1
|
Breidenbach J, Voget R, Si Y, Hingst A, Claff T, Sylvester K, Wolf V, Krasniqi V, Useini A, Sträter N, Ogura Y, Kawaguchi A, Müller CE, Gütschow M. Macrocyclic Azapeptide Nitriles: Structure-Based Discovery of Potent SARS-CoV-2 Main Protease Inhibitors as Antiviral Drugs. J Med Chem 2024; 67:8757-8790. [PMID: 38753594 DOI: 10.1021/acs.jmedchem.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Given the crucial role of the main protease (Mpro) in the replication cycle of SARS-CoV-2, this viral cysteine protease constitutes a high-profile drug target. We investigated peptidomimetic azapeptide nitriles as auspicious, irreversibly acting inhibitors of Mpro. Our systematic approach combined an Mpro active-site scanning by combinatorially assembled azanitriles with structure-based design. Encouraged by the bioactive conformation of open-chain inhibitors, we conceptualized the novel chemotype of macrocyclic azanitriles whose binding mode was elucidated by cocrystallization. This strategy provided a favorable entropic contribution to target binding and resulted in the development of the extraordinarily potent Mpro inhibitor 84 with an IC50 value of 3.23 nM and a second-order rate constant of inactivation, kinac/Ki, of 448,000 M-1s-1. The open-chain Mpro inhibitor 58, along with the macrocyclic compounds 83 and 84, a broad-spectrum anticoronaviral agent, demonstrated the highest antiviral activity with EC50 values in the single-digit micromolar range. Our findings are expected to promote the future development of peptidomimetic Mpro inhibitors as anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Yaoyao Si
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Valentina Wolf
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Vesa Krasniqi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Abibe Useini
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Yukino Ogura
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Ibaraki, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Ibaraki, Japan
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
2
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Voget R, Breidenbach J, Claff T, Hingst A, Sylvester K, Steinebach C, Vu LP, Weiße RH, Bartz U, Sträter N, Müller CE, Gütschow M. Development of an active-site titrant for SARS-CoV-2 main protease as an indispensable tool for evaluating enzyme kinetics. Acta Pharm Sin B 2024; 14:2349-2357. [PMID: 38799620 PMCID: PMC11121168 DOI: 10.1016/j.apsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024] Open
Abstract
A titrant for the SARS-CoV-2 main protease (Mpro) was developed that enables, for the first time, the exact determination of the concentration of the enzymatically active Mpro by active-site titration. The covalent binding mode of the tetrapeptidic titrant was elucidated by the determination of the crystal structure of the enzyme-titrant complex. Four fluorogenic substrates of Mpro, including a prototypical, internally quenched Dabcyl-EDANS peptide, were compared in terms of solubility under typical assay conditions. By exploiting the new titrant, key kinetic parameters for the Mpro-catalyzed cleavage of these substrates were determined.
Collapse
Affiliation(s)
- Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Julian Breidenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Lan Phuong Vu
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Renato H. Weiße
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach 53359, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
4
|
Dos Santos Nascimento IJ, Albino SL, da Silva Menezes KJ, de Azevedo Teotônio Cavalcanti M, de Oliveira MS, Mali SN, de Moura RO. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr Med Chem 2024; 31:2264-2284. [PMID: 37921174 DOI: 10.2174/0109298673255826231011114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 11/04/2023]
Abstract
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Pharmacy Department, Cesmac University Center, Maceió, 57051-160, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Sonaly Lima Albino
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
| | - Karla Joane da Silva Menezes
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| | - Mozaniel Santana de Oliveira
- Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi, 1901, Belém, 66077-530, PA Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga East, Mumbai, 400019, India
| | - Ricardo Olimpio de Moura
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
5
|
Gehringer M, Pape F, Méndez M, Barbie P, Unzue Lopez A, Lefranc J, Klingler FM, Hessler G, Langer T, Diamanti E, Schiedel M. Back in Person: Frontiers in Medicinal Chemistry 2023. ChemMedChem 2023; 18:e202300344. [PMID: 37485831 DOI: 10.1002/cmdc.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). Fortunately, after being cancelled in 2020 and two years (2021-2022) of entirely virtual meetings, due to the COVID-19 pandemic, the FiMC could be held in a face-to-face format again. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh), the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (DPhG), together with the Division of Medicinal Chemistry of the Austrian Chemical Society (GÖCH), the Austrian Pharmaceutical Society (ÖPhG), and a local organization committee from the University of Vienna headed by Thierry Langer, the meeting brought together 260 participants from 21 countries. The program included 38 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 102 posters were presented in two highly interactive poster sessions.
Collapse
Affiliation(s)
- Matthias Gehringer
- Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Felix Pape
- NUVISAN Innovation Campus Berlin, NUVISAN ICB GmbH, Muellerstraße 178, 13353, Berlin, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Philipp Barbie
- Bayer AG, R&D, Pharmaceuticals, Laboratory IV, Bldg. S106, 231, 13342, Berlin, Germany
| | - Andrea Unzue Lopez
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Julien Lefranc
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | | | - Gerhard Hessler
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G877, 65926, Frankfurt am Main, Germany
| | - Thierry Langer
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
6
|
Abdoli M, Krasniqi V, Bonardi A, Gütschow M, Supuran CT, Žalubovskis R. 4-Cyanamido-substituted benzenesulfonamides act as dual carbonic anhydrase and cathepsin inhibitors. Bioorg Chem 2023; 139:106725. [PMID: 37442043 DOI: 10.1016/j.bioorg.2023.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
A set of novel N-cyano-N-substituted 4-aminobenzenesulfonamide derivatives were synthesized and investigated for their inhibitory activity against four cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isoforms (hCA I, II, VII and XIII) and two cathepsins (S and B). N-alkyl/benzyl-substituted derivatives were revealed to be very potent inhibitors against brain-associated hCA VII, but inactive against both cathepsins. On the other hand, N-acyl-substituted derivatives displayed significant inhibitory activities against cathepsin S, but only moderate to poor inhibitory potency against hCA VII. Both hCA VII and cathepsin S have recently been validated as therapeutic targets in neuropathic pain. This study provided an excellent starting point for further structural optimization of this class of bifunctional compounds to enhance their inhibitory activity and selectivity against hCA VII and cathepsin S and to achieve new compounds with an attractive dual mechanism of action as anti-neuropathic agents.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Vesa Krasniqi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy.
