1
|
Elsberg JGD, Borowski T, Reinheimer EW, Berreau LM. Anion- and Water-facilitated Oxidative Carbon-Carbon Bond Cleavage and Diketonate Carboxylation in Cu(II) Chlorodiketonate Complexes. Inorganica Chim Acta 2024; 571:122203. [PMID: 39399531 PMCID: PMC11465868 DOI: 10.1016/j.ica.2024.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The O2-dependent carbon-carbon (C-C) bond cleavage reactions of the mononuclear Cu(II) chlorodiketonate complexes [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1-ClO 4 ) and [(bpy)Cu(PhC(O)CClC(O)Ph)(ClO4)] (3-ClO 4 ) have been further examined in terms of their anion and water dependence. The bpy-ligated Cu(II) chlorodiketonate complex 3-ClO 4 is inherently more reactive with O2 than the 6-Ph2TPA-ligated analog 1-ClO 4 . Added chloride is needed to facilitate O2 reactivity for 1-ClO 4 but not for 3-ClO 4 at 25(1) °C. Evaluation of k obs for the reaction of 1-ClO 4 with O2 under pseudo first-order conditions as a function of the amount of added chloride ion produced saturation type behavior. The bpy-ligated 3-ClO 4 exhibits different behavior, with rate enhancement resulting from both the addition of chloride ion and water. Computational studies indicate that the presence of water lowers the barrier for O2 activation for 3-ClO 4 by ~12 kcal/mol whereas changing the anion from perchlorate to chloride has a smaller effect (lowering of the barrier by ~3 kcal/mol). Notably, the effect of water for 3-ClO 4 is of similar magnitude to the barrier-lowering chloride effect found in the O2 activation pathway for 1-ClO 4 . Thus, both systems involve lower energy O2 activation pathways available, albeit resulting from different ligand effects. Probing the effect of added benzoate anion, it was found that the chloro substituent in the diketonate moiety of 1-ClO 4 and 3-ClO 4 will undergo displacement upon treatment of each complex with tetrabutyl ammonium benzoate to give Cu(II) benzoyloxydiketonate complexes (4 and 5). Complexes 4 and 5 exhibit slow O2-dependent C-C cleavage in the presence of added chloride ion. These results are discussed in the context of the chemistry identified for various divalent metal chlorodiketonate complexes, which have relevance to catalytic systems and metalloenzymes that mediate O2-dependent C-C cleavage within diketonate substrates.
Collapse
Affiliation(s)
- Josiah G. D. Elsberg
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow 30-239, Poland
| | - Eric W. Reinheimer
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 USA
| | - Lisa M. Berreau
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300
| |
Collapse
|
2
|
Anderson SN, Elsberg JGD, Berreau LM. Light-induced O 2-dependent aliphatic carbon-carbon (C-C) bond cleavage in bipyridine-ligated Co(II) chlorodiketonate complexes. Dalton Trans 2023; 52:4152-4160. [PMID: 36891768 PMCID: PMC10426287 DOI: 10.1039/d2dt03727k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Mononuclear bipyridine (bpy)-ligated Co(II) chlorodiketonate complexes [(bpy)2Co(R-PhC(O)C(Cl)C(O)R-Ph)]ClO4 (R = -H (8), -CH3 (9), and -OCH3 (10)), were prepared, characterized and investigated for O2-dependent aliphatic C-C bond cleavage reactivity. Complexes 8-10 have a distorted psuedo-octahedral geometry. 1H NMR spectra of 8-10 in CD3CN show signals for the coordinated diketonate moiety, and signals suggesting ligand exchange reactivity leading to the formation of a small amount of [(bpy)3Co](ClO4)2 (11) in solution. While 8-10 are air stable at room temperature, illumination at 350 nm results in oxidative cleavage reactivity within the diketonate moiety leading to the formation of 1,3-diphenylpropanetrione, benzoic acid, benzoic anhydride, and benzil. Illumination of 8 under 18O2 results in a high level of 18O incorporation (>80%) in the benzoate anion. The product mixture, high level of 18O incorporation, and additional mechanistic studies suggest a reaction sequence wherein light-induced reactivity leads to the formation of a triketone intermediate that undergoes either oxidative C-C bond cleavage or benzoyl migration promoted by a bipyridine-ligated Co(II) or Co(III) fragment.
