1
|
Li X, Jia T, Wang Y, Zhang Y, Yang D, Zhai S, Li S. A DMSO-assisted iridium(III) complex as a luminescent "turn-on" sensor for selective detection of L-histidine and bacterial imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6839-6844. [PMID: 39264218 DOI: 10.1039/d4ay01431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Histidine (His) is a semi-essential amino acid and a unique key neurotransmitter involved in numerous physiological processes. An excessive or deficient amount of His in the body can lead to various related diseases. However, since the chemical structures of L-His and its metabolites (such as histamine (Ha), imidazole-4-acetate (ImA), etc.) are very similar, simple and efficient selective detection of L-His and its related metabolites is of great importance but remains a great challenge. Herein, we successfully designed and synthesized a DMSO-assisted iridium(III) complex (Ir1-DMSO), which can be applied as a "turn-on" photoluminescence (PL) probe for the selective detection and quantification of L-His/Ha. More importantly, Ir1-DMSO exhibited good sensitivity, high selectivity, and anti-interference capability for L-His/Ha/His-containing proteins, which is advantageous due to its simple fabrication and low technical demands. This was attributed to the reaction of Ir1-DMSO with imidazole and amino groups of L-His/Ha. Furthermore, we show the utility of Ir1-DMSO as a PL imaging agent in cultures of E. coli and S. aureus. Considering its diversity of composition and structural flexibility, it can be extended to other solvents and Ir-ligand complexes for various analyses based on specific molecular recognition sensing platforms.
Collapse
Affiliation(s)
- Xiaojuan Li
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, PR China
| | - Tianqian Jia
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, PR China
| | - Yueyan Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, PR China
| | - Yanyan Zhang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, PR China
| | - Du Yang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, PR China
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xianyang 712046, Shaanxi, PR China
| | - Shuming Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, Shaanxi, PR China.
| |
Collapse
|
2
|
Terpstra K, Huang Y, Na H, Sun L, Gutierrez C, Yu Z, Mirica LM. 2-Phenylbenzothiazolyl iridium complexes as inhibitors and probes of amyloid β aggregation. Dalton Trans 2024; 53:14258-14264. [PMID: 39129539 PMCID: PMC11445708 DOI: 10.1039/d4dt01691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The aggregation of amyloid β (Aβ) peptides is a significant hallmark of Alzheimer's disease (AD), and the detection of Aβ aggregates and the inhibition of their formation are important for the diagnosis and treatment of AD, respectively. Herein, we report a series of benzothiazole-based Ir(III) complexes HN-1 to HN-8 that exhibit appreciable inhibition of Aβ aggregation in vitro and in living cells. These Ir(III) complexes can induce a significant fluorescence increase when binding to Aβ fibrils and Aβ oligomers, while their measured log D values suggest these compounds could have enhanced blood-brain barrier (BBB) permeability. In vivo studies show that HN-1, HN-2, HN-3, and HN-8 successfully penetrate the BBB and stain the amyloid plaques in AD mouse brains after a 10-day treatment, suggesting that these Ir(III) complexes could act as lead compounds for AD therapeutic and diagnostic agent development.
Collapse
Affiliation(s)
- Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Hanah Na
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Citlali Gutierrez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Zhengxin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Ghosh R, Nair RR, Ghosh S, Debnath S, Chatterjee PB. A Water-Soluble Wavy Coordination Polymer of Cu(II) as a Turn-On Luminescent Probe for Histidine and Histidine-Rich Proteins/Peptides. Inorg Chem 2024; 63:8320-8328. [PMID: 38660721 DOI: 10.1021/acs.inorgchem.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Histidine plays an essential role in most biological systems. Changes in the homeostasis of histidine and histidine-rich proteins are connected to several diseases. Herein, we report a water-soluble Cu(II) coordination polymer, labeled CuCP, for the fluorimetric detection of histidine and histidine-rich proteins and peptides. Single-crystal structure determination of CuCP revealed a two-dimensional wavy network structure in which a carboxylate group connects the individual Cu(II) dimer unit in a syn-anti conformation. The weakly luminescent and water-soluble CuCP shows turn-on blue emission in the presence of histidine and histidine-rich peptides and proteins. The polymer can also stain histidine-rich proteins via gel electrophoresis. The limits of quantifications for histidine, glycine-histidine, serine-histidine, human serum albumin (HSA), bovine serum albumin, pepsin, trypsin, and lysozyme were found to be 300, 160, 600, 300, 600, 800, 120, and 290 nM, respectively. Utilizing the fluorescence turn-on property of CuCP, we measured HSA quantitatively in the urine samples. We also validated the present urinary HSA measurement assay with existing analytical techniques. Job's plot, 1H NMR, high-resolution mass spectrometry (HRMS), electron paramagnetic resonance (EPR), fluorescence, and UV-vis studies confirmed the ligand displacement from CuCP in the presence of histidine.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratish R Nair
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shibaji Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Bhatta RP, Agarwal A, Kachwal V, Raichure PC, Laskar IR. Enhanced TNT vapor sensing through a PMMA-mediated AIPE-active monocyclometalated iridium(III) complex: a leap towards real-time monitoring. Analyst 2024; 149:2445-2458. [PMID: 38506420 DOI: 10.1039/d3an02184j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Based on the explosive nature and harmful effects of nitro-based explosive materials on living beings and the environment, it is extremely important to develop luminescence-based probe molecules for their detection with excellent selectivity and sensitivity. Two AIPE (aggregation-induced phosphorescence emission)-active iridium(III) complexes (M1 and M2) were developed for the sensitive detection of TNT in both contact and non-contact modes. The aggregate solutions of both complexes (M1 and M2 in THF/H2O, 1/9 by volume) detected TNT at the pico-molar (pM) level. These complexes showed greatly enhanced emission intensity while embedded in a PMMA(polymethyl methacrylate) matrix film. The amplified quantum efficiency, improved phosphorescence lifetime, and enhanced porous network of M2-PMMA composite helps to improve the sesitivity of TNT vapor detection. Interestingly, the sensitivity of the detection of TNT by the M2 complex was significantly improved (5-fold) in a PMMA-incorporated complex (CP) with an observed limit of detection (LOD) of 12.8 ppb. From the BET analysis of CP, it was observed that the mesoporous network of CP has an average pore diameter of 8.52 nm and a surface area of 2.03 m2 g-1. The porous network of CP assists in trapping TNT vapor in a polymeric network containing an electron-rich probe (iridium(III) complex, M2), which helps to effectively trap TNT, thus enhancing electronic communication. As a result, significant emission quenching was observed.