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia; Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
7
|
Alves ETM, Pernichelle FG, Nascimento LA, Ferreira GM, Ferreira EI. Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options. Pharmaceuticals (Basel) 2023; 16:1028. [PMID: 37513939 PMCID: PMC10385647 DOI: 10.3390/ph16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neglected diseases, primarily found in tropical regions of the world, present a significant challenge for impoverished populations. Currently, there are 20 diseases considered neglected, which greatly impact the health of affected populations and result in difficult-to-control social and economic consequences. Unfortunately, for the majority of these diseases, there are few or no drugs available for patient treatment, and the few drugs that do exist often lack adequate safety and efficacy. As a result, there is a pressing need to discover and design new drugs to address these neglected diseases. This requires the identification of different targets and interactions to be studied. In recent years, there has been a growing focus on studying enzyme covalent inhibitors as a potential treatment for neglected diseases. In this review, we will explore examples of how these inhibitors have been used to target Human African Trypanosomiasis, Chagas disease, and Malaria, highlighting some of the most promising results so far. Ultimately, this review aims to inspire medicinal chemists to pursue the development of new drug candidates for these neglected diseases, and to encourage greater investment in research in this area.
Collapse
Affiliation(s)
- Erick Tavares Marcelino Alves
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Filipe Gomes Pernichelle
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Lucas Adriano Nascimento
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| |
Collapse
|
8
|
Bonatto V, Lameiro RF, Rocho FR, Lameira J, Leitão A, Montanari CA. Nitriles: an attractive approach to the development of covalent inhibitors. RSC Med Chem 2023; 14:201-217. [PMID: 36846367 PMCID: PMC9945868 DOI: 10.1039/d2md00204c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Nitriles have broad applications in medicinal chemistry, with more than 60 small molecule drugs on the market containing the cyano functional group. In addition to the well-known noncovalent interactions that nitriles can perform with macromolecular targets, they are also known to improve drug candidates' pharmacokinetic profiles. Moreover, the cyano group can be used as an electrophilic warhead to covalently bind an inhibitor to a target of interest, forming a covalent adduct, a strategy that can present benefits over noncovalent inhibitors. This approach has gained much notoriety in recent years, mainly with diabetes and COVID-19-approved drugs. Nevertheless, the application of nitriles in covalent ligands is not restricted to it being the reactive center, as it can also be employed to convert irreversible inhibitors into reversible ones, a promising strategy for kinase inhibition and protein degradation. In this review, we introduce and discuss the roles of the cyano group in covalent inhibitors, how to tune its reactivity and the possibility of achieving selectivity only by replacing the warhead. Finally, we provide an overview of nitrile-based covalent compounds in approved drugs and inhibitors recently described in the literature.
Collapse
Affiliation(s)
- Vinícius Bonatto
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Fernanda R Rocho
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Jerônimo Lameira
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
- Institute of Biological Science, Federal University of Pará Rua Augusto Correa S/N Belém PA Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo Avenue Trabalhador Sancarlense, 400 13566-590 São Carlos/SP Brazil
| |
Collapse
|
9
|
Jia Y, Wang K, Wang H, Zhang B, Yang K, Zhang Z, Dong H, Wang J. Discovery of selective covalent cathepsin K inhibitors containing novel 4-cyanopyrimidine warhead based on quantum chemical calculations and binding mode analysis. Bioorg Med Chem 2022; 74:117053. [PMID: 36270112 DOI: 10.1016/j.bmc.2022.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
Abstract
Cathepsin K (Cat K), mainly expressed by osteoclasts, plays an important role in bone resorption. Covalent Cat K inhibitors will show great potential in the future treatment of osteoporosis. It has been reported that the selectivity of covalent cathepsin K inhibitors was related to the drug's safety. The type of warhead has a crucial influence on the enzyme bioactivity and selectivity of covalent inhibitors. In order to develop novel covalent inhibitors with the selective new warhead, quantum chemical calculations were performed to estimate the reactivity of the nitrile warheads. Moreover, binding mode analysis between ligands and high homology Cat K, S and B revealed differences in non-covalent interactions. Novel covalent Cat K inhibitors containing 4-cyanopyrimidine warhead (11) were determined for the first time. Among them, compound 34 significantly inhibited Cat K (IC50 = 61.9 nM) with excellent selectivity compared to Cat S (>810-fold) and Cat B (>1620-fold), respectively. Binding mode analysis of Cat K-34 complex provided the basis for further optimization. Compound 34 could be a valuable lead compound for further research on safe and effective Cat K inhibitors.
Collapse
Affiliation(s)
- Yihe Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ke Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huifang Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Botao Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Zhilan Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Benýšek J, Buša M, Rubešová P, Fanfrlík J, Lepšík M, Brynda J, Matoušková Z, Bartz U, Horn M, Gütschow M, Mareš M. Highly potent inhibitors of cathepsin K with a differently positioned cyanohydrazide warhead: structural analysis of binding mode to mature and zymogen-like enzymes. J Enzyme Inhib Med Chem 2022; 37:515-526. [PMID: 35144520 PMCID: PMC8843313 DOI: 10.1080/14756366.2021.2024527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile Gü1303 and a 3-cyano-3-aza-β-amino acid Gü2602. Crystal structures of their covalent complexes were determined with mature CatK as well as a zymogen-like activation intermediate of CatK. Binding mode analysis, together with quantum chemical calculations, revealed that the extraordinary picomolar potency of Gü2602 is entropically favoured by its conformational flexibility at the nonprimed-primed subsites boundary. Furthermore, we demonstrated by live cell imaging that cyanohydrazides effectively target mature CatK in osteosarcoma cells. Cyanohydrazides also suppressed the maturation of CatK by inhibiting the autoactivation of the CatK zymogen. Our results provide structural insights for the rational design of cyanohydrazide inhibitors of CatK as potential drugs.
Collapse
Affiliation(s)
- Jakub Benýšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Rubešová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Matoušková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Rocho FR, Bonatto V, Lameiro RF, Lameira J, Leitão A, Montanari CA. A patent review on cathepsin K inhibitors to treat osteoporosis (2011 - 2021). Expert Opin Ther Pat 2022; 32:561-573. [PMID: 35137661 DOI: 10.1080/13543776.2022.2040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cathepsin K (CatK) is a lysosomal cysteine protease and the predominant cathepsin expressed in osteoclasts, where it degrades the bone matrix. Hence, CatK is an attractive therapeutic target related to diseases characterized by bone resorption, like osteoporosis. AREAS COVERED This review summarizes the patent literature from 2011 to 2021 on CatK inhibitors and their potential use as new treatments for osteoporosis. The inhibitors were classified by their warheads, with the most explored nitrile-based inhibitors. Promising in vivo results have also been disclosed. EXPERT OPINION As one of the most potent lysosomal proteins whose primary function is to mediate bone resorption, cathepsin K remains an excellent target for therapeutic intervention. Nevertheless, there is no record of any approved drug that targets CatK. The most notable cases of drug candidates targeting CatK were balicatib and odanacatib, which reached Phase II and III clinical trials, respectively, but did not enter the market. Further developments include exploring new chemical entities beyond the nitrile-based chemical space, with improved ADME and safety profiles. In addition, CatK's role in cancer immunoexpression and its involvement in the pathophysiology of osteo- and rheumatoid arthritis have raised the race to develop activity-based probes with excellent potency and selectivity.
