1
|
Mandato A, Hasanbasri Z, Saxena S. Double Quantum Coherence ESR at Q-Band Enhances the Sensitivity of Distance Measurements at Submicromolar Concentrations. J Phys Chem Lett 2023; 14:8909-8915. [PMID: 37768093 PMCID: PMC10577775 DOI: 10.1021/acs.jpclett.3c02372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Recently, there have been remarkable improvements in pulsed ESR sensitivity, paving the way for broader applicability of ESR in the measurement of biological distance constraints, for instance, at physiological concentrations and in more complex systems. Nevertheless, submicromolar distance measurements with the commonly used nitroxide spin label take multiple days. Therefore, there remains a need for rapid and reliable methods of measuring distances between spins at nanomolar concentrations. In this work, we demonstrate the power of double quantum coherence (DQC) experiments at Q-band frequencies. With the help of short and intense pulses, we showcase DQC signals on nitroxide-labeled proteins with modulation depths close to 100%. We show that the deep dipolar modulations aid in the resolution of bimodal distance distributions. Finally, we establish that distance measurements with protein concentrations as low as 25 nM are feasible. This limit is approximately 4-fold lower than previously possible. We anticipate that nanomolar concentration measurements will lead to further advancements in the use of ESR, especially in cellular contexts.
Collapse
Affiliation(s)
- Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Casto J, Bogetti X, Hunter HR, Hasanbasri Z, Saxena S. "Store-bought is fine": Sensitivity considerations using shaped pulses for DEER measurements on Cu(II) labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107413. [PMID: 36867974 DOI: 10.1016/j.jmr.2023.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The narrow excitation bandwidth of monochromic pulses is a sensitivity limitation for pulsed dipolar spectroscopy on Cu(II)-based measurements. In response, frequency-swept pulses with large excitation bandwidths have been adopted to probe a greater range of the EPR spectrum. However, much of the work utilizing frequency-swept pulses in Cu(II) distance measurements has been carried out on home-built spectrometers and equipment. Herein, we carry out systematic Cu(II) based distance measurements to demonstrate the capability of chirp pulses on commercial instrumentation. More importantly we delineate sensitivity considerations under acquisition schemes that are necessary for robust distance measurements using Cu(II) labels for proteins. We show that a 200 MHz sweeping bandwidth chirp pulse can improve the sensitivity of long-range distance measurements by factors of three to four. The sensitivity of short-range distances only increases slightly due to special considerations for the chirp pulse duration relative to the period length of the modulated dipolar signal. Enhancements in sensitivity also dramatically reduce measurement collection times enabling rapid collection of orientationally averaged Cu(II) distance measurements in under two hours.
Collapse
Affiliation(s)
- Joshua Casto
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
3
|
Casto J, Mandato A, Saxena S. dHis-troying Barriers: Deuteration Provides a Pathway to Increase Sensitivity and Accessible Distances for Cu 2+ Labels. J Phys Chem Lett 2021; 12:4681-4685. [PMID: 33979151 DOI: 10.1021/acs.jpclett.1c01002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, site-directed Cu2+ labeling has emerged as an incisive biophysical tool to directly report on distance constraints that pertain to the structure, conformational transitions, and dynamics of proteins and nucleic acids. However, short phase memory times inherent to the Cu2+ labels limit measurable distances to 4-5 nm. In this work we systematically examine different methods to dampen electron-nuclear and electron-electron coupled interactions to decrease rapid relaxation. We show that using Cu2+ spin concentrations up to ca. 800 μM has an invariant effect on relaxation and that increasing the cryoprotectant concentration reduces contributions of solvent protons to relaxation. On the other hand, the deuteration of protein and solvent dramatically increases the duration of the dipolar modulated signal by over 6-fold to 32 μs. Based on this increase in signal longevity, distances up to 9 nm and beyond can potentially be measured with Cu2+ labels.