Collapse
Affiliation(s)
- Stephen N Anderson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| | - Josiah G D Elsberg
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
3
|
Yang C, Liu D, Wang T, Sun F, Qiu S, Wu G. Manganese-promoted cleavage of acetylacetonate resembling the β-diketone cleaving dioxygenase (Dke1) reactivity. Chem Commun (Camb) 2021; 57:9462-9465. [PMID: 34528953 DOI: 10.1039/d1cc02774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report a manganese-based oxidative cleavage of inactivated acetylacetonate, the mechanistic pathway of which resembles Dke1-catalyzed reactions of β-diketone and α-keto acid. This oxidative transformation proceeds through an acetylacetonate-pyruvate-oxalate pathway, which can be terminated at the stage of pyruvate through ligand/solvent variation. XRD, time-dependent GC-MS, and isotope-labeling studies suggested that our system represents the same cleaving specificity and dioxygenase-like reactivity of Dke1.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Dingqi Liu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Tongshuai Wang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Gang Wu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
4
|
Banerjee A, Li J, Molenda MA, Opalade AA, Adhikary A, Brennessel WW, Malkhasian AYS, Jackson TA, Chavez FA. Probing the Mechanism for 2,4'-Dihydroxyacetophenone Dioxygenase Using Biomimetic Iron Complexes. Inorg Chem 2021; 60:7168-7179. [PMID: 33900072 DOI: 10.1021/acs.inorgchem.1c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the synthesis and characterization of [Fe(T1Et4iPrIP)(2-OH-AP)(OTf)](OTf) (2), [Fe(T1Et4iPrIP)(2-O-AP)](OTf) (3), and [Fe(T1Et4iPrIP)(DMF)3](OTf)3 (4) (T1Et4iPrIP = tris(1-ethyl-4-isopropyl-imidazolyl)phosphine; 2-OH-AP = 2-hydroxyacetophenone, and 2-O-AP- = monodeprotonated 2-hydroxyacetophenone). Both 2 and 3 serve as model complexes for the enzyme-substrate adduct for the nonheme enzyme 2,4'-dihydroacetophenone (DHAP) dioxygenase or DAD, while 4 serves as a model for the ferric form of DAD. Complexes 2-4 have been characterized by X-ray crystallography which reveals T1Et4iPrIP to bind iron in a tridentate fashion. Complex 2 additionally contains a bidentate 2-OH-AP ligand and a monodentate triflate ligand yielding distorted octahedral geometry, while 3 possesses a bidentate 2-O-AP- ligand and exhibits distorted trigonal bipyramidal geometry (τ = 0.56). Complex 4 displays distorted octahedral geometry with 3 DMF ligands completing the ligand set. The UV-vis spectrum of 2 matches more closely to the DAD-substrate spectrum than 3, and therefore, it is believed that the substrate for DAD is bound in the protonated form. TD-DFT studies indicate that visible absorption bands for 2 and 3 are due to MLCT bands. Complexes 2 and 3 are capable of oxidizing the coordinated substrate mimics in a stoichiometric and catalytic fashion in the presence of O2. Complex 4 does not convert 2-OH-AP to products under the same catalytic conditions; however, it becomes anaerobically reduced in the presence of 2 equiv 2-OH-AP to 2.
Collapse
Affiliation(s)
- Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), P D Patel Institute of Applied Sciences, 388421 Anand, Gujrat, India
| | - Jia Li
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - Monika A Molenda
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - Adedamola A Opalade
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | | | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ferman A Chavez
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| |
Collapse
|
5
|
Sánchez-Eguía BN, Serrano-Plana J, Company A, Costas M. Catalytic O 2 activation with synthetic models of α-ketoglutarate dependent oxygenases. Chem Commun (Camb) 2020; 56:14369-14372. [PMID: 33150337 DOI: 10.1039/d0cc05942k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron complex bearing the facially capping tridentate 1,4,7-triazacyclononane ligand mimics structural and functional features of alpha-ketoglutarate (α-KG) dependent enzymes, and engages in enzyme-like catalytic O2 activation coupled to α-ketoacid decarboxylation, oxygenating sulfides. This system constitutes a rare case of non-enzymatic catalytic O2 activation, cycling between FeII and FeIV(O).
Collapse
Affiliation(s)
- Brenda N Sánchez-Eguía
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona. Facultat de Ciències, Campus de Montilivi, 17003, Girona, Spain.
| | | | | | | |
Collapse
|
6
|
Müller L, Hoof S, Keck M, Herwig C, Limberg C. Enhancing Tris(pyrazolyl)borate-Based Models of Cysteine/Cysteamine Dioxygenases through Steric Effects: Increased Reactivities, Full Product Characterization and Hints to Initial Superoxide Formation. Chemistry 2020; 26:11851-11861. [PMID: 32432367 PMCID: PMC7540079 DOI: 10.1002/chem.202001818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 02/03/2023]
Abstract
The design of biomimetic model complexes for the cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO) is reported, where the 3-His coordination of the iron ion is simulated by three pyrazole donors of a trispyrazolyl borate ligand (Tp) and protected cysteine and cysteamine represent substrate ligands. It is found that the replacement of phenyl groups-attached at the 3-positions of the pyrazole units in a previous model-by mesityl residues has massive consequences, as the latter arrange to a more spacious reaction pocket. Thus, the reaction with O2 proceeds much faster and afterwards the first structural characterization of an iron(II) η2 -O,O-sulfinate product became possible. If one of the three Tp-mesityl groups is placed in the 5-position, an even larger reaction pocket results, which leads to yet faster rates and accumulation of a reaction intermediate at low temperatures, as shown by UV/Vis and Mössbauer spectroscopy. After comparison with the results of investigations on the cobalt analogues this intermediate is tentatively assigned to an iron(III) superoxide species.