Collapse
Affiliation(s)
- Fernanda R Rocho
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Vinícius Bonatto
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Jerônimo Lameira
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil.,On leave from Drug Designing and Development Laboratory. Federal University of Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| |
Collapse
|
12
|
Liu J, Li Y, Liu N, Huang N, Wang L, Li D. A new type of heterogeneous catalysis strategy for organic reactions: Ugi-3CR catalyzed by highly stable MOFs with exposed carboxyl groups. Org Chem Front 2022. [DOI: 10.1039/d2qo01257j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and highly efficient Ugi-3CR using a novel Cu-COOH@MOF-6 as the catalyst has been developed, which provides facile access to α-amino amides. The recycling test and XRD images showed that the catalytic system has good stability and recyclability.
Collapse
Affiliation(s)
- Jinni Liu
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yongshuang Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Na Liu
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei 443002, China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Dongsheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
13
|
Lemke C, Benýšek J, Brajtenbach D, Breuer C, Jílková A, Horn M, Buša M, Ulrychová L, Illies A, Kubatzky KF, Bartz U, Mareš M, Gütschow M. An Activity-Based Probe for Cathepsin K Imaging with Excellent Potency and Selectivity. J Med Chem 2021; 64:13793-13806. [PMID: 34473502 DOI: 10.1021/acs.jmedchem.1c01178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cysteine protease cathepsin K is a target for the treatment of diseases associated with high bone turnover. Cathepsin K is mainly expressed in osteoclasts and responsible for the destruction of the proteinaceous components of the bone matrix. We designed various fluorescent activity-based probes (ABPs) and their precursors that bind to and inactivate cathepsin K. ABP 25 exhibited extraordinary potency (kinac/Ki = 35,300 M-1s-1) and selectivity for human cathepsin K. Crystal structures of cathepsin K in complex with ABP 25 and its nonfluorescent precursor 21 were determined to characterize the binding mode of this new type of acrylamide-based Michael acceptor with the particular orientation of the dibenzylamine moiety to the primed subsite region. The cyanine-5 containing probe 25 allowed for sensitive detection of cathepsin K, selective visualization in complex proteomes, and live cell imaging of a human osteosarcoma cell line, underlining its applicability in a pathophysiological environment.
Collapse
Affiliation(s)
- Carina Lemke
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Jakub Benýšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.,First Faculty of Medicine, Charles University, Kateřinská 32, Prague 12108, Czech Republic
| | - Dominik Brajtenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Christian Breuer
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany.,Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Adéla Jílková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic
| | - Lenka Ulrychová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Annika Illies
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| |
Collapse
|
14
|
Alves L, Santos DA, Cendron R, Rocho FR, Matos TKB, Leitão A, Montanari CA. Nitrile-based peptoids as cysteine protease inhibitors. Bioorg Med Chem 2021; 41:116211. [PMID: 33991733 DOI: 10.1016/j.bmc.2021.116211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Peptidomimetics of the class of dipeptidyl nitrile analog peptoids were synthesized as inhibitors of mammalian cysteine proteases of the papain superfamily. The dipeptidyl nitrile side chains were attached to the peptide backbone's nitrogen atom, not to the α-carbons. Synthesized nitrile-based peptoid analogs that lack the hydrogen amide at P2-P3 are responsible for many of the secondary structure elements in peptides and proteins, making them resistant to proteolysis. The designed peptoids would lose a hydrogen bond with cruzain Asp161 decreasing the affinity toward the enzyme. A structure-activity relationship and matched molecular pair-based analysis between the dipeptidyl nitrile Neq0409 and its peptoid 4a yielded the following cruzain affinities: pKiNeq0409 = 6.5 and pKi4a = 5.2. respectively. A retrosynthetic matched molecular pair cliff (RMMP-cliff) analysis with a ΔpKiNeq0409-4a of 1.3 log is found for this transformation. These novel peptoids were then optimized, leading to compound 4i, with high cruzain inhibition (pKi = 6.8). Cross-class cathepsin activity was observed for some of these novel compounds against cathepsins K, L and S, while other compounds presented a selective inhibition of cathepsin K (4b, 4c, 4k) over ten times higher than the other enzymes. The putative mode of binding was determined by using covalent docking, which also aided to describe the structure-activity relationship (SAR). Interestingly, none of the peptoids inhibited CatB to any appreciable extent. These results provide guidance to identify novel bioactive nitrile-based peptoids.
Collapse
Affiliation(s)
- Luana Alves
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Deborah A Santos
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil.
| | - Rodrigo Cendron
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Fernanda R Rocho
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Thiago K B Matos
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil.
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| |
Collapse
|
15
|
Bowles M, Proulx C. Solid phase submonomer azapeptide synthesis. Methods Enzymol 2021; 656:169-190. [PMID: 34325786 DOI: 10.1016/bs.mie.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Azapeptides contain at least one aza-amino acid, where the α-carbon has been replaced by a nitrogen atom, and have found broad applicability in fields ranging from medicinal chemistry to biomaterials. In this chapter, we provide a step-by-step protocol for the solid phase submonomer synthesis of azapeptides, which includes three steps: (1) hydrazone activation and coupling onto a resin-bound peptide, (2) chemoselective semicarbazone functionalization for installation of the aza-amino acid side chain, and (3) orthogonal deprotection of the semicarbazone to complete the monomer addition cycle. We focus on semicarbazone functionalization by N-alkylation with primary alkyl halides, and describe conditions for coupling onto aza-amino acids. Such divergent methods accelerate the synthesis of peptidomimetics and allow the rapid introduction of a wide variety of natural and unnatural side chains directly on solid support using easily accessible submonomers.