Collapse
Affiliation(s)
- Ram Prasad Bhatta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Annu Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Vishal Kachwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Pramod C Raichure
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Inamur Rahaman Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India.
| |
Collapse
|
6
|
Qian M, Liu Y, Huo H, Li M, Zhang C, Qi H. Photoluminescence-Electrochemiluminescence Dual-Mode Sensor Arrays for Histidine and Its Metabolite Discrimination and Disease Identification. Anal Chem 2024; 96:446-454. [PMID: 38124437 DOI: 10.1021/acs.analchem.3c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Histidine (His) and its metabolite analysis is significant due to their vital roles in the diagnosis of diseases. In practical applications, simple and effective detection and discrimination of these metabolic species are still a great challenge due to their highly similar structures. Herein, photoluminescence (PL)-electrochemiluminescence (ECL) dual-mode sensor arrays consisting of a series of sensing elements were proposed for simultaneous quantitation and accurate discrimination of His and its four key metabolites (including histamine, imidazole-4-acetic acid, N-acetylhistamine, and imidazole propionate). The sensing elements of these sensor arrays were constructed by employing two solvent iridium(III) complexes ([Ir(pbz)2(DMSO)Cl] and [Ir(ppy)2(DMSO)Cl], pbz = 3-(2-pyridyl)benzoic acid, ppy = 2-phenylpyridine) with excellent PL and ECL performances as cross-responsive sensing units. Based on diverse coordination abilities of the two complexes with the imidazole group of the five targets, PL and ECL responses of each sensing unit can be enhanced to various degrees, which generate unique fingerprint patterns for the corresponding targets. Through principal component analysis, the multifarious patterns (two-, three-, and four-element sensor arrays) can be transformed into simple visualization modes, from which His and its four key metabolites can be effectively discriminated against each other. Moreover, the quantitation of an individual metabolic species at different concentrations and the recognition of the mixtures with different ratios were also accurately achieved. Notably, His and its four key metabolites in urine can also be successfully discriminated by the as-fabricated sensor arrays, and the patients with kidney diseases can be identified clearly, providing a promising way for disease diagnosis.
Collapse
Affiliation(s)
- Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yonghao Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Haonan Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
7
|
Qi H, Ding Y, Teng Y, Liang X, Chen L, Ma J, Yang Q, Liu T. A Core Structural Protein That Builds the Locust Mandible with a Mechanical Gradient. ACS NANO 2023; 17:25311-25321. [PMID: 38064446 DOI: 10.1021/acsnano.3c08715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Natural materials, such as locust mandibles and squid beaks, define significant mechanical gradients that have been attributed to the chemical gradients of their specialized structural proteins (SPs). However, the mechanism by which SPs form chemical gradients in these materials remains unknown. In this study, a highly abundant histidine-rich structural protein (LmMHSP) was identified in the mandible of a migratory locust (Locusta migratoria). LmMHSP was proven by both in vivo and in vitro evidence to act as a core building block of the mandible with a variety of synergistic functions including chitin binding, matrix formation via liquid-liquid phase separation, chemical cross-linking, and metal coordination. Furthermore, we found that the SP gradient in the locust mandible stems from the chitin-binding activity of LmMHSP and different microstructures of chitin scaffolds in different regions. These findings advance our understanding of the formation mechanisms of natural biomaterials and have implications for the fabrication of biomimetic materials.
Collapse
Affiliation(s)
- Huitang Qi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Ding
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yingda Teng
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiangyu Liang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Lei Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jianli Ma
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Zhao Y, Mao Z, Jia J, Dai C, Li L, Zhou Y. Novel Electrochemiluminescent Biosensor to Ultrasensitively Detect U94 Gene in Human Herpesvirus 6 Using Metal-Organic Framework-Based Nanoemitters Comprising Iridium(III) Complexes via One-Pot Coordination Reaction Strategy. Anal Chem 2023; 95:17117-17124. [PMID: 37943782 DOI: 10.1021/acs.analchem.3c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The detection of the U94 gene in human herpesvirus 6 is crucial for early diagnosis of HHV-6 infections, which could induce acute febrile illness in infants. In this work, the first ultrasensitive electrochemiluminescence (ECL) biosensor for detecting U94 gene in Human Herpesvirus 6 was successfully designed by utilizing efficient novel metal-organic framework (MOF)-based ECL nanoemitters comprising iridium(III) complexes (Ir-ZIF-8-NH2) synthesized via one-pot coordination reaction strategy as an ECL indicator and a target-catalyzed hairpin assembly (CHA) signal amplification strategy. The as-prepared ECL indicator Ir-ZIF-8-NH2 exhibited an approximately 2.7-fold ECL intensity compared with its small molecular analogue of emissive iridium(III) complex named IrppymIM formed by in situ coordination reaction between iridium(III) solvent complex and imidazole ligands. In addition, a target-catalyzed hairpin assembly (CHA) strategy was employed to further improve the sensitivity of the proposed ECL biosensor, which demonstrated a wide linear range from 1 fM to 1 μM and the limit of detection as low as 0.113 fM (S/N = 3). Significantly, this biosensor was successfully applied to detect U94 gene in plasmids and real virus samples. The recoveries were in the range of 97.0-109.0% for plasmids and 95.7-107.5% for real virus samples with a relative standard deviation (RSD) of 1.87-2.53%. These satisfactory experimental results from the proposed ECL biosensor in this work would inevitably promote the development of new time/cost-effective and sensitive methods to detect HHV-6 with a major global health threat and substantial burden on healthcare in the future.