Collapse
Affiliation(s)
- Lars Müller
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Santina Hoof
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Matthias Keck
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Herwig
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Christian Limberg
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
7
|
Elsberg JGD, Peterson A, Fuller AL, Berreau LM. N 3-Ligated nickel(ii) diketonate complexes: synthesis, characterization and evaluation of O 2 reactivity. Dalton Trans 2020; 49:7564-7575. [PMID: 32458917 PMCID: PMC7744241 DOI: 10.1039/d0dt01338b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interest in O2-dependent aliphatic carbon-carbon (C-C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O2-dependent aliphatic C-C bond cleavage at ambient temperature in Ni(ii) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl (7-Cl; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni(ii) diketonate complexes of the general formula [(TERPY)Ni(R2-1,3-diketonate)]ClO4 (1: R = CH3; 2: R = C(CH3)3; 3: R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY)2Ni](ClO4)2 (4). Through selective crystallization 1-3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R2-1,3-diketonate)]X (X = ClO4: 5: R = CH3; 6: R = C(CH3)3; 7-ClO4: R = Ph; X = Cl: 7-Cl: R = Ph) using 1H NMR and ESI-MS revealed the presence of [(MBBP)2Ni](ClO4)2 (8). Analysis of aerobic acetonitrile solutions of analytically pure 1-3, 5 and 6 containing NEt3 and in some cases H2O using 1H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes (4 and 8) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3, 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N3-ligated Ni(ii) complexes of unsubstituted diketonate ligands do not exhibit O2-dependent aliphatic C-C bond clevage at room temperature, including in the presence of NEt3 and/or H2O.
Collapse
Affiliation(s)
- Josiah G D Elsberg
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| | - Austin Peterson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| | - Amy L Fuller
- Department of Chemistry, University of Hawaii Manoa, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| |
Collapse
|
8
|
Banerjee S, Paine TK. Bioinspired iron(II)-β-diketonate and iron(II)-α-hydroxy ketone complexes of a carbanionic N3C ligand: Oxidation of metal center vs C C bond cleavage of co-ligand with dioxygen. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Ramasubramanian R, Anandababu K, Mösch-Zanetti NC, Belaj F, Mayilmurugan R. Bioinspired models for an unusual 3-histidine motif of diketone dioxygenase enzyme. Dalton Trans 2019; 48:14326-14336. [PMID: 31486449 DOI: 10.1039/c9dt02518a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioinspired models for contrasting the electronic nature of neutral tris-histidine with the anionic 2-histidine-1-carboxylate facial motif and their subsequent impact on catalysis are reported. Herewith, iron(ii) complexes [Fe(L)(CH3CN)3](SO3CF3)21-3 of tris(2-pyridyl)-based ligands (L) have been synthesized and characterized as accurate structural models for the neutral 3-histidine triad of the enzyme diketone dioxygenase (DKDO). The molecular structure of one of the complexes exhibits octahedral coordination geometry and Fe-N11py bond lengths [1.952(4) to 1.959(4) Å] close to the Fe-NHis bond distances (1.98 Å) of the 3-His triad in the resting state of the enzyme, as obtained by EXAFS studies. The diketonate substrate-adduct complexes [Fe(L)(acacR)](SO3CF3) (R = Me, Ph) of 1-3 have been obtained using Na(acacR) in acetonitrile. The Fe2+/3+ redox potentials of the complexes (1.05 to 1.2 V vs. Fc/Fc+) and their substrate adducts (1.02 to 1.19 V vs. Fc/Fc+) appeared at almost the same redox barrier. All diketonate adducts exhibit two Fe(ii) → acac MLCT bands around 338 to 348 and 430 to 490 nm. Exposure of these adducts to O2 results in the decay of both MLCT bands with a rate of (kO2) 5.37 to 9.41 × 10-3 M-1 s-1. The kO2 values were concomitantly accelerated 20 to 50 fold by the addition of H+ (acetic acid), which nicely models the rate enhancement in the enzyme kinetics by the glutamate residue (Glu98). The oxygenation of the phenyl-substituted adducts yielded benzoin and benzoic acid (40% to 71%) as cleavage products in the presence of H+ ions. Isotope-labeling experiments using 18O2 showed 47% incorporation of 18O in benzoic acid, which reveals that the oxygen originates from dioxygen. Thus, the present model complexes exhibit very similar chemical surroundings to the active site of DKDO and mimic its functions elegantly. On the basis of these results, the C-C bond cleavage reaction mechanism is discussed.
