emphasized, where the phase separation temperatures of the homopolymer mixture and the diblock copolymer are close while that of the statistical copolymer is relatively higher. Moreover, both diblock and statistical copolymers exhibit rather sharp phase transitions while the homopolymer mixture demonstrates a moderately continuous one.
Collapse
Affiliation(s)
- Lei Hou
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
32
|
Scherzinger C, Balaceanu A, Hofmann C, Schwarz A, Leonhard K, Pich A, Richtering W. Cononsolvency of mono- and di-alkyl N-substituted poly(acrylamide)s and poly(vinyl caprolactam). POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Betancourt JE, Rivera JM. Tuning thermoresponsive supramolecular G-quadruplexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2095-2103. [PMID: 25641343 PMCID: PMC4863471 DOI: 10.1021/la504446k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Thermoresponsive systems are attractive due to their suitability for fundamental studies as well as their practical uses in a wide variety of applications. While much progress has been achieved using polymers, alternative strategies such as the use of well-defined nonpolymeric supramolecules are still underdeveloped. Here we report three 8-aryl-2'-deoxyguanosine derivatives (8ArGs) that self-assemble in aqueous media into precise thermoresponsive supramolecular G-quadruplexes (SGQs). We report the synthesis of such derivatives, studies of their isothermal self-assembly, and the thermally induced assembly to form higher-order meso-globular assemblies we term supramolecular hacky sacks (SHS). The lower critical solution temperature (LCST) that indicates the formation of the SHS was modulated by changing (a) intrinsic parameters (i.e., structure of the 8ArGs); (b) extrinsic parameters such as the salt used to promote the formation of the SGQ; and (c) supramolecular parameters such as the coassembly different 8ArGs to form heteromeric SGQs. Changes in the intrinsic parameters lead to LCST variations in the range of 28-59 °C. Modulating extrinsic parameters such as replacing KI with KSCN abolishes the thermoresponsive phenomenon whereas changing the cation from K(+) to Na(+) or adjusting the pH (in the range of 6-8) has negligible effects on the LCST. Modulating supramolecular parameters results in transition temperatures that are intermediate between those obtained by the respective homomeric SGQs, although the specific proportions of the subunits are critical in determining the reversibility of the process. Given the extensive applications of thermoresponsive polymers, the nonpolymeric supramolecular counterparts presented here may represent an attractive alternative for fundamental studies and biorelevant applications.
Collapse
|
34
|
Hofmann CH, Grobelny S, Panek PT, Heinen LKM, Wiegand AK, Plamper FA, Jacob CR, Winter R, Richtering W. Methanol-induced change of the mechanism of the temperature- and pressure-induced collapse of N
-Substituted acrylamide copolymers. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian H. Hofmann
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Sebastian Grobelny
- Department of Chemistry and Chemical Biology; Physical Chemistry I, TU Dortmund University; Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Paweł T. Panek
- TU Braunschweig, Institute of Physical and Theoretical Chemistry; Hans-Sommer-Str. 10 38106 Braunschweig Germany
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry; Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Laura K. M. Heinen
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Ann-Kristin Wiegand
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Christoph R. Jacob
- TU Braunschweig, Institute of Physical and Theoretical Chemistry; Hans-Sommer-Str. 10 38106 Braunschweig Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology; Physical Chemistry I, TU Dortmund University; Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| |
Collapse
|
35
|
Maccarrone S, Scherzinger C, Holderer O, Lindner P, Sharp M, Richtering W, Richter D. Cononsolvency Effects on the Structure and Dynamics of Microgels. Macromolecules 2014. [DOI: 10.1021/ma500954t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simona Maccarrone
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Christine Scherzinger
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Olaf Holderer
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Peter Lindner
- Institute Laue-Langevin, rue Jules
Horowitz 6, 38042 Grenoble Cedex 9, France
| | - Melissa Sharp
- Institute Laue-Langevin, rue Jules
Horowitz 6, 38042 Grenoble Cedex 9, France
| | - Walter Richtering
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Dieter Richter
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
- Institute
of Complex Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
36
|
Hou L, Wu P. The effect of added gold nanoparticles on the volume phase transition behavior for PVCL-based microgels. RSC Adv 2014. [DOI: 10.1039/c4ra06471b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Influence of high-pressure on cononsolvency of poly(N-isopropylacrylamide) nanogels in water/methanol mixtures. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Hou L, Ma K, An Z, Wu P. Exploring the Volume Phase Transition Behavior of POEGA- and PNIPAM-Based Core–Shell Nanogels from Infrared-Spectral Insights. Macromolecules 2014. [DOI: 10.1021/ma4021906] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lei Hou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Kai Ma
- Department
of Chemistry, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute
of Nanochemistry and Nanobiology, College of Environmental and Chemical
Engineering, Shanghai University, Shanghai, 200444, China
| | - Peiyi Wu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
39
|
Liu P, Liang J, Chen S, Zhang H. Bulk and solution properties of a thermo-responsive rod–coil block polymer based on poly(N-isopropylacrylamide). RSC Adv 2014. [DOI: 10.1039/c4ra07179d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular weight dependence on thermoresponsive behaviors of rod–coil diblock copolymers (x indicates the DP of rod PHIPPVTA blocks).