Collapse
Affiliation(s)
- Joshua Casto
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Gamble Jarvi A, Bogetti X, Singewald K, Ghosh S, Saxena S. Going the dHis-tance: Site-Directed Cu 2+ Labeling of Proteins and Nucleic Acids. Acc Chem Res 2021; 54:1481-1491. [PMID: 33476119 DOI: 10.1021/acs.accounts.0c00761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this Account, we showcase site-directed Cu2+ labeling in proteins and DNA, which has opened new avenues for the measurement of the structure and dynamics of biomolecules using electron paramagnetic resonance (EPR) spectroscopy. In proteins, the spin label is assembled in situ from natural amino acid residues and a metal complex and requires no post-expression synthetic modification or purification procedures. The labeling scheme exploits a double histidine (dHis) motif, which utilizes endogenous or site-specifically mutated histidine residues to coordinate a Cu2+ complex. Pulsed EPR measurements on such Cu2+-labeled proteins potentially yield distance distributions that are up to 5 times narrower than the common protein spin label-the approach, thus, overcomes the inherent limitation of the current technology, which relies on a spin label with a highly flexible side chain. This labeling scheme provides a straightforward method that elucidates biophysical information that is costly, complicated, or simply inaccessible by traditional EPR labels. Examples include the direct measurement of protein backbone dynamics at β-sheet sites, which are largely inaccessible through traditional spin labels, and rigid Cu2+-Cu2+ distance measurements that enable higher precision in the analysis of protein conformations, conformational changes, interactions with other biomolecules, and the relative orientations of two labeled protein subunits. Likewise, a Cu2+ label has been developed for use in DNA, which is small, is nucleotide independent, and is positioned within the DNA helix. The placement of the Cu2+ label directly reports on the biologically relevant backbone distance. Additionally, for both of these labeling techniques, we have developed models for interpretation of the EPR distance information, primarily utilizing molecular dynamics (MD) simulations. Initial results using force fields developed for both protein and DNA labels have agreed with experimental results, which has been a major bottleneck for traditional spin labels. Looking ahead, we anticipate new combinations of MD and EPR to further our understanding of protein and DNA conformational changes, as well as working synergistically to investigate protein-DNA interactions.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Ghosh S, Casto J, Bogetti X, Arora C, Wang J, Saxena S. Orientation and dynamics of Cu 2+ based DNA labels from force field parameterized MD elucidates the relationship between EPR distance constraints and DNA backbone distances. Phys Chem Chem Phys 2020; 22:26707-26719. [PMID: 33159779 PMCID: PMC10521111 DOI: 10.1039/d0cp05016d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) based distance measurements using the recently developed Cu2+-DPA label present a promising strategy for measuring DNA backbone distance constraints. Herein we develop force field parameters for Cu2+-DPA in order to understand the features of this label at an atomic level. We perform molecular dynamics (MD) simulations using the force field parameters of Cu2+-DPA on four different DNA duplexes. The distance between the Cu2+ centers, extracted from the 2 μs MD trajectories, agrees well with the experimental distance for all the duplexes. Further analyses of the trajectory provide insight into the orientation of the Cu2+-DPA inside the duplex that leads to such agreement with experiments. The MD results also illustrate the ability of the Cu2+-DPA to report on the DNA backbone distance constraints. Furthermore, measurement of fluctuations of individual residues showed that the flexibility of Cu2+-DPA in a DNA depends on the position of the label in the duplex, and a 2 μs MD simulation is not sufficient to fully capture the experimental distribution in some cases. Finally, the MD trajectories were utilized to understand the key aspects of the double electron electron resonance (DEER) results. The lack of orientational selectivity effects of the Cu2+-DPA at Q-band frequency is rationalized in terms of fluctuations in the Cu2+ coordination environment and rotameric fluctuations of the label linker. Overall, a combination of EPR and MD simulations based on the Cu2+-DPA labelling strategy can contribute towards understanding changes in DNA backbone conformations during protein-DNA interactions.