Collapse
Affiliation(s)
- Ramamoorthy Ramasubramanian
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| | | | - Ferdinand Belaj
- Institute of Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625021, India.
| |
Collapse
|
10
|
Lacy DC. Applications of the Marcus cross relation to inner sphere reduction of O 2: implications in small-molecule activation. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00828d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Marcus cross relation is demonstrated to be applicable to inner sphere electron transfer from iron to molecular oxygen by incorporation of the Fe(iii)–O2to Fe(iii) + superoxide BDFE inKeq. A few case-studies are provided as working examples.
Collapse
Affiliation(s)
- David C. Lacy
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
11
|
Ramasubramanian R, Anandababu K, Kumar M, Mayilmurugan R. Nickel(ii) complexes of a 3N ligand as a model for diketone cleaving unusual nickel(ii)-dioxygenase enzymes. Dalton Trans 2018; 47:4049-4053. [PMID: 29488521 DOI: 10.1039/c7dt04739h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diketone substrate bound nickel(ii) complexes of 2,6-bis(1-methylbenzimidazolyl)pyridine have been synthesized and characterized as relevant active site models for unusual diketone cleaving Ni(ii)-dependent enzymes Ni-ARD and DKDO. The average Ni-Npy/benzim bond distances (2.050-2.107 Å) of model complexes are almost identical to the Ni-NHis bond distances of NiII-ARD (2.02-2.19 Å). The reaction of these adducts with dioxygen exhibited C-C cleavage with the rate of kO2, 5.24-73.71 × 10-3 M-1 s-1. The phenyl substituted adduct regioselectively elicits 52% of benzoic acid as the major product.
Collapse
Affiliation(s)
- Ramamoorthy Ramasubramanian
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
| | - Mukesh Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra-400 085, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamilnadu, India.
| |
Collapse
|
12
|
Hoof S, Sallmann M, Herwig C, Braun-Cula B, Limberg C. O 2 activation at a trispyrazolylborato nickel(ii) malonato complex. Dalton Trans 2017; 46:16792-16795. [PMID: 29177352 DOI: 10.1039/c7dt04056c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To support mechanistic inferences made for an iron-based dioxygenase model, a nickel analogue, i.e. a TpNi-malonate (1) was prepared. 1 proved to represent a rare case of a nickel complex reacting with O2 in a controlled manner - mechanistically different from the iron case - and leads to hydroxylation of the malonate.
Collapse
Affiliation(s)
- S Hoof
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - M Sallmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - C Herwig
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - B Braun-Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - C Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
13
|
Häring AP, Biallas P, Kirsch SF. An Unconventional Reaction of 2,2-Diazido Acylacetates with Amines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andreas P. Häring
- Organic Chemistry; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| | - Phillip Biallas
- Organic Chemistry; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| | - Stefan F. Kirsch
- Organic Chemistry; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| |
Collapse
|
14
|
Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. J Biol Inorg Chem 2017; 22:425-452. [DOI: 10.1007/s00775-016-1434-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/27/2016] [Indexed: 11/26/2022]
|
15
|
Rahaman R, Paria S, Paine TK. Aliphatic C–C Bond Cleavage of α-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4′-Dihydroxyacetophenone Dioxygenase. Inorg Chem 2015; 54:10576-86. [PMID: 26536067 DOI: 10.1021/acs.inorgchem.5b01235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rubina Rahaman
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sayantan Paria
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Sallmann M, Limberg C. Utilizing the Trispyrazolyl Borate Ligand for the Mimicking of O2-Activating Mononuclear Nonheme Iron Enzymes. Acc Chem Res 2015; 48:2734-43. [PMID: 26305516 DOI: 10.1021/acs.accounts.5b00148] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear, O2-activating nonheme iron enzymes are a fascinating class of metalloproteines, capable of realizing the most different reactions, ranging from C-H activation, via O atom transfer to C-C bond cleavage, in the course of O2 activation. They can lead us the way to achieve similar reactions with comparable efficiency and selectivity in chemical laboratories, which would be highly desirable aiming at accessing value-added products or to achieve degradation of unwanted compounds. Hence, these enyzmes motivate attempts to construct artificial low-molecular weight analogues, mimicking structural or functional characteristics. Such models can, for instance, provide insights about which of the features inherent to an active site are essential and guarantee the enzyme function, and from this kind of information the minimal requirements for a biomimetic or bioinspired complex that may be applied in catalysis can be derived. On the other hand, they can contribute to an understanding of the enzyme functioning. In order to create such replicates, it is important to faithfully mimic the surroundings of the iron centers in their active sites. Most of them feature two histidine residues and one carboxylate donor, while a few exhibit a deceptively simple (His)3Fe active site. For the simulation of these, the trispyrazolyl borate ligand (Tp) particularly offers itself, as the facial arrangement of three pyrazole donors is reminiscent of the three histidine-derived imidazole donors. The focus of this Account will be on bioinorganic/biomimetic research from our laboratory utilizing Tp ligands to develop molecular models for (i) two representatives of the (His)3Fe-enzyme family, namely, the cysteine dioxygenase (CDO) and acetyl acetone dioxygenase (Dke1), (ii) a related but less well-explored variant of the CDO-the 2-aminoethanethiol dioxygenase-as well as (iii) the 2-His-1-carboxylate representative 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). The CDO catalyzes the dioxygenation of cysteine with O2 to give cysteine sulfinic acid, which could be mimicked at TpFe units in a realistic manner. Furthermore, the successful dioxygenation of 2-aminoethanethiol at the same complex metal fragments lends further support to the hypothesis that the active sites of CDO and the one of 2-aminoethanethiol dioxygenase, whose structure is unknown, are quite similar. Dke1 is capable of cleaving diketones and ketoesters to give the corresponding carboxylic acids and α-keto aldehydes, and Tp-based models have achieved comparable C-C bond cleavage reactions. The ACCO develops ethylene from ACC in the course of oxidation, and recently this has been achieved the first time for a TpFe model, too.