Collapse
Affiliation(s)
- Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenji Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
9
|
Tu J, Veclani D, Monti F, Mazzanti A, Sambri L, Armaroli N, Baschieri A. Unexpected reactivity of cyclometalated iridium(III) dimers. Direct synthesis of a mononuclear luminescent complex. Dalton Trans 2023; 52:14867-14879. [PMID: 37795751 DOI: 10.1039/d3dt02689b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
A new synthetic method has been developed for the preparation of unexpected emissive iridium(III) complexes (A and B), directly obtained from the established [Ir(ppy)2(μ-Cl)]2 dimer, under reaction conditions in which such compounds are usually considered stable. Complex A ([Ir(ppy)2(Oppy)], where Hppy = 2-phenylpyridine and HOppy = 2-(o-hydroxyphenyl)pyridine) was obtained from the dimer without the addition of further ancillary ligands in the reaction environment, but in the presence of a basic water environment in 2-ethoxyethanol as solvent at 165 °C. The complex evidences the unexpected insertion of an oxygen atom between the iridium(III) center and the carbon atom of one ppy moiety. Under specific reaction conditions, the mer-[Ir(ppy)3] complex (B) was obtained. The presence of the right amount of water is important to maximize the formation of A relative to B. Both compounds were fully characterized by NMR spectroscopy and mass spectrometry (MS), and the X-ray structure of A was also determined. DFT calculations were used to shed light on the reaction mechanism leading to the unexpected formation of A, suggesting that the Oppy ligand is generated intramolecularly once the [Ir(ppy)2(μ-OH)]2 dimer is formed. The process is probably assisted by a redox reaction involving the second iridium(III) center in the dimer. The electrochemical and photophysical properties of complexes A and B were investigated in comparison with the well-known fac-[Ir(ppy)3] analogue (C). Complex A displays a green emission (λmax = 545 nm) with a photoluminescence quantum yield (PLQY) of nearly 40%, whereas the oxygen-free counterpart B is poorly emissive, exhibiting an orange emission (λmax = 605 nm) with a PLQY below 10%. These findings may pave the way for the direct synthesis of neutral luminescent complexes with the general formula [Ir(C^N)2(OC^N)], even using dimers with non-commercial or highly substituted C^N ligands, without the need for synthesizing the corresponding hydroxyl-substituted ancillary ligand, which may be hardly obtainable.
Collapse
Affiliation(s)
- Jing Tu
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Daniele Veclani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Filippo Monti
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
10
|
Das J, Ta S, Salam N, Das S, Ghosh S, Das D. Polymeric copper(ii) and dimeric oxovanadium(v) complexes of amide-imine conjugate: bilirubin recognition and green catalysis. RSC Adv 2023; 13:13195-13205. [PMID: 37124003 PMCID: PMC10141293 DOI: 10.1039/d3ra00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
An exceptionally simple amide-imine conjugate, (E)-N'-(4-(diethylamino)-2-hydroxybenzylidene)-4-methylbenzohydrazide (L), derived by the condensation of 4-methyl-benzoic acid hydrazide (PTA) with 4-(diethylamino)-2-hydroxybenzaldehyde was utilized to prepare a dimeric oxo-vanadium (V1) and a one-dimensional (1D) copper(ii) coordination polymer (C1). The structures of L, V1 and C1 were confirmed by single crystal X-ray diffraction analysis. The experimental results indicate that V1 is a promising green catalyst for the oxidation of sulfide, whereas C1 has potential for a C-S cross-coupling reaction in a greener way. Most importantly, C1 is an efficient 'turn-on' fluorescence sensor for bilirubin that functions via a ligand displacement approach. The displacement equilibrium constant is 7.78 × 105 M-1. The detection limit for bilirubin is 1.15 nM in aqueous chloroform (chloroform/water, 1/4, v/v, PBS buffer, and pH 8.0).
Collapse
Affiliation(s)
- Jayanta Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Sabyasachi Ta
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Noor Salam
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
- Department of Chemistry, Surendranath College 24/2 MG Road Kolkata 700009 WB India
| | - Sudipta Das
- Raina Swami Bholananda Vidyayatan Burdwan 713421 WB India
| | - Subhasis Ghosh
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Debasis Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| |
Collapse
|
11
|
Wei P, Xiao L, Gou Y, He F, Wang P. A novel fluorescent probe based on a tripeptide-Cu(II) complex system for detection of histidine and its application on test strips and smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122290. [PMID: 36608521 DOI: 10.1016/j.saa.2022.122290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Herein, we reported a novel peptide-based fluorescent probe DSSH for highly selective and sensitive detections of both Cu2+ and l-histidine (l-His). DSSH exhibited different color changes and fluorescence "on-off" response toward Cu2+ with a 2:1 binding stoichiometry, and the limit of detection (LOD) for Cu2+ was calculated to be 22.9 nM. The in situ formed DSSH-Cu2+ ensemble showed obvious fluorescence "off-on" response to l-His based on replacement reaction with Cu2+, as well as the discernable color changes under 365 nm UV lamp irradiation with "naked eye". The specificity of Cu2+/l-His interactions allowed l-His to be determined without interference from other amino acids, and the detection limit of DSSH-Cu2+ ensemble response to l-His was determined as 25.7 nM. Notably, DSSH was successfully applied for detecting Cu2+ and l-His in RKO living cells owing to its remarkable fluorescence behavior and low cytotoxicity. Test strips experiments suggested that DSSH can recognize Cu2+ and l-His together by a remarkable fluorescence change. More importantly, smartphone was combined with l-His solutions of different concentrations and converted into digital values through RGB channels, which was successfully used for semi-quantitative identification of l-His, and the limit of detection (LOD) was 0.97 μM.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yuting Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Fang He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
12
|
Huang H, Wu Y, Qian M, Yang X, Qi H. Iridium(III) solvent complex-based electrogenerated chemiluminescence and photoluminescence sensor array for the discrimination of bases in oligonucleotides. Bioelectrochemistry 2023; 150:108368. [PMID: 36634465 DOI: 10.1016/j.bioelechem.2023.108368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Development of rapid and sensitive method for the discrimination of bases in oligonucleotides is of great importance in clinical diagnosis. Here, we demonstrate the first case of single iridium(III) solvent complex-based electrogenerated chemiluminescence (ECL) and photoluminescence (PL) sensor array for the discrimination of bases in oligonucleotides. One iridium (III) solvent complex ([Ir(ppy)2(DMSO)Cl], ppy = 2-phenylpyridine, probe 1) was designed as both ECL and PL probe while five bases (guanine, adenine, cytosine, thymine and uracil) were chosen as analytes. Two-element sensor array was built for the discrimination of five bases based on the fingerprint response of probe 1 to bases via coordination interactions. The combination of unique ECL and PL variations with principal component analysis was applied for the quantitative analysis of five bases in a linear range of 1.0 μM-10 μM and for the effective discrimination of individual base, the mixture of bases and oligonucleotides. Moreover, the sensor array was successfully applied to discriminate different mismatched ss-DNAs from HIV gene (a fully-matched ss-DNA), even at single-base difference. This work demonstrates that the sensor array using single iridium (III) solvent complex is a promising approach for the discrimination of bases with good sensitivity and simpleness in clinical diagnosis.