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan, China
| | - Jiexing Liang
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan, China
| | - Shen Chen
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan, China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan, China
| |
Collapse
|
40
|
Micic M, Suljovrujic E. Network parameters and biocompatibility of p(2-hydroxyethyl methacrylate/itaconic acid/oligo(ethylene glycol) acrylate) dual-responsive hydrogels. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
|
42
|
Kojima H, Tanaka F. Nonlinear depression of the lower critical solution temperatures in aqueous solutions of thermo-sensitive random copolymers. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroyuki Kojima
- Department of Polymer Chemistry, Graduate School of Engineering; Kyoto University; Katsura Kyoto 615-8510 Japan
| | - Fumihiko Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering; Kyoto University; Katsura Kyoto 615-8510 Japan
| |
Collapse
|
43
|
Park Y, Hashimoto C, Hashimoto T, Hirokawa Y, Jung YM, Ozaki Y. Reaction-Induced Self-Assembly of Gel Structure: A New Insight into Chemical Gelation Process of N-Isopropylacrylamide as Studied by Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules 2013. [DOI: 10.1021/ma400457e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeonju Park
- Department of Chemistry and Institute
for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 200-701, Korea
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo
669-1337, Japan
| | - Chihiro Hashimoto
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo
669-1337, Japan
- Department
of Applied Chemistry and Biotechnology, Niihama National College of Technology, 7-1 Yakumo, Niihama, Ehime 792-5850,
Japan
| | - Takeji Hashimoto
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo
669-1337, Japan
- Quantum Beam Science
Directorate, Japan Atomic Energy Agency,Tokai-mura, Ibaraki, 319-1195, Japan
| | - Yoshitsugu Hirokawa
- School of Engineering, Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka-cho,
Hikone, Shiga 522-8533, Japan
| | - Young Mee Jung
- Department of Chemistry and Institute
for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 200-701, Korea
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo
669-1337, Japan
| |
Collapse
|
44
|
Okada K, Maeda Y. Thermochromic microgels and core-shell microgels based on fluorescence resonance energy transfer. J Appl Polym Sci 2013. [DOI: 10.1002/app.39161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Hidaka T, Sugihara S, Maeda Y. Infrared spectroscopic study on LCST behavior of poly(N,N-bis(2-methoxyethyl)acrylamide). Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Hao Z, Li G, Yang K, Cai Y. Thermoresponsive Synergistic Hydrogen Bonding Switched by Several Guest Units in a Water-Soluble Polymer. Macromol Rapid Commun 2013; 34:411-6. [DOI: 10.1002/marc.201200685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/06/2012] [Indexed: 12/26/2022]
|
47
|
Liu P, Xiang L, Tan Q, Tang H, Zhang H. Steric hindrance effect on thermoresponsive behaviors of pyrrolidone-based polymers. Polym Chem 2013. [DOI: 10.1039/c2py20773g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Hofmann CH, Plamper FA, Scherzinger C, Hietala S, Richtering W. Cononsolvency Revisited: Solvent Entrapment by N-Isopropylacrylamide and N,N-Diethylacrylamide Microgels in Different Water/Methanol Mixtures. Macromolecules 2012. [DOI: 10.1021/ma302384v] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian H. Hofmann
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D 52056 Aachen,
Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D 52056 Aachen,
Germany
| | - Christine Scherzinger
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D 52056 Aachen,
Germany
| | - Sami Hietala
- Laboratory of Polymer
Chemistry,
Department of Chemistry, University of Helsinki, PB 55, Helsinki, FIN 00014 Finland
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D 52056 Aachen,
Germany
| |
Collapse
|
49
|
Plamper FA, Steinschulte AA, Hofmann CH, Drude N, Mergel O, Herbert C, Erberich M, Schulte B, Winter R, Richtering W. Toward Copolymers with Ideal Thermosensitivity: Solution Properties of Linear, Well-Defined Polymers of N-Isopropyl Acrylamide and N,N-Diethyl Acrylamide. Macromolecules 2012. [DOI: 10.1021/ma301606c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felix A. Plamper
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | | | - Christian H. Hofmann
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Natascha Drude
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Olga Mergel
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Christian Herbert
- DWI an der RWTH
Aachen e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Pauwelsstr.
8, 52056 Aachen, Germany
| | - Michael Erberich
- DWI an der RWTH
Aachen e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Pauwelsstr.
8, 52056 Aachen, Germany
| | - Bjoern Schulte
- DWI an der RWTH
Aachen e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Pauwelsstr.
8, 52056 Aachen, Germany
| | - Roland Winter
- Physical Chemistry
I−Biophysical Chemistry, TU Dortmund University, Otto-Hahn
Str. 6, 44227 Dortmund, Germany
| | - Walter Richtering
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
50
|
Azzaroni O. Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26119] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|