Collapse
Affiliation(s)
- Madleen Sallmann
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
17
|
Sallmann M, Oldenburg F, Braun B, Réglier M, Simaan AJ, Limberg C. Ein funktionelles Strukturmodell für die 1-Aminocyclopropan- 1-carbonsäure-Oxidase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Sallmann M, Oldenburg F, Braun B, Réglier M, Simaan AJ, Limberg C. A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase. Angew Chem Int Ed Engl 2015; 54:12325-8. [PMID: 26190407 DOI: 10.1002/anie.201502529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/22/2015] [Indexed: 11/06/2022]
Abstract
The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene. As a FeOOH species had been suggested as intermediate in the catalytic cycle, H2 O2 was tested as the oxidant, too, and indeed evolution of ethylene proceeded even more rapidly to give 65 % yield.
Collapse
Affiliation(s)
- Madleen Sallmann
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg
| | - Fabio Oldenburg
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg
| | - Beatrice Braun
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg
| | - Marius Réglier
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, (France) http://ism2.univ-amu.fr/pages-bleues/index2.htm
| | - A Jalila Simaan
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, (France) http://ism2.univ-amu.fr/pages-bleues/index2.htm.
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg.
| |
Collapse
|
19
|
Oddon F, Chiba Y, Nakazawa J, Ohta T, Ogura T, Hikichi S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Oddon F, Chiba Y, Nakazawa J, Ohta T, Ogura T, Hikichi S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew Chem Int Ed Engl 2015; 54:7336-9. [DOI: 10.1002/anie.201502367] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/25/2022]
|
21
|
Kopylovich MN, Mahmudov KT, Haukka M, Pombeiro AJL. Metal-free regioselective C–C bond cleavage in 1,3,5-triazine derivatives of β-diketones. NEW J CHEM 2014. [DOI: 10.1039/c3nj01292a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
|
23
|
Regioselective CC bond cleavage in arylhydrazones of 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-diones. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Buongiorno D, Straganz GD. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers. Coord Chem Rev 2013; 257:541-563. [PMID: 24850951 PMCID: PMC4019311 DOI: 10.1016/j.ccr.2012.04.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
Abstract
Mononuclear, non-heme-Fe(II) centers are key structures in O2 metabolism and catalyze an impressive variety of enzymatic reactions. While most are bound via two histidines and a carboxylate, some show a different organization. A short overview of atypically coordinated O2 dependent mononuclear-non-heme-Fe(II) centers is presented here Enzymes with 2-His, 3-His, 3-His-carboxylate and 4-His bound Fe(II) centers are discussed with a focus on their reactivity, metal ion promiscuity and recent progress in the elucidation of their enzymatic mechanisms. Observations concerning these and classically coordinated Fe(II) centers are used to understand the impact of the metal binding motif on catalysis.