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Gamble Jarvi A, Casto J, Saxena S. Buffer effects on site directed Cu 2+-labeling using the double histidine motif. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106848. [PMID: 33164758 DOI: 10.1016/j.jmr.2020.106848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
The double histidine, or dHis, motif has emerged as a powerful spin labeling tool to determine the conformations and dynamics, subunit orientation, native metal binding site location, and other physical characteristics of proteins by Cu2+-based electron paramagnetic resonance. Here, we investigate the efficacy of this technique in five common buffer systems, and show that buffer choice can impact the loading of Cu2+-NTA into dHis sites, and more generally, the sensitivity of the overall technique. We also present a standardized and optimized examination of labeling of the dHis motif with Cu2+-NTA for EPR based distance measurements. We provide optimal loading procedures, using representative EPR and UV/Vis data for each step in the process. From this data, we find that maximal dHis loading can be achieved in under 30 min with low temperature sample incubation. Using only these optimal procedures, we see up to a 28% increase in fully labeled proteins compared to previously published results in N-ethylmorpholine. Using both this optimized procedure as well as a more optimal buffer, we can achieve up to 80% fully loaded proteins, which corresponds to a 64% increase compared to the prior data. These results provide insight and deeper understanding of the dHis Cu2+-NTA system, the variables that impact its efficacy, and present a method by which these issues may be mitigated for the most efficient labeling.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joshua Casto
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020; 59:23040-23044. [DOI: 10.1002/anie.202009982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
8
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
9
|
Perkal O, Qasem Z, Turgeman M, Schwartz R, Gevorkyan-Airapetov L, Pavlin M, Magistrato A, Major DT, Ruthstein S. Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study. J Phys Chem B 2020; 124:4399-4411. [PMID: 32396355 PMCID: PMC7294806 DOI: 10.1021/acs.jpcb.0c01744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Atox1 is a human
copper metallochaperone that is responsible for
transferring copper ions from the main human copper transporter, hCtr1,
to ATP7A/B in the Golgi apparatus. Atox1 interacts with the Ctr1 C-terminal
domain as a dimer, although it transfers the copper ions to ATP7A/B
in a monomeric form. The copper binding site in the Atox1 dimer involves
Cys12 and Cys15, while Lys60 was also suggested to play a role in
the copper binding. We recently showed that Atox1 can adopt various
conformational states, depending on the interacting protein. In the
current study, we apply EPR experiments together with hybrid quantum
mechanics–molecular mechanics molecular dynamics simulations
using a recently developed semiempirical density functional theory
approach, to better understand the effect of Atox1’s conformational
states on copper coordination. We propose that the flexibility of
Atox1 occurs owing to protonation of one or more of the cysteine residues,
and that Cys15 is an important residue for Atox1 dimerization, while
Cys12 is a critical residue for Cu(I) binding. We also show that Lys60
electrostatically stabilizes the Cu(I)–Atox1 dimer.