Collapse
Affiliation(s)
- Hong Huang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yang Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
13
|
Wei Y, Qi H, Zhang C. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem Commun (Camb) 2023; 59:3507-3522. [PMID: 36820650 DOI: 10.1039/d2cc06930j] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This Feature Article simply introduces principles and mechanisms of electrochemiluminescence (ECL) biosensors for the determination of biomarkers and highlights recent advances of ECL biosensors on key aspects including new ECL reagents and materials, new biological recognition elements, and emerging construction biointerfacial strategies with illustrative examples and a critical eye on pitfalls and discusses challenges and perspectives of ECL biosensors for health analysis.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| |
Collapse
|
14
|
Mao Y, Thomae E, Davis S, Wang C, Li Y, Pu L. One Molecular Probe with Opposite Enantioselective Fluorescence Enhancement at Two Distinct Emissions. Org Lett 2023; 25:2157-2161. [PMID: 36940095 DOI: 10.1021/acs.orglett.3c00692] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
It is discovered that one enantiomer of a chiral substrate can greatly enhance the fluorescence of one molecular probe at one emitting signal (λ1 = 517 nm), while the opposite enantiomer of the substrate greatly enhances the fluorescence of the same probe at a distinctively different emission (λ2 = 575 nm). This probe is made of a 1,1'-binaphthyl-based chiral dialdehyde that in combination with Zn2+ under slightly acidic conditions shows a chemoselective and enantioselective fluorescent response to histidine. The opposite enantioselective fluorescent responses of the probe at two emissions allow it to be used to determine both the concentration and the enantiomeric composition of the substrate using a single probe. The mechanistic study has revealed two very different reaction pathways when the two enantiomers of the substrate are treated with the probe. These reaction pathways generate two different products, one dimeric and another polymeric, with very different emissions.
Collapse
Affiliation(s)
- Yifan Mao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Evan Thomae
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Stephanie Davis
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Chengyang Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yichen Li
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Sharma K, Sharma KK, Mahindra A, Sehra N, Bagra N, Aaghaz S, Parmar R, Rathod GK, Jain R. Design, synthesis, and applications of ring-functionalized histidines in peptide-based medicinal chemistry and drug discovery. Med Res Rev 2023. [PMID: 36710510 DOI: 10.1002/med.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
16
|
Kwak J, Woo J, Park S, Lim MH. Rational design of photoactivatable metal complexes to target and modulate amyloid-β peptides. J Inorg Biochem 2023; 238:112053. [PMID: 36347209 DOI: 10.1016/j.jinorgbio.2022.112053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
The accumulation of amyloid-β (Aβ) aggregates is found in the brains of Alzheimer's disease patients. Thus, numerous efforts have been made to develop chemical reagents capable of targeting Aβ peptides and controlling their aggregation. In particular, tunable coordination and photophysical properties of transition metal complexes, with variable oxidation and spin states on the metal centers, can be utilized to probe Aβ aggregates and alter their aggregation profiles. In this review, we illustrate some rational strategies for designing photoactivatable metal complexes as chemical sensors for Aβ peptides or modulators against their aggregation pathways, with some examples.
Collapse
Affiliation(s)
- Jimin Kwak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyeok Woo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
17
|
Iridium solvent complex as a new sensitive probe to detect benzimidazole pesticides based on photoluminescent signals “switch-on” via coordination mechanism. Food Chem 2022; 390:133186. [DOI: 10.1016/j.foodchem.2022.133186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
|
18
|
Zhang M, Qian M, Huang H, Gao Q, Zhang C, Qi H. Carboxyl group bearing iridium(III) solvent complex as photoluminescence and electrochemiluminescence probe for the detection of histidine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Yang J, Shi Z, Wang W, Yang B, Gao C. Phosphorescent platinum (II), iridium (III) and ruthenium (II) complexes with monodentate imidazole ligands respond to the reductive microenvironment of living cells. J Inorg Biochem 2022; 231:111803. [DOI: 10.1016/j.jinorgbio.2022.111803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
20
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Gao L, Chen L, Peng Y, Zhao Y, Dong J, Mao Z, Jia J, Zhou Y. Iridium tetrazolato complexes as efficient protein staining agents. Dalton Trans 2022; 51:16870-16875. [DOI: 10.1039/d2dt02564g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium tetrazolato complexes have been illustrated as one kind of efficient protein staining agent.
Collapse
Affiliation(s)
- Ling Gao
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- The Laboratory Center for Basic Medicine Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Luyao Chen
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Yu Peng
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- The Laboratory Center for Basic Medicine Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| | - Jianhua Dong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| | - Junli Jia
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| |
Collapse
|
22
|
Yaagoob IY, Mazumder MAJ, Al-Muallem HA, Ali SA. A resin containing motifs of maleic acid and glycine: a super-adsorbent for adsorptive removal of basic dye pararosaniline hydrochloride and Cd(II) from water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1333-1346. [PMID: 34900270 PMCID: PMC8617141 DOI: 10.1007/s40201-021-00690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/08/2021] [Indexed: 06/02/2023]
Abstract
The cyclocopolymerization of N,N-diallylglycine hydrochloride, maleic acid and 1,1,4,4-tetraallylpiperazinium dichloride afforded a cross-linked polyzwitterionic acid, which, upon treatment with NaOH, gave the corresponding cross-linked anionic polyelectrolyte (CAPE) in quantitative yield. The pH-responsive resins contained a high density of CO2 - motifs as well as the chelating motifs of glycine residues. The resin CAPE was found to be a super-adsorbent for the removal of pararosaniline hydrochloride (PRH); having a q max of 1534 mg/g. The adsorption process followed pseudo-second-order kinetics and was found to be a nearly irreversible process as suggested by the parameters obtained from Elovich kinetic model. The resin demonstrated excellent adsorption/desorption efficiencies, thereby ensuring its recycling and reuse in potent applications like remediation of industrial dye-waste water. The resin's chelating motifs were also efficient in the adsorptive removal of Cd(II) ions with a q max of 248 mg/g. It was also employed for the simultaneous and effective trapping of Cd(II) and the dye from industrial wastewater. The resin's impressive performance accords it a prestigious place among many sorbents in recent works.