Collapse
Key Words
- 1,3-bis(2-pyridylimino)isoindoline, ind
- 2OH-1,3-Ph2PD, 2-hydroxy-1,3-diphenylpropanedione
- 6-Ph2TPA, N,N-bis[(6-phenyl-2-pyridyl)methyl]-N-[(2-pyridyl)-methyl]amine
- ADO, cysteamine dioxygenase
- AO, apocarotenoid 15,15′-oxygenase
- ARD, aci-reductone dioxygenase
- BsQDO, quercetin 2,3-dioxygenase from Bacillus subtilis
- CD, circular dichroism
- CDO, cysteine dioxygenase
- CGDO, 5-chloro-gentisate 1,2-dioxygenase
- CS2, clavaminate synthase
- CarOs, carotenoid oxygenases
- DFT, density functional theory
- Dioxygen activation
- Dioxygenase
- Dke1, diketone dioxygenase
- EPR, electron paramagnetic resonance
- EXAFS, extended X-ray absorption fine structure spectroscopy
- Enzyme catalysis
- Facial triad
- GDO, gentisate 1,2-dioxygenase
- HADO, 3-hydroxyanthranilate 3,4-dioxygenase
- HGDO, homogentisate 1,2-dioxygenase
- HNDO, hydroxy-2-naphthoate dioxygenase
- MCD, magnetic circular dichroism
- MNHEs, mononuclear non-heme-Fe(II) dependent enzymes
- Metal binding motif
- NRP, nonribosomal peptide
- OTf-, trifluormethanesulfonate
- PDB, protein data bank
- QDO, quercetin 2,3-dioxygenase
- SDO, salicylate 1,2-dioxygenase
- Structure–function relationships
- TauD, taurine hydroxylase
- XAS, X-ray absorption spectroscopy
- acac, acetylacetone (2,4-pentanedione)
- fla, flavonolate
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Daniela Buongiorno
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12 A-8010 Graz, Austria
| | - Grit D Straganz
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12 A-8010 Graz, Austria
| |
Collapse
|
25
|
Baum AE, Park H, Wang D, Lindeman SV, Fiedler AT. Structural, spectroscopic, and electrochemical properties of nonheme Fe(II)-hydroquinonate complexes: synthetic models of hydroquinone dioxygenases. Dalton Trans 2012; 41:12244-53. [PMID: 22930005 PMCID: PMC3891569 DOI: 10.1039/c2dt31504a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the tris(3,5-diphenylpyrazol-1-yl)borate ((Ph2)Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) - a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe((Ph2)Tp)(HL(X))] (1X), where HL(X) is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H(2)L(F)) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe(2)((Ph2)Tp)(2)(μ-L(F))(MeCN)]·[2F(MeCN)]. However, addition of one equivalent of "free" pyrazole ((Ph2)pz) ligand provided the mononuclear complex, [Fe((Ph2)Tp)(HL(F))((Ph2)pz)]·[1F((Ph2)pz)], which is stabilized by an intramolecular hydrogen bond between the HL(F) and (Ph2)pz donors. Complex 1F((Ph2)pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, (1)H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and -300 mV (vs. Fc(+/0)), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1X(OX)) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies.
Collapse
Affiliation(s)
- Amanda E. Baum
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Heaweon Park
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | | | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| |
Collapse
|
26
|
Park H, Bittner MM, Baus JS, Lindeman SV, Fiedler AT. Fe(II) complexes that mimic the active site structure of acetylacetone dioxygenase: O2 and NO reactivity. Inorg Chem 2012; 51:10279-89. [PMID: 22974346 PMCID: PMC3965333 DOI: 10.1021/ic3012712] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylacetone dioxygenase (Dke1) is a bacterial enzyme that catalyzes the dioxygen-dependent degradation of β-dicarbonyl compounds. The Dke1 active site contains a nonheme monoiron(II) center facially ligated by three histidine residues (the 3His triad); coordination of the substrate in a bidentate manner provides a five-coordinate site for O(2) binding. Recently, we published the synthesis and characterization of a series of ferrous β-diketonato complexes that faithfully mimic the enzyme-substrate intermediate of Dke1 (Park, H.; Baus, J.S.; Lindeman, S.V.; Fiedler, A.T. Inorg. Chem.2011, 50, 11978-11989). The 3His triad was modeled with three different facially coordinating N3 supporting ligands, and substituted β-diketonates (acac(X)) with varying steric and electronic properties were employed. Here, we describe the reactivity of our Dke1 models toward O(2) and its surrogate nitric oxide (NO), and report the synthesis of three new Fe(II) complexes featuring the anions of dialkyl malonates. Exposure of [Fe((Me2)Tp)(acac(X))] complexes (where (R2)Tp = hydrotris(pyrazol-1-yl)borate with R-groups at the 3- and 5-positions of the pyrazole rings) to O(2) at -70 °C in toluene results in irreversible formation of green chromophores (λ(max) ∼750 nm) that decay at temperatures above -60 °C. Spectroscopic and computational analyses suggest that these intermediates contain a diiron(III) unit bridged by a trans μ-1,2-peroxo ligand. The green chromophore is not observed with analogous complexes featuring (Ph2)Tp and (Ph)TIP ligands (where (Ph)TIP = tris(2-phenylimidazoly-4-yl)phosphine), since the steric bulk of the phenyl substituents prevents formation of dinuclear species. While these complexes are largely inert toward O(2), (Ph2)Tp-based complexes with dialkyl malonate anions exhibit dioxygenase activity and thus serve as functional Dke1 models. The Fe/acac(X) complexes all react readily with NO to yield high-spin (S = 3/2) {FeNO}(7) adducts that were characterized with crystallographic, spectroscopic, and computational methods. Collectively, the results presented here enhance our understanding of the chemical factors involved in the oxidation of aliphatic substrates by nonheme iron dioxygenases.