Collapse
Affiliation(s)
- Ortal Perkal
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Zena Qasem
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Meital Turgeman
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Matic Pavlin
- CNR-IOM at SISSA, via Bonomea 265, 34135, Trieste, Italy
| | | | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
10
|
Bogetti X, Ghosh S, Gamble Jarvi A, Wang J, Saxena S. Molecular Dynamics Simulations Based on Newly Developed Force Field Parameters for Cu 2+ Spin Labels Provide Insights into Double-Histidine-Based Double Electron-Electron Resonance. J Phys Chem B 2020; 124:2788-2797. [PMID: 32181671 DOI: 10.1021/acs.jpcb.0c00739] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electron paramagnetic resonance (EPR) in combination with the recently developed double-histidine (dHis)-based Cu2+ spin labeling has provided valuable insights into protein structure and conformational dynamics. To relate sparse distance constraints measured by EPR to protein fluctuations in solution, modeling techniques are needed. In this work, we have developed force field parameters for Cu2+-nitrilotriacetic and Cu2+-iminodiacetic acid spin labels. We employed molecular dynamics (MD) simulations to capture the atomic-level details of dHis-labeled protein fluctuations. The interspin distances extracted from 200 ns MD trajectories show good agreement with the experimental results. The MD simulations also illustrate the dramatic rigidity of the Cu2+ labels compared to the standard nitroxide spin label. Further, the relative orientations between spin-labeled sites were measured to provide insight into the use of double electron-electron resonance (DEER) methods for such labels. The relative mean angles, as well as the standard deviations of the relative angles, agree well in general with the spectral simulations published previously. The fluctuations of relative orientations help rationalize why orientation selectivity effects are minimal at X-band frequencies, but observable at the Q-band for such labels. In summary, the results show that by combining the experimental results with MD simulations precise information about protein conformations as well as flexibility can be obtained.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Sameach H, Ruthstein S. EPR Distance Measurements as a Tool to Characterize Protein‐DNA Interactions. Isr J Chem 2019. [DOI: 10.1002/ijch.201900091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hila Sameach
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| |
Collapse
|
12
|
Gamble Jarvi A, Cunningham TF, Saxena S. Efficient localization of a native metal ion within a protein by Cu2+-based EPR distance measurements. Phys Chem Chem Phys 2019; 21:10238-10243. [DOI: 10.1039/c8cp07143h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A native paramagnetic metal binding site in a protein is located with less than 2 Å resolution by a combination of double histidine (dHis) based Cu2+ labeling and long range distance measurements by EPR.
Collapse
Affiliation(s)
| | | | - Sunil Saxena
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
13
|
Sameach H, Narunsky A, Azoulay-Ginsburg S, Gevorkyan-Aiapetov L, Zehavi Y, Moskovitz Y, Juven-Gershon T, Ben-Tal N, Ruthstein S. Structural and Dynamics Characterization of the MerR Family Metalloregulator CueR in its Repression and Activation States. Structure 2017; 25:988-996.e3. [PMID: 28578875 DOI: 10.1016/j.str.2017.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
CueR (Cu export regulator) is a metalloregulator protein that "senses" Cu(I) ions with very high affinity, thereby stimulating DNA binding and the transcription activation of two other metalloregulator proteins. The crystal structures of CueR when unbound or bound to DNA and a metal ion are very similar to each other, and the role of CueR and Cu(I) in initiating the transcription has not been fully understood yet. Using double electron-electron resonance (DEER) measurements and structure modeling, we investigate the conformational changes that CueR undergoes upon binding Cu(I) and DNA in solution. We observe three distinct conformations, corresponding to apo-CueR, DNA-bound CueR in the absence of Cu(I) (the "repression" state), and CueR-Cu(I)-DNA (the "activation" state). We propose a detailed structural mechanism underlying CueR's regulation of the transcription process. The mechanism explicitly shows the dependence of CueR activity on copper, thereby revealing the important negative feedback mechanism essential for regulating the intracellular copper concentration.
Collapse
Affiliation(s)
- Hila Sameach
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Aya Narunsky
- Department of Biochemistry and Molecular Biochemistry, George S. Wise Faculty of Life sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Salome Azoulay-Ginsburg
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Lada Gevorkyan-Aiapetov
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yonathan Zehavi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yoni Moskovitz
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biochemistry, George S. Wise Faculty of Life sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Sharon Ruthstein
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
14
|
Levy AR, Turgeman M, Gevorkyan-Aiapetov L, Ruthstein S. The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations. Protein Sci 2017; 26:1609-1618. [PMID: 28543811 DOI: 10.1002/pro.3197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/15/2017] [Indexed: 01/20/2023]
Abstract
Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X-ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site-directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.