Collapse
Affiliation(s)
- Ibrahim Y. Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
| | - Mohammad A. J. Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials , King Fahd University of Petroleum & Minerals , Dhahran, 31261 Saudi Arabia
| | - Hasan A. Al-Muallem
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
| | - Shaikh A. Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials , King Fahd University of Petroleum & Minerals , Dhahran, 31261 Saudi Arabia
| |
Collapse
|
23
|
Chen S, Wang W, Xu S, Fu C, Ji S, Luo F, Lin C, Qiu B, Lin Z. Single nanoparticle identification coupled with auto-identify algorithm for rapid and accurate detection of L-histidine. Anal Chim Acta 2021; 1187:339162. [PMID: 34753576 DOI: 10.1016/j.aca.2021.339162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 11/20/2022]
Abstract
In this work, an auto-identify sensor was constructed for rapid and high-precision detection of L-histidine. The proposed strategy is based on the auto-identify algorithm and the aggregation of alkynyl and azide functionalized gold nanoparticles induced by the Cu+ catalyzed azides and alkynes cycloaddition (CuAAC) reaction. Specially, the color of scattering light spots for the aggregated gold nanoparticle (AuNPs) caused by CuAAC reaction was quite different from that of the monomers. However, L-histidine can bind to Cu2+ and inhibits the production of Cu+, hence preventing the aggregation of AuNPs. Therefore, there is a distinct change of color as the addition of L-histidine under dark-field microscopy. Then, L-histidine can be quantitatively detected by combining the color change with the Meanshift algorithm accurately and automatically. Such proposed method has been successfully applied for the detection of L-histidine in serum sample with satisfying result.
Collapse
Affiliation(s)
- Shuting Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Weijia Wang
- Clinical Laboratory of Affiliate Zhongshan Hospital of Sun Yat-sen University, 510000, China
| | - Shaohua Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, 215123, China
| | - Shuyi Ji
- Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, 350108, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
24
|
Jiang B, Martí AA. Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Bo Jiang
- Department of Chemistry Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| | - Angel A. Martí
- Department of Chemistry Department of Bioengineering, and Department of Material Science & NanoEngineering Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| |
Collapse
|
25
|
Karazan ZM, Roushani M. A novel electrochemical sensor for the determination of histidine based on a molecularly imprinted copolymer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4904-4910. [PMID: 34606533 DOI: 10.1039/d1ay01492g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study aimed to report a novel electrochemical sensor through electropolymerization of o-aminophenol (o-AP) and m-dihydroxy benzene (m-DB) as monomers on the surface of the glassy carbon electrode (GCE) for the determination of histidine (His) as a template molecule. The developed sensor exhibited satisfactory sensitivity and high selectivity, and also offered a linear range between 0.005 and 10.0 μM with a detection limit of 0.9 nM. Finally, it is worth mentioning that we also aimed at employing the proposed sensor for the detection of His in blood serum samples.
Collapse
Affiliation(s)
- Zahra Mirzaei Karazan
- Department of Chemistry, Faculty of Sciences, Ilam University, P. O. Box, Ilam 69315-516, Iran.
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, P. O. Box, Ilam 69315-516, Iran.
| |
Collapse
|
26
|
Oda Y, Nakata K, Miyano H, Mizukoshi T, Yamaguchi H, Kashiwagi T. Structural insights into the enhanced thermostability of cysteine substitution mutants of L-histidine decarboxylase from Photobacterium phosphoreum. J Biochem 2021; 171:31-40. [PMID: 34622278 DOI: 10.1093/jb/mvab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Enzymatic amino acid assays are important in physiological research and clinical diagnostics because abnormal amino acid concentrations in biofluids are associated with various diseases. L-histidine decarboxylase from Photobacterium phosphoreum (PpHDC) is a pyridoxal 5'-phosphate-dependent enzyme and a candidate for use in an L-histidine quantitation assay. Previous cysteine substitution experiments demonstrated that the PpHDC C57S mutant displayed improved long-term storage stability and thermostability when compared with those of the wild-type enzyme. In this study, combinational mutation experiments of single cysteine substitution mutants of PpHDC were performed, revealing that the PpHDC C57S/C101V/C282V mutant possessed the highest thermostability. The stabilizing mechanism of these mutations were elucidated by solving the structures of PpHDC C57S and C57S/C101V/C282V mutants by X-ray crystallography. In the crystal structures, two symmetry-related PpHDC molecules form a domain-swapped homodimer. The side chain of S57 is solvent exposed in the structure, indicating that the C57S mutation eliminates chemical oxidation or disulfide bond formation with a free thiol group, thereby providing greater stability. Residues 101 and 282 form hydrophobic interactions with neighboring hydrophobic residues. Mutations C101V and C282V enhanced thermostability of PpHDC by filling a cavity present in the hydrophobic core (C101V) and increasing hydrophobic interactions.
Collapse
Affiliation(s)
- Yuki Oda
- Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Kunio Nakata
- Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | | | | | | | | |
Collapse
|
27
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
28
|
Mao Y, Abed MA, Lee NB, Wu X, Du G, Pu L. Determining the concentration and enantiomeric composition of histidine using one fluorescent probe. Chem Commun (Camb) 2021; 57:587-590. [PMID: 33345262 DOI: 10.1039/d0cc07498e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A chemoselective as well as enantioselective fluorescent probe has been developed to determine both the concentration and enantiomeric composition of the biologically important amino acid histidine by measuring the fluorescence responses when excited at two different wavelengths.