Collapse
Affiliation(s)
- Heaweon Park
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Michael M. Bittner
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Jacob S. Baus
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
27
|
Paria S, Halder P, Paine TK. Oxidative CarbonCarbon Bond Cleavage of a α-Hydroxy Ketone by a Functional Model of 2,4′-Dihydroxyacetophenone Dioxygenase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201825] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Paria S, Halder P, Paine TK. Oxidative carbon-carbon bond cleavage of a α-hydroxy ketone by a functional model of 2,4'-dihydroxyacetophenone dioxygenase. Angew Chem Int Ed Engl 2012; 51:6195-9. [PMID: 22573498 DOI: 10.1002/anie.201201825] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/13/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Sayantan Paria
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | | | | |
Collapse
|
29
|
Sallmann M, Siewert I, Fohlmeister L, Limberg C, Knispel C. Ein Trispyrazolylborato-Eisen-Cysteinato-Komplex als funktionelles Modell für die Cystein-Dioxygenase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Sallmann M, Siewert I, Fohlmeister L, Limberg C, Knispel C. A trispyrazolylborato iron cysteinato complex as a functional model for the cysteine dioxygenase. Angew Chem Int Ed Engl 2012; 51:2234-7. [PMID: 22287034 DOI: 10.1002/anie.201107345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Madleen Sallmann
- Humboldt-Universität zu Berlin, Institut für Chemie, Berlin, Germany
| | | | | | | | | |
Collapse
|
31
|
Allpress CJ, Arif AM, Houghton DT, Berreau LM. Photochemically Initiated Oxidative Carbon-Carbon Bond-Cleavage Reactivity in Chlorodiketonate NiII Complexes. Chemistry 2011; 17:14962-73. [DOI: 10.1002/chem.201101962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Indexed: 11/09/2022]
|
32
|
Park H, Baus JS, Lindeman SV, Fiedler AT. Synthesis and Characterization of Fe(II) β-Diketonato Complexes with Relevance to Acetylacetone Dioxygenase: Insights into the Electronic Properties of the 3-Histidine Facial Triad. Inorg Chem 2011; 50:11978-89. [DOI: 10.1021/ic201115s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heaweon Park
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Jacob S. Baus
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
33
|
Tietz T, Limberg C, Stösser R, Ziemer B. Four-coordinate trispyrazolylboratomanganese and -iron complexes with a pyrazolato co-ligand: syntheses and properties as oxidation catalysts. Chemistry 2011; 17:10010-20. [PMID: 21744398 DOI: 10.1002/chem.201100343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Indexed: 11/06/2022]
Abstract
A series of complexes of the type [(Tp(R1,R2))M(X)] (Tp = trispyrazolylborato) with R(1)/R(2) combinations Me/tBu, Ph/Me, iPr/iPr, Me/Me and for M = Mn or Fe coordinating [Pz(Me,tBu)](-) (Pz = pyrazolato) or Cl(-) as co-ligand X has been synthesised. Although the chloride complexes were very unreactive and stable in air, the pyrazolato series was far more reactive in contact with oxidants like O(2) and tBuOOH. The [(Tp(R1,R2))M(Pz(Me,tBu))] complexes proved to be active pre-catalysts for the oxidation of cyclohexene with tBuOOH, reaching turnover frequencies (TOFs) ranging between moderate and good in comparison to other manganese catalysts. Cyclohexene-3-one and cyclohexene-3-ol were always found to represent the main products, with cyclohexene oxide occasionally formed as a side product. The ratios of the different oxidation products varied with the reaction conditions: in the case of a peroxide/alkene ratio of 4:1, considerably more ketone than alcohol was obtained and cyclohexene oxide formation was almost negligible, whereas a ratio of 1:10 led to a significant increase of the alcohol proportion and to the formation of at least small amounts of the epoxide. Pre-treatment of the dissolved [(Tp(R1,R2))M(Pz(Me,tBu))] pre-catalysts with O(2) led to product distributions and TOFs that were very similar to those found in the absence of O(2), so that it may be argued that tBuOOH and O(2) both lead to the same active species. The results of EPR spectroscopy and ESI-MS suggest that the initial product of the reaction of [(Tp(Me,Me))Mn(Pz(Me,tBu))] with O(2) contains a Mn(III)(O)(2)Mn(IV) core. Prolonged exposure to O(2) leads to a different dinuclear complex containing three O-bridges and resulting in different TOFs/product distributions. Analogous findings were made for other complexes and formation of these overoxidised products may explain the deviation of the catalytic performances if the reactions are carried out in an O(2) atmosphere.