Collapse
Affiliation(s)
- Ariel R Levy
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Meital Turgeman
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Lada Gevorkyan-Aiapetov
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
15
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J. Lawless
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Jessica L. Sarver
- Division of Biological, Chemical, and Environmental Sciences; Westminster College; 319 S Market St. New Wilmington PA 16172 USA
| | - Sunil Saxena
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
16
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:2115-2117. [PMID: 28090713 DOI: 10.1002/anie.201611197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/14/2016] [Indexed: 01/05/2023]
Abstract
A site-specific Cu2+ binding motif within a DNA duplex for distance measurements by ESR spectroscopy is reported. This motif utilizes a commercially available 2,2'-dipicolylamine (DPA) phosphormadite easily incorporated into any DNA oligonucleotide during initial DNA synthesis. The method only requires the simple post-synthetic addition of Cu2+ without the need for further chemical modification. Notably, the label is positioned within the DNA duplex, as opposed to outside the helical perimeter, for an accurate measurement of duplex distance. A distance of 2.7 nm was measured on a doubly Cu2+ -labeled DNA sequence, which is in exact agreement with the expected distance from both DNA modeling and molecular dynamic simulations. This result suggests that with this labeling strategy the ESR measured distance directly reports on backbone DNA distance, without the need for further modeling. Furthermore, the labeling strategy is structure- and nucleotide-independent.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica L Sarver
- Division of Biological, Chemical, and Environmental Sciences, Westminster College, 319 S Market St., New Wilmington, PA, 16172, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
17
|
Levy AR, Nissim M, Mendelman N, Chill J, Ruthstein S. Ctr1 Intracellular Loop Is Involved in the Copper Transfer Mechanism to the Atox1 Metallochaperone. J Phys Chem B 2016; 120:12334-12345. [PMID: 27934216 DOI: 10.1021/acs.jpcb.6b10222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding the human copper cycle is essential to understand the role of metals in promoting neurological diseases and disorders. One of the cycles controlling the cellular concentration and distribution of copper involves the copper transporter, Ctr1; the metallochaperone, Atox1; and the ATP7B transporter. It has been shown that the C-terminus of Ctr1, specifically the last three amino acids, HCH, is involved in both copper coordination and the transfer mechanism to Atox1. In contrast, the role of the intracellular loop of Ctr1, which is an additional intracellular segment of Ctr1, in facilitating the copper transfer mechanism has not been investigated yet. Here, we combine various biophysical methods to explore the interaction between this Ctr1 segment and metallochaperone Atox1 and clearly demonstrate that the Ctr1 intracellular loop (1) can coordinate Cu(I) via interactions with the side chains of one histidine and two methionine residues and (2) closely interacts with the Atox1 metallochaperone. Our findings are another important step in elucidating the mechanistic details of the eukaryotic copper cycle.
Collapse
Affiliation(s)
- Ariel R Levy
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Matan Nissim
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Netanel Mendelman
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Jordan Chill
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
18
|
Cunningham TF, Pornsuwan S, Horne WS, Saxena S. Rotameric preferences of a protein spin label at edge-strand β-sheet sites. Protein Sci 2016; 25:1049-60. [PMID: 26948069 DOI: 10.1002/pro.2918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/20/2022]
Abstract
Protein spin labeling to yield the nitroxide-based R1 side chain is a powerful method to measure protein dynamics and structure by electron spin resonance. However, R1 measurements are complicated by the flexibility of the side chain. While analysis approaches for solvent-exposed α-helical environment have been developed to partially account for flexibility, similar work in β-sheets is lacking. The goal of this study is to provide the first essential steps for understanding the conformational preferences of R1 within edge β-strands using X-ray crystallography and double electron electron resonance (DEER) distance measurements. Crystal structures yielded seven rotamers for a non-hydrogen-bonded site and three rotamers for a hydrogen-bonded site. The observed rotamers indicate contextual differences in R1 conformational preferences compared to other solvent-exposed environments. For the DEER measurements, each strand site was paired with the same α-helical site elsewhere on the protein. The most probable distance observed by DEER is rationalized based on the rotamers observed in the crystal structure. Additionally, the appropriateness of common molecular modeling methods that account for R1 conformational preferences are assessed for the β-sheet environment. These results show that interpretation of R1 behavior in β-sheets is difficult and indicate further development is needed for these computational methods to correctly relate DEER distances to protein structure at edge β-strand sites.