Collapse
Affiliation(s)
- Maxwell Bowles
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
16
|
Breidenbach J, Lemke C, Pillaiyar T, Schäkel L, Al Hamwi G, Diett M, Gedschold R, Geiger N, Lopez V, Mirza S, Namasivayam V, Schiedel AC, Sylvester K, Thimm D, Vielmuth C, Phuong Vu L, Zyulina M, Bodem J, Gütschow M, Müller CE. Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Angew Chem Int Ed Engl 2021; 60:10423-10429. [PMID: 33655614 PMCID: PMC8014119 DOI: 10.1002/anie.202016961] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The main protease of SARS-CoV-2 (Mpro ), the causative agent of COVID-19, constitutes a significant drug target. A new fluorogenic substrate was kinetically compared to an internally quenched fluorescent peptide and shown to be ideally suitable for high throughput screening with recombinantly expressed Mpro . Two classes of protease inhibitors, azanitriles and pyridyl esters, were identified, optimized and subjected to in-depth biochemical characterization. Tailored peptides equipped with the unique azanitrile warhead exhibited concomitant inhibition of Mpro and cathepsin L, a protease relevant for viral cell entry. Pyridyl indole esters were analyzed by a positional scanning. Our focused approach towards Mpro inhibitors proved to be superior to virtual screening. With two irreversible inhibitors, azanitrile 8 (kinac /Ki =37 500 m-1 s-1 , Ki =24.0 nm) and pyridyl ester 17 (kinac /Ki =29 100 m-1 s-1 , Ki =10.0 nm), promising drug candidates for further development have been discovered.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Carina Lemke
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Thanigaimalai Pillaiyar
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
- Present address: Pharmaceutical InstitutePharmaceutical ChemistryEberhard-Karls-University TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Laura Schäkel
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Ghazl Al Hamwi
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Miriam Diett
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Robin Gedschold
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Nina Geiger
- Institute for Virology and ImmunobiologyJulius-Maximilians-University WürzburgVersbacher Strasse 797078WürzburgGermany
| | - Vittoria Lopez
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Salahuddin Mirza
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Vigneshwaran Namasivayam
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Anke C. Schiedel
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Katharina Sylvester
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Dominik Thimm
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Christin Vielmuth
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Lan Phuong Vu
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Maria Zyulina
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Jochen Bodem
- Institute for Virology and ImmunobiologyJulius-Maximilians-University WürzburgVersbacher Strasse 797078WürzburgGermany
| | - Michael Gütschow
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| | - Christa E. Müller
- Pharmaceutical InstitutePharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany), E-mails
| |
Collapse
|
17
|
Breidenbach J, Lemke C, Pillaiyar T, Schäkel L, Al Hamwi G, Diett M, Gedschold R, Geiger N, Lopez V, Mirza S, Namasivayam V, Schiedel AC, Sylvester K, Thimm D, Vielmuth C, Phuong Vu L, Zyulina M, Bodem J, Gütschow M, Müller CE. Die Hauptprotease von SARS‐CoV‐2 als Zielstruktur: Von der Etablierung eines Hochdurchsatz‐Screenings zum Design maßgeschneiderter Inhibitoren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Julian Breidenbach
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Carina Lemke
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Thanigaimalai Pillaiyar
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
- Aktuelle Adresse: Pharmazeutisches Institut Pharmazeutische Chemie Eberhard-Karls-Universität Tübingen Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Laura Schäkel
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Ghazl Al Hamwi
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Miriam Diett
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Robin Gedschold
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Nina Geiger
- Institut für Virologie und Immunobiologie Julius-Maximilians-Universität Würzburg Versbacher Straße 7 97078 Würzburg Deutschland
| | - Vittoria Lopez
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Salahuddin Mirza
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Vigneshwaran Namasivayam
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Anke C. Schiedel
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Katharina Sylvester
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Dominik Thimm
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Christin Vielmuth
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Lan Phuong Vu
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Maria Zyulina
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Jochen Bodem
- Institut für Virologie und Immunobiologie Julius-Maximilians-Universität Würzburg Versbacher Straße 7 97078 Würzburg Deutschland
| | - Michael Gütschow
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Christa E. Müller
- Pharmazeutisches Institut Pharmazeutische & Medizinische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| |
Collapse
|
18
|
Corrigan TS, Lotti Diaz LM, Border SE, Ratigan SC, Kasper KQ, Sojka D, Fajtova P, Caffrey CR, Salvesen GS, McElroy CA, Hadad CM, Doğan Ekici Ö. Design, synthesis, and in vitro evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors. J Enzyme Inhib Med Chem 2021; 35:1387-1402. [PMID: 32633155 PMCID: PMC7470110 DOI: 10.1080/14756366.2020.1781107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aza-peptide aldehydes and ketones are a new class of reversible protease inhibitors that are specific for the proteasome and clan CD cysteine proteases. We designed and synthesised aza-Leu derivatives that were specific for the chymotrypsin-like active site of the proteasome, aza-Asp derivatives that were effective inhibitors of caspases-3 and -6, and aza-Asn derivatives that inhibited S. mansoni and I. ricinus legumains. The crystal structure of caspase-3 in complex with our caspase-specific aza-peptide methyl ketone inhibitor with an aza-Asp residue at P1 revealed a covalent linkage between the inhibitor carbonyl carbon and the active site cysteinyl sulphur. Aza-peptide aldehydes and ketones showed no cross-reactivity towards cathepsin B or chymotrypsin. The initial in vitro selectivity of these inhibitors makes them suitable candidates for further development into therapeutic agents to potentially treat multiple myeloma, neurodegenerative diseases, and parasitic infections.
Collapse
Affiliation(s)
- Thomas S Corrigan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Leilani M Lotti Diaz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sarah E Border
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Steven C Ratigan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Kayla Q Kasper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pavla Fajtova
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Özlem Doğan Ekici
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University at Newark, Newark, OH, USA
| |
Collapse
|
19
|
Jílková A, Horn M, Fanfrlík J, Küppers J, Pachl P, Řezáčová P, Lepšík M, Fajtová P, Rubešová P, Chanová M, Caffrey CR, Gütschow M, Mareš M. Azanitrile Inhibitors of the SmCB1 Protease Target Are Lethal to Schistosoma mansoni: Structural and Mechanistic Insights into Chemotype Reactivity. ACS Infect Dis 2021; 7:189-201. [PMID: 33301315 PMCID: PMC7802074 DOI: 10.1021/acsinfecdis.0c00644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Azapeptide
nitriles are postulated to reversibly covalently react
with the active-site cysteine residue of cysteine proteases and form
isothiosemicarbazide adducts. We investigated the interaction of azadipeptide
nitriles with the cathepsin B1 drug target (SmCB1) from Schistosoma
mansoni, a pathogen that causes the global neglected disease
schistosomiasis. Azadipeptide nitriles were superior inhibitors of
SmCB1 over their parent carba analogs. We determined the crystal structure
of SmCB1 in complex with an azadipeptide nitrile and analyzed the
reaction mechanism using quantum chemical calculations. The data demonstrate
that azadipeptide nitriles, in contrast to their carba counterparts,
undergo a change from E- to Z-configuration
upon binding, which gives rise to a highly favorable energy profile
of noncovalent and covalent complex formation. Finally, azadipeptide
nitriles were considerably more lethal than their carba analogs against
the schistosome pathogen in culture, supporting the further development
of this chemotype as a treatment for schistosomiasis.