Collapse
Affiliation(s)
- Thomas Tietz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Berreau LM, Borowski T, Grubel K, Allpress CJ, Wikstrom JP, Germain ME, Rybak-Akimova EV, Tierney DL. Mechanistic studies of the O2-dependent aliphatic carbon-carbon bond cleavage reaction of a nickel enolate complex. Inorg Chem 2011; 50:1047-57. [PMID: 21222442 DOI: 10.1021/ic1017888] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mononuclear nickel(II) enolate complex [(6-Ph(2)TPA)Ni(PhC(O)C(OH)C(O)Ph]ClO(4) (I) was the first reactive model complex for the enzyme/substrate (ES) adduct in nickel(II)-containing acireductone dioxygenases (ARDs) to be reported. In this contribution, the mechanism of its O(2)-dependent aliphatic carbon-carbon bond cleavage reactivity was further investigated. Stopped-flow kinetic studies revealed that the reaction of I with O(2) is second-order overall and is ∼80 times slower at 25 °C than the reaction involving the enolate salt [Me(4)N][PhC(O)C(OH)C(O)Ph]. Computational studies of the reaction of the anion [PhC(O)C(OH)C(O)Ph](-) with O(2) support a hydroperoxide mechanism wherein the first step is a redox process that results in the formation of 1,3-diphenylpropanetrione and HOO(-). Independent experiments indicate that the reaction between 1,3-diphenylpropanetrione and HOO(-) results in oxidative aliphatic carbon-carbon bond cleavage and the formation of benzoic acid, benzoate, and CO:CO(2) (∼12:1). Experiments in the presence of a nickel(II) complex gave a similar product distribution, albeit benzil [PhC(O)C(O)Ph] is also formed, and the CO:CO(2) ratio is ∼1.5:1. The results for the nickel(II)-containing reaction match those found for the reaction of I with O(2) and provide support for a trione/HOO(-) pathway for aliphatic carbon-carbon bond cleavage. Overall, I is a reasonable structural model for the ES adduct formed in the active site of Ni(II)ARD. However, the presence of phenyl appendages at both C(1) and C(3) in the [PhC(O)C(OH)C(O)Ph](-) anion results in a reaction pathway for O(2)-dependent aliphatic carbon-carbon bond cleavage (via a trione intermediate) that differs from that accessible to C(1)-H acireductone species. This study, as the first detailed investigation of the O(2) reactivity of a nickel(II) enolate complex of relevance to Ni(II)ARD, provides insight toward understanding the chemical factors involved in the O(2) reactivity of metal acireductone species.
Collapse
Affiliation(s)
- Lisa M Berreau
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schröder K, Join B, Amali AJ, Junge K, Ribas X, Costas M, Beller M. A Biomimetic Iron Catalyst for the Epoxidation of Olefins with Molecular Oxygen at Room Temperature. Angew Chem Int Ed Engl 2011; 50:1425-9. [PMID: 21290527 DOI: 10.1002/anie.201004623] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Indexed: 11/12/2022]
Affiliation(s)
- Kristin Schröder
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Schröder K, Join B, Amali AJ, Junge K, Ribas X, Costas M, Beller M. Ein biomimetischer Eisenkatalysator für die Epoxidation von Olefinen mit molekularem Sauerstoff bei Raumtemperatur. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004623] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Christian Limberg. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Christian Limberg. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/anie.200906672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
A high-spin Fe(II)/low-spin Fe(III) redox couple featuring the hydro[tris(4-chloro-3,5-dimethyl-pyrazolyl)]borate ligand: Synthesis, spectroscopic and X-ray crystallographic characterization. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
|
41
|
|
42
|
Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii. Biochem J 2009; 418:403-11. [PMID: 18973472 DOI: 10.1042/bj20081161] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
beta-diketone-cleaving enzyme Dke1 is a homotetrameric Fe2+-dependent dioxygenase from Acinetobacter johnsonii. The Dke1protomer adopts a single-domain beta-barrel fold characteristic of the cupin superfamily of proteins and features a mononuclear non-haem Fe2+ centre where a triad of histidine residues, His-62, His-64 and His-104, co-ordinate the catalytic metal. To provide structure-function relationships for the peculiar metal site of Dke1 in relation to the more widespread 2-His-1-Glu/Asp binding site for non-haem Fe2+,we replaced each histidine residue individually with glutamate and asparagine and compared binding of Fe2+ and four non-native catalytically inactive metals with purified apo-forms of wild-type and mutant enzymes. Results from anaerobic equilibrium microdialysis (Fe2+) and fluorescence titration (Fe2+, Cu2+, Ni2+, Mn2+ and Zn2+) experiments revealed the presence of two broadly specific metal-binding sites in native Dke1 that bind Fe2+ with a dissociation constant (Kd) of 5 microM (site I) and approximately 0.3 mM (site II). Each mutation, except for the substitution of asparagine for His-104, disrupted binding of Fe2+, but not that of the other bivalent metal ions, at site I,while leaving metal binding at site II largely unaffected. Dke1 mutants harbouring glutamate substitutions were completely inactive and not functionally complemented by external Fe2+.The Fe2+ catalytic centre activity (kcat) of mutants with asparagine substitution of His-62 and His-104 was decreased 140- and 220-fold respectively, compared with the kcat value of 8.5 s(-1) for the wild-type enzyme in the reaction with pentane-2,4-dione.The H64N mutant was not catalytically competent, except in the presence of external Fe2+ (1 mM) which elicited about 1/1000 of wild-type activity. Therefore co-ordination of Fe2+ by Dke1 requires an uncharged metallocentre, and three histidine ligands are needed for the assembly of a fully functional catalytic site. Oxidative inactivation of Dke1 was shown to involve conversion of enzyme-bound Fe2+ into Fe3+, which is then released from the metal centre.
Collapse
|