Collapse
Affiliation(s)
- Yifan Mao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Mehdi A Abed
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Nathan B Lee
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Xuedan Wu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Gengyu Du
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| |
Collapse
|
29
|
Liang C, Zhao L, Li S, Qiao L, Wang T, Du K. Direct preparation of porous cellulose microspheres via a self-growth process on bamboo fibers and their functionalization for specific adsorption of histidine-rich proteins. J Chromatogr A 2020; 1633:461636. [PMID: 33160254 DOI: 10.1016/j.chroma.2020.461636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022]
Abstract
The traditional preparation of cellulose microspheres always involves tedious synthetic procedures (e.g., dissolution, emulsification and regeneration) and inevitable organic solvents, which undergoes both high production cost and environmental contamination. To overcome these issues, a feasible and green synthesis strategy is proposed to construct porous cellulose microspheres (PCMs) via one-step spontaneous formation relying on sodium periodate oxidation of pure bamboo fibers. By this strategy, a cluster of robust cellulose microspheres grow up on the surface of bamboo fibers in aqueous phase through amorphous oxidized cellulose self-assembly accumulation and then drop out when their sizes increase to about 15 µm. After being immobilized with Cu(II), the prepared cellulose microspheres serve as metal affinity adsorbent for proteins adsorption, showing high adsorption capacity, good selectivity and excellent reusability for bovine hemoglobin (BHb). Together with green and easy synthesis, the novel cellulose microspheres show a promising alternative to commercially available adsorbent support.
Collapse
Affiliation(s)
- Chao Liang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liangshen Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shasha Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Tao Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
30
|
Ta S, Ghosh M, Salam N, Das J, Islam M, Brandão P, Félix V, Sanmartin J, Das D. X‐ray structurally characterized Mo (VI), Fe (III) and Cu (II) complexes of amide‐imine conjugate: (bio)catalytic and histidine recognition studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sabyasachi Ta
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Milan Ghosh
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Noor Salam
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Jayanta Das
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Manirul Islam
- Department of Chemistry University of Kalyani Kalyani Nadia 741235 India
| | - Paula Brandão
- CICECO – Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Vítor Félix
- CICECO – Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Jesus Sanmartin
- Departamento de Química Inorgánica Facultad de Química, Avda Das Ciencias s/n Santiago de Compostela 15782 Spain
| | - Debasis Das
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| |
Collapse
|
31
|
Wang H, Xu B, Chen H, Li D, Shen X, Cai F, Xu Y, Zhou L, Hu L. A fluorescent probe based on Ir(III) solvent complex for specific recognition of histidine in aqueous solution and the application in cell imaging. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Tavallali H, Espergham O, Deilamy-Rad G, Karimi MA, Rostami S, Rouhani-Savestani AR. Dye/metal ion-based chemosensing ensemble towards l-histidine and l-lysine determination in water via different optical responses. Anal Biochem 2020; 604:113811. [DOI: 10.1016/j.ab.2020.113811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
33
|
Orwat B, Oh MJ, Zaranek M, Kubicki M, Januszewski R, Kownacki I. Microwave-Accelerated C,N-Cyclometalation as a Route to Chloro-Bridged Iridium(III) Binuclear Precursors of Phosphorescent Materials: Optimization, Synthesis, and Studies of the Iridium(III) Dimer Behavior in Coordinating Solvents. Inorg Chem 2020; 59:9163-9176. [DOI: 10.1021/acs.inorgchem.0c01071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bartosz Orwat
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Myong Joon Oh
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Maciej Zaranek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Rafał Januszewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, St. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
34
|
Chapaikina SA, Solomatina AI, Tunik SP. Reaction of Cyclometalated Phosphine Chloride Iridium(III) Complexes with Imidazole. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Massue J, Ulrich G, Monti F, Barbieri A. Phosphorescent Cyclometalated Iridium(III) Complexes Bearing Ethynyl‐Extended 2‐(2'‐Hydroxyphenyl) Benzoxazole Ancillary Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julien Massue
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES), UMR CNRS 7515 Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES), UMR CNRS 7515 Ecole Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) l'Environnement et la Santé (ICPEES), UMR CNRS 7515 Consiglio Nazionale delle Ricerche (CNR) Via Gobetti 101 40129 Bologna Italy
| | - Andrea Barbieri
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) l'Environnement et la Santé (ICPEES), UMR CNRS 7515 Consiglio Nazionale delle Ricerche (CNR) Via Gobetti 101 40129 Bologna Italy
| |
Collapse
|
36
|
Minamiki T, Kubota R, Sasaki Y, Asano K, Minami T. Protein Assays on Organic Electronics: Rational Device and Material Designs for Organic Transistor-Based Sensors. ChemistryOpen 2020; 9:573-581. [PMID: 32405448 PMCID: PMC7216454 DOI: 10.1002/open.202000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/22/2020] [Indexed: 01/23/2023] Open
Abstract
Artificial receptor-based protein assays have various attractive features such as a long-term stability, a low-cost production process, and the ease of tuning the target specificity. However, such protein sensors are still immature compared with conventional immunoassays. To enhance the application potential of synthetic sensing materials, organic field-effect transistors (OFETs) are some of the suitable platforms for protein assays because of their solution processability, durability, and compact integration. Importantly, OFETs enable the electrical readout of the protein recognition phenomena of artificial receptors on sensing electrodes. Thus, we believe that OFETs functionalized with artificial protein receptors will be a powerful tool for the on-site analyses of target proteins. In this Minireview, we summarize the recent progress of the OFET-based protein assays including the rational design strategies for devices and sensing materials.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Riku Kubota
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Yui Sasaki
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Koichiro Asano
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Tsuyoshi Minami
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| |
Collapse
|
37
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Zhou Y, Ding Y, Huang Y, Cai L, Xu J, Ma X. Synthesis and Structural Optimization of Iridium(III) Solvent Complex for Electrochemiluminescence Labeling of Histidine-Rich Protein and Immunoassay Applications for CRP Detection. ACS OMEGA 2020; 5:3638-3645. [PMID: 32118179 PMCID: PMC7045565 DOI: 10.1021/acsomega.9b04159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/29/2020] [Indexed: 05/08/2023]
Abstract
The reaction between an iridium(III) solvent complex and the histidine site of biomolecules as one kind of novel bioconjugation approaches has received much attention during the past few years. To extend this novel bioconjugation approach into electrochemiluminescence (ECL) immunoassay and optimize the performances, three iridium(III) solvent complexes with different C∧N bidentate main ligands have been designed and synthesized in this work. Bovine serum albumin (BSA) as the standard histidine-rich protein is initially employed to evaluate the labeling performances by comparing the ECL intensity of the same amount of BSA labeled by different iridium(III) solvent complexes. Importantly, a magnetic beads-based sandwich immunoassay platform using Ir-dmpq (iridium(III) acetonitrile complex with 2-(3,5-dimethylphenyl)quinoline as the main ligand) as a structurally optimized labeling agent has been successfully constructed to detect C-reactive protein (CRP, an important biomarker of systemic inflammation in clinic), and the limit of detection based on this novel labeling agent could reach below 1 ng/mL, which may further pave the way for applications of the iridium(III) solvent complex in histidine-rich protein ECL labeling beyond fluorescence labeling.