Collapse
Affiliation(s)
- Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| | - Soraya Pornsuwan
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
19
|
Ruthstein S, Ji M, Shin BK, Saxena S. A simple double quantum coherence ESR sequence that minimizes nuclear modulations in Cu(2+)-ion based distance measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:45-50. [PMID: 26057636 DOI: 10.1016/j.jmr.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Double quantum coherence (DQC) ESR is a sensitive method to measure magnetic dipolar interactions between spin labels. However, the DQC experiment on Cu(2+) centers presents a challenge at X-band. The Cu(2+) centers are usually coordinated to histidine residues in proteins. The electron-nuclear interaction between the Cu(2+) ion and the remote nitrogen in the imidazole ring can interfere with the electron-electron dipolar interaction. Herein, we report on a modified DQC experiment that has the advantage of reduced contributions from electron-nuclear interactions, which enhances the resolution of the DQC signal to the electron-electron dipolar modulations. The modified pulse-sequence is verified on Cu(2+)-NO system in a polyalanine-based peptide and on a coupled Cu(2+) system in a polyproline-based peptide. The modified DQC data were compared with the DEER data and good agreement was found.
Collapse
Affiliation(s)
- Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Byong-Kyu Shin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
20
|
Levy AR, Yarmiayev V, Moskovitz Y, Ruthstein S. Probing the structural flexibility of the human copper metallochaperone Atox1 dimer and its interaction with the CTR1 c-terminal domain. J Phys Chem B 2014; 118:5832-42. [PMID: 24837030 DOI: 10.1021/jp412589b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Both the essentiality and the toxicity of copper in human, yeast, and bacteria cells require precise mechanisms for acquisition, intimately linked to controlled distribution, which have yet to be fully understood. This work explores one aspect in the copper cycle, by probing the interaction between the human copper chaperone Atox1 and the c-terminal domain of the copper transporter, CTR1, using electron paramagnetic resonance (EPR) spectroscopy and circular dichroism (CD). The data collected here shows that the Atox1 keeps its dimer nature also in the presence of the CTR1 c-terminal domain; however, two geometrical states are assumed by the Atox1. One is similar to the geometrical state reported by the crystal structure, while the latter has not yet been constructed. In the presence of the CTR1 c-terminal domain, both states are assumed; however, the structure of Atox1 is more restricted in the presence of the CTR1 c-terminal domain. This study also shows that the last three amino acids of the CTR1 c-terminal domain, HCH, are important for maintaining the crystal structure of the Atox1, allowing less structural flexibility and improved thermal stability of Atox1.
Collapse
Affiliation(s)
- Ariel R Levy
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan, Israel , 5290002
| | | | | | | |
Collapse
|
21
|
Ji M, Ruthstein S, Saxena S. Paramagnetic metal ions in pulsed ESR distance distribution measurements. Acc Chem Res 2014; 47:688-95. [PMID: 24289139 DOI: 10.1021/ar400245z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of pulsed electron spin resonance (ESR) to measure interspin distance distributions has advanced biophysical research. The three major techniques that use pulsed ESR are relaxation rate based distance measurements, double quantum coherence (DQC), and double electron electron resonance (DEER). Among these methods, the DEER technique has become particularly popular largely because it is easy to implement on commercial instruments and because programs are available to analyze experimental data. Researchers have widely used DEER to measure the structure and conformational dynamics of molecules labeled with the methanethiosulfonate spin label (MTSSL). Recently, researchers have exploited endogenously bound paramagnetic metal ions as spin probes as a way to determine structural constraints in metalloproteins. In this context Cu(2+) has served as a useful paramagnetic metal probe at X-band for DEER based distance measurements. Sample preparation is simple, and a coordinated-Cu(2+) ion offers limited spatial flexibility, making it an attractive probe for DEER experiments. On the other hand, Cu(2+) has a broad absorption ESR spectrum at low temperature, which leads to two potential complications. First, the Cu(2+)-based DEER time domain data has lower signal to noise ratio compared with MTSSL. Second, accurate distance distribution analysis often requires high-quality experimental data at different external magnetic fields or with different frequency offsets. In this Account, we summarize characteristics of Cu(2+)-based DEER distance distribution measurements and data analysis methods. We highlight a novel application of such measurements in a protein-DNA complex to identify the metal ion binding site and to elucidate its chemical mechanism of function. We also survey the progress of research on other metal ions in high frequency DEER experiments.