Collapse
Affiliation(s)
- Adéla Jílková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Jim Küppers
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Pavla Fajtová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Petra Rubešová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Marta Chanová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2028/7, 12800 Prague 2, Czech Republic
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
20
|
Ribeiro JFR, Cianni L, Li C, Warwick TG, de Vita D, Rosini F, Dos Reis Rocho F, Martins FCP, Kenny PW, Lameira J, Leitão A, Emsley J, Montanari CA. Crystal structure of Leishmania mexicana cysteine protease B in complex with a high-affinity azadipeptide nitrile inhibitor. Bioorg Med Chem 2020; 28:115743. [PMID: 33038787 DOI: 10.1016/j.bmc.2020.115743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/19/2022]
Abstract
Leishmania mexicana is an obligate intracellular protozoan parasite that causes the cutaneous form of leishmaniasis affecting South America and Mexico. The cysteine protease LmCPB is essential for the virulence of the parasite and therefore, it is an appealing target for antiparasitic therapy. A library of nitrile-based cysteine protease inhibitors was screened against LmCPB to develop a treatment of cutaneous leishmaniasis. Several compounds are sufficiently high-affinity LmCPB inhibitors to serve both as starting points for drug discovery projects and as probes for target validation. A 1.4 Å X ray crystal structure, the first to be reported for LmCPB, was determined for the complex of this enzyme covalently bound to an azadipeptide nitrile ligand. Mapping the structure-activity relationships for LmCPB inhibition revealed superadditive effects for two pairs of structural transformations. Therefore, this work advances our understanding of azadipeptidyl and dipeptidyl nitrile structure-activity relationships for LmCPB structure-based inhibitor design. We also tested the same series of inhibitors on related cysteine proteases cathepsin L and Trypanosoma cruzi cruzain. The modulation of these mammalian and protozoan proteases represents a new framework for targeting papain-like cysteine proteases.
Collapse
Affiliation(s)
- Jean F R Ribeiro
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Lorenzo Cianni
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Chan Li
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Thomas G Warwick
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Daniela de Vita
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Fabiana Rosini
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Fernanda Dos Reis Rocho
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Felipe C P Martins
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Peter W Kenny
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Jeronimo Lameira
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil; Laboratory of Design and Development of Pharmaceuticals, Federal University of Pará, Belém, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Jonas Emsley
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK.
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil.
| |
Collapse
|
21
|
Tosstorff A, Cole JC, Taylor R, Harris SF, Kuhn B. Identification of Noncompetitive Protein–Ligand Interactions for Structural Optimization. J Chem Inf Model 2020; 60:6595-6611. [DOI: 10.1021/acs.jcim.0c00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Andreas Tosstorff
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
- Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K
| | - Jason C. Cole
- Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K
| | - Robin Taylor
- Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K
| | - Seth F. Harris
- Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bernd Kuhn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
22
|
Bonatto V, Batista PHJ, Cianni L, De Vita D, Silva DG, Cedron R, Tezuka DY, de Albuquerque S, Moraes CB, Franco CH, Lameira J, Leitão A, Montanari CA. On the intrinsic reactivity of highly potent trypanocidal cruzain inhibitors. RSC Med Chem 2020; 11:1275-1284. [PMID: 34095840 DOI: 10.1039/d0md00097c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Hence, peptidomimetic cruzipain inhibitors having a reactive group (known as warhead) are subject to continuous studies to discover novel antichagasic compounds. Here, we evaluated how different warheads for a set of structurally similar related compounds could inhibit the activity of cruzipain and, ultimately, their trypanocidal effect. We first investigated in silico the intrinsic reactivity of these compounds by applying the Fukui index to correlate it with the enzymatic affinity. Then, we evaluated their potency against T. cruzi (Y and Tulahuen strains), which revealed the reversible cruzain inhibitor Neq0656 as a better trypanocidal agent (ECY.strain 50 = 0.1 μM; SI = 58.4) than the current drug benznidazole (ECY.strain 50 = 5.1 μM; SI > 19.6). We also measured the half-life time by HPLC analysis of three lead compounds in the presence of glutathione and cysteine to experimentally assess their intrinsic reactivity. Results clearly illustrated the reactivity trend for the warheads (azanitrile > aldehyde > nitrile), where the aldehyde displayed an intermediate intrinsic reactivity. Therefore, the aldehyde bearing peptidomimetic compounds should be subject for in-depth evaluation in the drug discovery process.
Collapse
Affiliation(s)
- Vinicius Bonatto
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Pedro Henrique Jatai Batista
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Daniela De Vita
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Daniel G Silva
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Rodrigo Cedron
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Daiane Y Tezuka
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil .,Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Sérgio de Albuquerque
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Carolina Borsoi Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas São Paulo Brazil
| | - Caio Haddad Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas São Paulo Brazil
| | - Jerônimo Lameira
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil .,Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará Rua Augusto Corrêa 01 CP 66075-110 Belém-PA Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Carlos A Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| |
Collapse
|
23
|
Kuhn B, Gilberg E, Taylor R, Cole J, Korb O. How Significant Are Unusual Protein-Ligand Interactions? Insights from Database Mining. J Med Chem 2019; 62:10441-10455. [PMID: 31730345 DOI: 10.1021/acs.jmedchem.9b01545] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a new approach to derive interaction propensities of protein-ligand atom pairs from mining of the Protein Data Bank. To ensure solid statistics, we use a line-of-sight contact filter and normalize the observed frequency of hits by a statistical null model based on exposed surface areas of atom types in the protein-ligand binding site. This allows us to investigate which intermolecular interactions and geometries are found more often than expected by chance in protein-ligand complexes. We focus our study on some of the unusual interactions that were postulated to be favorable, including σ-hole bonding of halogen and sulfur atoms, weak hydrogen bonding with fluorine as acceptor, and different types of dipolar interactions. Our results confirm some and challenge other common assumptions on these interactions and highlight other contact types that are yet underexplored in structure-based drug design.