Collapse
|
39
|
Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 2020; 59:61-73. [PMID: 31310436 PMCID: PMC6973108 DOI: 10.1002/anie.201905171] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Indexed: 12/17/2022]
Abstract
In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Pingyu Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen)Sun Yat-sen UniversityGuangzhou510275China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
40
|
Sarkar A, Kumar R, Das B, Ray PS, Gupta P. A cyclometalated trinuclear Ir(iii)/Pt(ii) complex as a luminescent probe for histidine-rich proteins. Dalton Trans 2020; 49:1864-1872. [DOI: 10.1039/c9dt04720d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A trinuclear luminescent organometallic Pt–Ir–Pt complex acts as an efficient protein staining agent due to reversible binding to histidine-rich proteins.
Collapse
Affiliation(s)
- Ankita Sarkar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research-Kolkata
- Mohanpur
- India
| | - Ravi Kumar
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata
- Mohanpur
- India
| | - Bishnu Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research-Kolkata
- Mohanpur
- India
| | - Partho Sarothi Ray
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata
- Mohanpur
- India
| | - Parna Gupta
- Department of Chemical Sciences
- Indian Institute of Science Education and Research-Kolkata
- Mohanpur
- India
| |
Collapse
|
41
|
Kozieł S, Komarnicka UK, Ziółkowska A, Skórska-Stania A, Pucelik B, Płotek M, Sebastian V, Bieńko A, Stochel G, Kyzioł A. Anticancer potency of novel organometallic Ir(iii) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00538j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 3D model of cell culturing (spheroids) was explored and the anticancer potential of the selected novel organometallic Ir(iii) complex encapsulated in Pluronic p-123 micelles was clearly proved.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | | | | | - Barbara Pucelik
- Małopolska Centre of Biotechnology
- Jagiellonian University
- Kraków
- Poland
| | - Michał Płotek
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
- Faculty of Conservation and Restoration of Works of Art
| | - Victor Sebastian
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- The Aragón Materials Science Institute (ICMA)
- University of Zaragoza
- 50018 Zaragoza
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Grażyna Stochel
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry
- Jagiellonian University in Krakow
- 30-387 Krakow
- Poland
| |
Collapse
|
42
|
A luminescent microRNA nanoprobe based on the target-triggered release of an iridium(III)-solvent complex from mesoporous silica nanoparticles. Mikrochim Acta 2019; 186:841. [PMID: 31768640 DOI: 10.1007/s00604-019-3895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
A luminescent microRNA nanoprobe based on the target-triggered Ir(III)-solvent complex release has been fabricated. The complex is initially embedded into mesoporous silica nanoparticles (MSNs), and then is capped by single-stranded (ss) DNA. In the presence of the target microRNA, the ssDNA hybridize with the microRNA forming a rigid DNA/RNA heteroduplexes and leaving the surface of MSN. Thus, the capped Ir(III) solvent complex is released and re-coordinated with histidine (His) to form a new luminescent complex. The luminescence intensity of the nascent complex (with excitation/emission maxima at 340/570 nm) is positively correlated with the concentrations of the target microRNA in the range from 0.05 to 2 nM, and the detection limit of microRNA is estimated as 0.2 pM (S/N = 3). The ability of this nanoprobe to detect microRNA in cell extract further demonstrates its potential in practical application. Graphical abstractSchematic of a luminescent microRNA nanoprobe based on the target-triggered release of an Ir(III)-solvent complex from mesoporous silica nanoparticles.
Collapse
|
43
|
Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sens 2019; 4:2571-2587. [PMID: 31475522 DOI: 10.1021/acssensors.9b01114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic thin-film transistors (OTFTs) have attracted intense attention as promising electronic devices owing to their various applications such as rollable active-matrix displays, flexible nonvolatile memories, and radiofrequency identification (RFID) tags. To further broaden the scope of the application of OTFTs, we focus on the host-guest chemistry combined with the electronic devices. Extended-gate types of OTFTs functionalized with artificial receptors were fabricated to achieve chemical sensing of targets in complete aqueous media. Organic and inorganic ions (cations and anions), neutral molecules, and proteins, which are regarded as target analytes in the field of host-guest chemistry, were electrically detected by artificial receptors. Molecular recognition phenomena on the extended-gate electrode were evaluated by several analytical methods such as photoemission yield spectroscopy in the air, contact angle goniometry, and X-ray photoelectron spectroscopy. Interestingly, the electrical responses of the OTFTs were highly sensitive to the chemical structures of the guests. Thus, the OTFTs will facilitate the selective sensing of target analytes and the understanding of chemical conversions in biological and environmental systems. Furthermore, such cross-reactive responses observed in our studies will provide some important insights into next-generation sensing systems such as OTFT arrays. We strongly believe that our approach will enable the development of new intriguing sensor platforms in the field of host-guest chemistry, analytical chemistry, and organic electronics.
Collapse
Affiliation(s)
- Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| |
Collapse
|
44
|
Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905171] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cinzia Imberti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Peter J. Sadler
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
45
|
Kang J, Nam JS, Lee HJ, Nam G, Rhee HW, Kwon TH, Lim MH. Chemical strategies to modify amyloidogenic peptides using iridium(iii) complexes: coordination and photo-induced oxidation. Chem Sci 2019; 10:6855-6862. [PMID: 31391908 PMCID: PMC6657414 DOI: 10.1039/c9sc00931k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Effective chemical strategies, i.e., coordination and coordination-/photo-mediated oxidation, are rationally developed towards modification of amyloidogenic peptides and subsequent control of their aggregation and toxicity.