Collapse
Affiliation(s)
- Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
22
|
Sapienza PJ, Niu T, Kurpiewski MR, Grigorescu A, Jen-Jacobson L. Thermodynamic and structural basis for relaxation of specificity in protein-DNA recognition. J Mol Biol 2014; 426:84-104. [PMID: 24041571 PMCID: PMC3928799 DOI: 10.1016/j.jmb.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/26/2022]
Abstract
As a novel approach to the structural and functional properties that give rise to extremely stringent sequence specificity in protein-DNA interactions, we have exploited "promiscuous" mutants of EcoRI endonuclease to study the detailed mechanism by which changes in a protein can relax specificity. The A138T promiscuous mutant protein binds more tightly to the cognate GAATTC site than does wild-type EcoRI yet displays relaxed specificity deriving from tighter binding and faster cleavage at EcoRI* sites (one incorrect base pair). AAATTC EcoRI* sites are cleaved by A138T up to 170-fold faster than by wild-type enzyme if the site is abutted by a 5'-purine-pyrimidine (5'-RY) motif. When wild-type protein binds to an EcoRI* site, it forms structurally adapted complexes with thermodynamic parameters of binding that differ markedly from those of specific complexes. By contrast, we show that A138T complexes with 5'-RY-flanked AAATTC sites are virtually indistinguishable from wild-type-specific complexes with respect to the heat capacity change upon binding (∆C°P), the change in excluded macromolecular volume upon association, and contacts to the phosphate backbone. While the preference for the 5'-RY motif implicates contacts to flanking bases as important for relaxed specificity, local effects are not sufficient to explain the large differences in ∆C°P and excluded volume, as these parameters report on global features of the complex. Our findings therefore support the view that specificity does not derive from the additive effects of individual interactions but rather from a set of cooperative events that are uniquely associated with specific recognition.
Collapse
Affiliation(s)
- Paul J Sapienza
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tianyi Niu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael R Kurpiewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Arabela Grigorescu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
23
|
Ruthstein S, Ji M, Mehta P, Jen-Jacobson L, Saxena S. Sensitive Cu2+-Cu2+ distance measurements in a protein-DNA complex by double-quantum coherence ESR. J Phys Chem B 2013; 117:6227-30. [PMID: 23631829 DOI: 10.1021/jp4037149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double quantum coherence (DQC) ESR spectroscopy is applied to measure the Cu(2+)-Cu(2+) distance in the EcoRI-DNA complex. A simple method is proposed to reduce the contribution of nuclear hyperfine and quadrupole interactions to such data. The effects of such interactions between the electron spin of Cu(2+) and neighboring nuclei on the DQC data make it difficult to measure the nanometer range interspin distance. The DQC data is in good agreement with results obtained by double electron electron resonance (DEER) spectroscopy. At the same time, the signal-to-noise ratio per shot in DQC is high. Taken together, these results provide impetus for further development of paramagnetic metal ion-based DQC techniques.