Collapse
Affiliation(s)
- Bernd Kuhn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , CH-4070 Basel , Switzerland
| | - Erik Gilberg
- Roche Pharma Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , CH-4070 Basel , Switzerland
| | - Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , U.K
| | - Jason Cole
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , U.K
| | - Oliver Korb
- Roche Pharma Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , CH-4070 Basel , Switzerland
| |
Collapse
|
24
|
Cianni L, Feldmann CW, Gilberg E, Gütschow M, Juliano L, Leitão A, Bajorath J, Montanari CA. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J Med Chem 2019; 62:10497-10525. [DOI: 10.1021/acs.jmedchem.9b00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Christian Wolfgang Feldmann
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Luiz Juliano
- A. C. Camargo Cancer Center and São Paulo Medical School of Federal University of São Paulo, Rua Professor Antônio Prudente, 211, 01509-010 São Paulo, SP, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Carlos A. Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| |
Collapse
|
25
|
Laube M, Frizler M, Wodtke R, Neuber C, Belter B, Kniess T, Bachmann M, Gütschow M, Pietzsch J, Löser R. Synthesis and preliminary radiopharmacological characterisation of an 11 C-labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins. J Labelled Comp Radiopharm 2019; 62:448-459. [PMID: 30912586 DOI: 10.1002/jlcr.3729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
An O-methyltyrosine-containing azadipeptide nitrile was synthesised and investigated for its inhibitory activity towards cathepsins L, S, K, and B. Labelling with carbon-11 was accomplished by reaction of the corresponding phenolic precursor with [11 C]methyl iodide starting from cyclotron-produced [11 C]methane. Radiopharmacological evaluation of the resulting radiotracer in a mouse xenograft model derived from a mammary tumour cell line by small animal PET imaging indicates tumour targeting with complex pharmacokinetics. Radiotracer uptake in the tumour region was considerably lower under treatment with the nonradioactive reference compound and the epoxide-based irreversible cysteine cathepsin inhibitor E64. The in vivo behaviour observed for this radiotracer largely confirms that of the corresponding 18 F-fluoroethylated analogue and suggests the limited suitability of azadipeptide nitriles for the imaging of tumour-associated cysteine cathepsins despite target-mediated uptake is evidenced.
Collapse
Affiliation(s)
- Markus Laube
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Torsten Kniess
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Design, synthesis and biological evaluation of inhibitors of cathepsin K on dedifferentiated chondrocytes. Bioorg Med Chem 2019; 27:1034-1042. [DOI: 10.1016/j.bmc.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/18/2023]
|
27
|
Cathepsin B: Active site mapping with peptidic substrates and inhibitors. Bioorg Med Chem 2018; 27:1-15. [PMID: 30473362 DOI: 10.1016/j.bmc.2018.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The potential of papain-like cysteine proteases, such as cathepsin B, as drug discovery targets for systemic human diseases has prevailed over the past years. The development of potent and selective low-molecular cathepsin B inhibitors relies on the detailed expertise on preferred amino acid and inhibitor residues interacting with the corresponding specificity pockets of cathepsin B. Such knowledge might be obtained by mapping the active site of the protease with combinatorial libraries of peptidic substrates and peptidomimetic inhibitors. This review, for the first time, summarizes a wide spectrum of active site mapping approaches. It considers relevant X-ray crystallographic data and discloses propensities towards favorable protein-ligand interactions in case of the therapeutically relevant protease cathepsin B.
Collapse
|
28
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. The Antiviral Potential of Host Protease Inhibitors. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122247 DOI: 10.1007/978-3-319-75474-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influenza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infection by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable targets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher probability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
29
|
Silva DG, Ribeiro JF, De Vita D, Cianni L, Franco CH, Freitas-Junior LH, Moraes CB, Rocha JR, Burtoloso AC, Kenny PW, Leitão A, Montanari CA. A comparative study of warheads for design of cysteine protease inhibitors. Bioorg Med Chem Lett 2017; 27:5031-5035. [DOI: 10.1016/j.bmcl.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023]
|
30
|
Synthesis and X-ray Crystal Structure of N’-Cyano-N,N’-dimethyl-4-nitrobenzohydrazide. CRYSTALS 2017. [DOI: 10.3390/cryst7100290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Mohammadi Ziarani G, Fathi Vavsari V. The role of hydrazide compounds in asymmetric synthesis. TETRAHEDRON: ASYMMETRY 2017; 28:203-214. [DOI: 10.1016/j.tetasy.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
32
|
Abstract
INTRODUCTION Cathepsins play an important role in protein degradation and processing. Aberrant cathepsin B or L is closely associated with many serious diseases such as cancer, osteoporosis and autoimmune disorders. Therefore, development of potent and selective cathepsin B and L inhibitors has aroused much attention in recent years. Although several classes of cathepsin inhibitors are presently available, there are still some problems to solve, such as broad-spectrum inhibition to protease, specially cysteine proteases, which lead to unpredictable side effects in clinical trials. Therefore, it is very necessary to discovery new scaffolds and new application of cathepsin B and L inhibitors for developing therapeutic agents for treating diseases mediated by cathepsin B or L. Areas covered: This updated review summarizes new patents on cathepsin B and L inhibitors from 2010 to present. Expert opinion: The review gives the latest development in the area of inhibitors of cathepsin B and L, which have been considered key therapeutic targets for the development of drugs treating related diseases. This review puts emphasis on the discovery of novel small molecule inhibitors of cathepsin B and L, as well as their new application as new therapeutic agents.
Collapse
Affiliation(s)
- Yu-Yao Li
- a College of Pharmaceutical Science , Soochow University , Suzhou , PR China
| | - Jing Fang
- a College of Pharmaceutical Science , Soochow University , Suzhou , PR China
| | - Gui-Zhen Ao
- a College of Pharmaceutical Science , Soochow University , Suzhou , PR China
| |
Collapse
|
33
|
Shi M, Kleski KA, Trabbic KR, Bourgault JP, Andreana PR. Sialyl-Tn Polysaccharide A1 as an Entirely Carbohydrate Immunogen: Synthesis and Immunological Evaluation. J Am Chem Soc 2016; 138:14264-14272. [PMID: 27726393 DOI: 10.1021/jacs.6b05675] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mengchao Shi
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Kristopher A. Kleski
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Kevin R. Trabbic
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jean-Paul Bourgault
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Peter R. Andreana
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
34
|
Duttagupta I, Bhadra J, Das SK, Sinha S. Proteolytic stability of cyclic α-hydrazino acid containing peptides: a qualitative study. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Steinebach C, Schulz-Fincke AC, Schnakenburg G, Gütschow M. In situ generation and trapping of thioimidates: an intermolecular tandem reaction to 4-acylimino-4H-3,1-benzothiazines. RSC Adv 2016. [DOI: 10.1039/c6ra00196c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The proton-catalyzed transformation of 2-thioureidobenzonitriles in the presence of acyl donors provides a convenient one-step entry to 4-acylimino-4H-3,1-benzothiazines.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
- Germany
| | | | | | - Michael Gütschow
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
- Germany
| |
Collapse
|
36
|
|
37
|
Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption. PLoS One 2015; 10:e0132513. [PMID: 26168340 PMCID: PMC4500499 DOI: 10.1371/journal.pone.0132513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
Aim The cysteine protease cathepsin K (CatK), abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs) to test their effects on osteoblasts and osteoclasts. Research Design and Methods Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices. Results Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10–100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of osteoclasts was slowed down by the addition of CKI-8 and CKI-13. Conclusion CKI-8 and CKI-13 screened here show promise as antiresorptive osteoporosis therapeutics but some off target effects on osteoblasts were found with CKI-13.