Amyloidogenic peptides are considered central pathological contributors towards neurodegeneration as observed in neurodegenerative disorders [e.g., amyloid-β (Aβ) peptides in Alzheimer's disease (AD)]; however, their roles in the pathologies of such diseases have not been fully elucidated since they are challenging targets to be studied due to their heterogeneous nature and intrinsically disordered structure. Chemical approaches to modify amyloidogenic peptides would be valuable in advancing our molecular-level understanding of their involvement in neurodegeneration. Herein, we report effective chemical strategies for modification of Aβ peptides (i.e., coordination and coordination-/photo-mediated oxidation) implemented by a single Ir(iii) complex in a photo-dependent manner. Such peptide variations can be achieved by our rationally designed Ir(iii) complexes (Ir-Me, Ir-H, Ir-F, and Ir-F2) leading to significantly modulating the aggregation pathways of two main Aβ isoforms, Aβ40 and Aβ42, as well as the production of toxic Aβ species. Overall, we demonstrate chemical tactics for modification of amyloidogenic peptides in an effective and manageable manner utilizing the coordination capacities and photophysical properties of transition metal complexes.
Collapse
Affiliation(s)
- Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Jung Seung Nam
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyuck Jin Lee
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry Education , Kongju National University , Gongju 32588 , Republic of Korea
| | - Geewoo Nam
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyun-Woo Rhee
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
46
|
Li LP, Ye BH. Efficient Generation of Singlet Oxygen and Photooxidation of Sulfide into Sulfoxide via Tuning the Ancillary of Bicyclometalated Iridium(III) Complexes. Inorg Chem 2019; 58:7775-7784. [PMID: 31185549 DOI: 10.1021/acs.inorgchem.9b00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With 2-phenylquinoline (pq) as a cyclometalated ligand, a series of cationic Ir(III) complexes [Ir(pq)2(L1)2](PF6) (L1 is pyridine (1a), 4-methoxypyridine (1b), 4-dimethylaminopyridine (1c), and 4-acetylpyridine (1d)) and [Ir(pq)2(L2)](PF6) (L2 is 2,2'-bipyridine (1e), 2,2'-bipyrimidyl (1f), 4,4'-dimethyl-2,2'-bipyridine (1g), and 4,4'-dimethoxy-2,2'-bipyridine (1h)) were synthesized and characterized. The influence of the metal-based highest occupied molecular orbital on triplet-state lifetime, triplet-state quantum yield, and 1O2 generation quantum yield as well as aerobic photo-oxidation of sulfide into sulfoxide was evaluated via tuning the ancillary ligand of Ir(pq)2 complexes. The results revealed that 1h with chelate ancillary ligand bearing electron-donating group possesses a high 1O2 generation quantum yield (0.90) and photocatalytic activity for sulfide oxidation with high chemoselectivity and a low catalyst loading (0.5 mol %) under mild conditions. Moreover, one-pot two-step procedure for preparation of enantiopure sulfoxides, including aerobic photo-oxidation of sulfide using 1h as a photosensitizer and chiral resolution of sulfoxide via a chiral-at-metal strategy, was also developed.
Collapse
Affiliation(s)
- Li-Ping Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
47
|
Shen R, Zou L, Wu S, Li T, Wang J, Liu J, Ling L. A novel label-free fluorescent detection of histidine based upon Cu 2+-specific DNAzyme and hybridization chain reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:42-47. [PMID: 30682646 DOI: 10.1016/j.saa.2019.01.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A novel label-free fluorescent sensor for histidine was developed based upon Cu2+-specific DNAzyme, hybridization chain reaction(HCR) and triplex DNA. Cu2+ can bind to the histidine, in the presence of histidine, leading to the inhibition of the cleavage of substrate strand of Cu2+-dependent DNAzyme, then the intact substrate strand trigger the HCR between H1 and H2. The HCR product can be recognized by triplex-forming oligonucleotide (TFO) through triplex formation and reported by the fluorescence of berberine, the fluorescence intensity of the sensing system was proportional to the concentration of histidine during the range of 5.7-455 nmol L-1, with a detection limit of 2.0 nmol L-1.
Collapse
Affiliation(s)
- Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shixin Wu
- Maternal and Child Care Service Centre of Yunxi County, Shiyan 442600, PR China
| | - Tingting Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jianmin Liu
- Department of Neurosurgery, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, PR China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
48
|
Yamaguchi H, Nakata K, Tatsumi M, Sugiki M, Miyano H, Mizukoshi T. Development of a novel l-histidine assay method using histamine dehydrogenase and a stable mutant of histidine decarboxylase. Anal Biochem 2019; 570:13-20. [DOI: 10.1016/j.ab.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
|
49
|
Zhang P, Huang H, Banerjee S, Clarkson GJ, Ge C, Imberti C, Sadler PJ. Nucleus-Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy. Angew Chem Int Ed Engl 2019; 58:2350-2354. [PMID: 30552796 PMCID: PMC6468315 DOI: 10.1002/anie.201813002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 12/19/2022]
Abstract
An organoiridium-albumin bioconjugate (Ir1-HSA) was synthesized by reaction of a pendant maleimide ligand with human serum albumin. The phosphorescence of Ir1-HSA was enhanced significantly compared to parent complex Ir1. The long phosphorescence lifetime and high 1 O2 quantum yield of Ir1-HSA are highly favorable properties for photodynamic therapy. Ir1-HSA mainly accumulated in the nucleus of living cancer cells and showed remarkable photocytotoxicity against a range of cancer cell lines and tumor spheroids (light IC50 ; 0.8-5 μm, photo-cytotoxicity index PI=40-60), while remaining non-toxic to normal cells and normal cell spheroids, even after photo-irradiation. This nucleus-targeting organoiridium-albumin is a strong candidate photosensitizer for anticancer photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen)Sun Yat-sen UniversityGuangzhou510275China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Samya Banerjee
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Chen Ge
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
50
|
Novohradsky V, Vigueras G, Pracharova J, Cutillas N, Janiak C, Kostrhunova H, Brabec V, Ruiz J, Kasparkova J. Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(iii) complexes. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00811j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The switch from Type II to Type I photochemical mechanism by new Ir(iii) complexes for improved PDT of cancer under hypoxia is demonstrated.
Collapse
Affiliation(s)
| | - Gloria Vigueras
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Jitka Pracharova
- Department of Biophysics
- Centre of the Region Hana for Biotechnological and Agricultural Research
- Palacky University
- 783 71 Olomouc
- Czech Republic
| | - Natalia Cutillas
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Hana Kostrhunova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Jose Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Jana Kasparkova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| |
Collapse
|