Collapse
|
38
|
Schmitz J, Furtmann N, Ponert M, Frizler M, Löser R, Bartz U, Bajorath J, Gütschow M. Active Site Mapping of Human Cathepsin F with Dipeptide Nitrile Inhibitors. ChemMedChem 2015; 10:1365-77. [PMID: 26119278 DOI: 10.1002/cmdc.201500151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 11/09/2022]
Abstract
Cleavage of the invariant chain is the key event in the trafficking pathway of major histocompatibility complex class II. Cathepsin S is the major processing enzyme of the invariant chain, but cathepsin F acts in macrophages as its functional synergist which is as potent as cathepsin S in invariant chain cleavage. Dedicated low-molecular-weight inhibitors for cathepsin F have not yet been developed. An active site mapping with 52 dipeptide nitriles, reacting as covalent-reversible inhibitors, was performed to draw structure-activity relationships for the non-primed binding region of human cathepsin F. In a stepwise process, new compounds with optimized fragment combinations were designed and synthesized. These dipeptide nitriles were evaluated on human cysteine cathepsins F, B, L, K and S. Compounds 10 (N-(4-phenylbenzoyl)-leucylglycine nitrile) and 12 (N-(4-phenylbenzoyl)leucylmethionine nitrile) were found to be potent inhibitors of human cathepsin F, with Ki values <10 nM. With all dipeptide nitriles from our study, a 3D activity landscape was generated to visualize structure-activity relationships for this series of cathepsin F inhibitors.
Collapse
Affiliation(s)
- Janina Schmitz
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).,Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg von-Liebig-Straße 20, 53359 Rheinbach (Germany)
| | - Norbert Furtmann
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).,Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstraße 2, 53113 Bonn (Germany)
| | - Moritz Ponert
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Reik Löser
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden (Germany)
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg von-Liebig-Straße 20, 53359 Rheinbach (Germany)
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstraße 2, 53113 Bonn (Germany)
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).
| |
Collapse
|
39
|
Löser R, Pietzsch J. Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes. Front Chem 2015; 3:37. [PMID: 26157794 PMCID: PMC4477214 DOI: 10.3389/fchem.2015.00037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2022] Open
Abstract
Papain-like cysteine proteases bear an enormous potential as drug discovery targets for both infectious and systemic human diseases. The considerable progress in this field over the last two decades has also raised interest in the visualization of these enzymes in their native context, especially with regard to tumor imaging. After a short introduction to structure and general functions of human cysteine cathepsins, we highlight their importance for drug discovery and development and provide a critical update on the current state of knowledge toward their involvement in tumor progression, with a special emphasis on their role in therapy response. In accordance with a radiopharmaceutical point of view, the main focus of this review article will be the discussion of recently developed fluorescence and radiotracer-based imaging agents together with related molecular probes.
Collapse
Affiliation(s)
- Reik Löser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Dresden, Germany ; Department of Chemistry and Food Chemistry, Technische Universität Dresden Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Dresden, Germany ; Department of Chemistry and Food Chemistry, Technische Universität Dresden Dresden, Germany
| |
Collapse
|
40
|
Schmitz J, Beckmann AM, Dudic A, Li T, Sellier R, Bartz U, Gütschow M. 3-Cyano-3-aza-β-amino Acid Derivatives as Inhibitors of Human Cysteine Cathepsins. ACS Med Chem Lett 2014; 5:1076-81. [PMID: 25313316 DOI: 10.1021/ml500238q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Nitrile-type inhibitors are known to interact with cysteine proteases in a covalent-reversible manner. The chemotype of 3-cyano-3-aza-β-amino acid derivatives was designed in which the N-cyano group is centrally arranged in the molecule to allow for interactions with the nonprimed and primed binding regions of the target enzymes. These compounds were evaluated as inhibitors of the human cysteine cathepsins K, S, B, and L. They exhibited slow-binding behavior and were found to be exceptionally potent, in particular toward cathepsin K, with second-order rate constants up to 52 900 × 10(3) M(-1) s(-1).
Collapse
Affiliation(s)
- Janina Schmitz
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
- Department
of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany
| | - Anna-Madeleine Beckmann
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Adela Dudic
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Tianwei Li
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Robert Sellier
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Ulrike Bartz
- Department
of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| |
Collapse
|
41
|
Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Olefin Metathesis Reactions with Fluorinated Substrates, Catalysts, and Solvents. Chem Rev 2014; 115:871-930. [DOI: 10.1021/cr500182a] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Santos Fustero
- Departamento
de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | - Pablo Barrio
- Departamento
de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain
| | - Günter Haufe
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, D-48149 Münster, Germany
| |
Collapse
|
42
|
Yan XS, Wu K, Yuan Y, Zhan Y, Wang JH, Li Z, Jiang YB. β-Turn structure in glycinylphenylalanine dipeptide based N-amidothioureas. Chem Commun (Camb) 2014; 49:8943-5. [PMID: 23964363 DOI: 10.1039/c3cc44336a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transforming the C-terminal amide of a glycinylphenylalanine dipeptide into N-amidothiourea affords a β-turn structure in the formed dipeptide based N-amidothioureas, which can be readily identified by an induced CD signal from the achiral phenylthiourea chromophore.
Collapse
Affiliation(s)
- Xiao-Sheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Analytical Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Frizler M, Yampolsky IV, Baranov MS, Stirnberg M, Gütschow M. Chemical introduction of the green fluorescence: imaging of cysteine cathepsins by an irreversibly locked GFP fluorophore. Org Biomol Chem 2014; 11:5913-21. [PMID: 23912233 DOI: 10.1039/c3ob41341a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An activity-based probe, containing an irreversibly locked GFP-like fluorophore, was synthesized and evaluated as an inhibitor of human cathepsins and, as exemplified with cathepsin K, it proved to be suitable for ex vivo imaging and quantification of cysteine cathepsins by SDS-PAGE.
Collapse
Affiliation(s)
- Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | | | | | | | | |
Collapse
|
44
|
Ge J, Zhang CJ, Li L, Chong LM, Wu X, Hao P, Sze SK, Yao SQ. Small molecule probe suitable for in situ profiling and inhibition of protein disulfide isomerase. ACS Chem Biol 2013; 8:2577-85. [PMID: 24070012 DOI: 10.1021/cb4002602] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper folding of cellular proteins is assisted by protein disulfide isomerases (PDIs) in the endoplasmic reticulum of mammalian cells. Of the at least 21 PDI family members known in humans, the 57-kDa PDI has been found to be a potential therapeutic target for a variety of human diseases including cancer and neurodegenerative diseases. Consequently, small molecule PDI-targeting inhibitors have been actively pursued in recent years, and thus far, compounds possessing moderate inhibitory activities (IC50 between 0.1 and 100 μM against recombinant PDI) have been discovered. In this article, by using in situ proteome profiling experiments in combination with in vitro PDI enzymatic inhibition assays, we have discovered a phenyl vinyl sulfonate-containing small molecule (P1; shown) as a relatively potent and specific inhibitor of endogenous human PDI in several mammalian cancer cells (e.g., GI50 ∼ 4 μM). It also possesses an IC50 value of 1.7 ± 0.4 μM in an in vitro insulin aggregation assay. Our results indicate P1 is indeed a novel, cell-permeable small molecule PDI inhibitor, and the electrophilic vinyl sulfonate scaffold might serve as a starting point for future development of next-generation PDI inhibitors and probes.
Collapse
Affiliation(s)
- Jingyan Ge
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Chong-Jing Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Lin Li
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Li Min Chong
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Xiaoyuan Wu
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Piliang Hao
- School of Biological
Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- School of Biological
Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
45
|
Löser R, Bergmann R, Frizler M, Mosch B, Dombrowski L, Kuchar M, Steinbach J, Gütschow M, Pietzsch J. Synthesis and radiopharmacological characterisation of a fluorine-18-labelled azadipeptide nitrile as a potential PET tracer for in vivo imaging of cysteine cathepsins. ChemMedChem 2013; 8:1330-44. [PMID: 23785011 DOI: 10.1002/cmdc.201300135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Indexed: 12/26/2022]
Abstract
A fluorinated cathepsin inhibitor based on the azadipeptide nitrile chemotype was prepared and selected for positron emission tomography (PET) tracer development owing to its high affinity for the oncologically relevant cathepsins L, S, K and B. Labelling with fluorine-18 was accomplished in an efficient and reliable two-step, one-pot radiosynthesis by using 2-[(18) F]fluoroethylnosylate as a prosthetic agent. The pharmacokinetic properties of the resulting radiotracer compound were studied in vitro, ex vivo and in vivo in normal rats by radiometabolite analysis and small-animal positron emission tomography. These investigations revealed rapid conjugate formation of the tracer with glutathione in the blood, which is associated with slow blood clearance. The potential of the developed (18) F-labelled probe to image tumour-associated cathepsin activity was investigated by dynamic small-animal PET imaging in nude mice bearing tumours derived from the human NCI-H292 lung carcinoma cell line. Computational analysis of the obtained image data indicated the time-dependent accumulation of the radiotracer in the tumours. The expression of the target enzymes in the tumours was confirmed by immunohistochemistry with specific antibodies. This indicates that azadipeptide nitriles have the potential to target thiol-dependent cathepsins in vivo despite their disadvantageous pharmacokinetics.
Collapse
Affiliation(s)
- Reik Löser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ettari R, Tamborini L, Angelo IC, Micale N, Pinto A, De Micheli C, Conti P. Inhibition of Rhodesain as a Novel Therapeutic Modality for Human African Trypanosomiasis. J Med Chem 2013; 56:5637-58. [DOI: 10.1021/jm301424d] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Roberta Ettari
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Ilenia C. Angelo
- Dipartimento di Scienze del
Farmaco e Prodotti per la Salute, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Nicola Micale
- Dipartimento di Scienze del
Farmaco e Prodotti per la Salute, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Andrea Pinto
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Carlo De Micheli
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Paola Conti
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| |
Collapse
|
47
|
Ottersbach PA, Schmitz J, Schnakenburg G, Gütschow M. An access to aza-Freidinger lactams and E-locked analogs. Org Lett 2013; 15:448-51. [PMID: 23320486 DOI: 10.1021/ol3030583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Freidinger lactams, possessing a peptide bond configuration locked to Z, are important key elements of conformationally restricted peptidomimetics. In the present work, the C(α)H(i+1) unit has been replaced by N, leading to novel aza-Freidinger lactams. A synthesis to corresponding building blocks and their E-locked analogs is introduced. The versatile buildings blocks reported here are expected to serve as useful elements in peptide synthesis.
Collapse
Affiliation(s)
- Philipp A Ottersbach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | |
Collapse
|
48
|
Yuan XY, Fu DY, Ren XF, Fang X, Wang L, Zou S, Wu Y. Highly selective aza-nitrile inhibitors for cathepsin K, structural optimization and molecular modeling. Org Biomol Chem 2013; 11:5847-52. [DOI: 10.1039/c3ob41165f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Ren XF, Li HW, Fang X, Wu Y, Wang L, Zou S. Highly selective azadipeptide nitrile inhibitors for cathepsin K: design, synthesis and activity assays. Org Biomol Chem 2013; 11:1143-8. [DOI: 10.1039/c2ob26624e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Frizler M, Mertens MD, Gütschow M. Fluorescent nitrile-based inhibitors of cysteine cathepsins. Bioorg Med Chem Lett 2012; 22:7715-8. [PMID: 23122525 DOI: 10.1016/j.bmcl.2012.09.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 01/18/2023]
Abstract
Cysteine cathepsins play an important role in many (patho)physiological conditions. Among them, cathepsins L, S, K and B are subjects of several drug discovery programs. Besides their role as drug targets, cysteine cathepsins are additionally considered to be possible biomarkers for inflammation and cancer. Herein, we describe the design, synthesis, biological evaluation and spectral properties of fluorescently labeled dipeptide- and azadipeptide nitriles.
Collapse
Affiliation(s)
- Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | |
Collapse
|