Collapse
Affiliation(s)
- Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
24
|
Yang Z, Liu Y, Borbat P, Zweier JL, Freed JH, Hubbell WL. Pulsed ESR dipolar spectroscopy for distance measurements in immobilized spin labeled proteins in liquid solution. J Am Chem Soc 2012; 134:9950-2. [PMID: 22676043 PMCID: PMC3409244 DOI: 10.1021/ja303791p] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pulsed electron spin resonance (ESR) dipolar spectroscopy (PDS) in combination with site-directed spin labeling is unique in providing nanometer-range distances and distributions in biological systems. To date, most of the pulsed ESR techniques require frozen solutions at cryogenic temperatures to reduce the rapid electron spin relaxation rate and to prevent averaging of electron-electron dipolar interaction due to the rapid molecular tumbling. To enable measurements in liquid solution, we are exploring a triarylmethyl (TAM)-based spin label with a relatively long relaxation time where the protein is immobilized by attachment to a solid support. In this preliminary study, TAM radicals were attached via disulfide linkages to substituted cysteine residues at positions 65 and 80 or 65 and 76 in T4 lysozyme immobilized on Sepharose. Interspin distances determined using double quantum coherence (DQC) in solution are close to those expected from models, and the narrow distance distribution in each case indicates that the TAM-based spin label is relatively localized.
Collapse
Affiliation(s)
- Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
25
|
ESR spectroscopy identifies inhibitory Cu2+ sites in a DNA-modifying enzyme to reveal determinants of catalytic specificity. Proc Natl Acad Sci U S A 2012; 109:E993-1000. [PMID: 22493217 DOI: 10.1073/pnas.1200733109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between DNA sequence recognition and catalytic specificity in a DNA-modifying enzyme was explored using paramagnetic Cu(2+) ions as probes for ESR spectroscopic and biochemical studies. Electron spin echo envelope modulation spectroscopy establishes that Cu(2+) coordinates to histidine residues in the EcoRI endonuclease homodimer bound to its specific DNA recognition site. The coordinated His residues were identified by a unique use of Cu(2+)-ion based long-range distance constraints. Double electron-electron resonance data yield Cu(2+)-Cu(2+) and Cu(2+)-nitroxide distances that are uniquely consistent with one Cu(2+) bound to His114 in each subunit. Isothermal titration calorimetry confirms that two Cu(2+) ions bind per complex. Unexpectedly, Mg(2+)-catalyzed DNA cleavage by EcoRI is profoundly inhibited by Cu(2+) binding at these hitherto unknown sites, 13 Å away from the Mg(2+) positions in the catalytic centers. Molecular dynamics simulations suggest a model for inhibition of catalysis, whereby the Cu(2+) ions alter critical protein-DNA interactions and water molecule positions in the catalytic sites. In the absence of Cu(2+), the Mg(2+)-dependence of EcoRI catalysis shows positive cooperativity, which would enhance EcoRI inactivation of foreign DNA by irreparable double-strand cuts, in preference to readily repaired single-strand nicks. Nonlinear Poisson-Boltzmann calculations suggest that this cooperativity arises because the binding of Mg(2+) in one catalytic site makes the surface electrostatic potential in the distal catalytic site more negative, thus enhancing binding of the second Mg(2+). Taken together, our results shed light on the structural and electrostatic factors that affect site-specific catalysis by this class of endonucleases.
Collapse
|
26
|
Yang Z, Kise D, Saxena S. An Approach towards the Measurement of Nanometer Range Distances Based on Cu2+ Ions and ESR. J Phys Chem B 2010; 114:6165-74. [DOI: 10.1021/jp911637s] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongyu Yang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Drew Kise
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
27
|
Dylla-Spears R, Townsend JE, Sohn LL, Jen-Jacobson L, Muller SJ. Fluorescent marker for direct detection of specific dsDNA sequences. Anal Chem 2010; 81:10049-54. [PMID: 19908852 DOI: 10.1021/ac9019895] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have created a fluorescent marker using a mutant EcoRI restriction endonuclease (K249C) that enables prolonged, direct visualization of specific sequences on genomic lengths of double-stranded (ds) DNA. The marker consists of a biotinylated enzyme, attached through the biotin-avidin interaction to a fluorescent nanosphere. Control over biotin position with respect to the enzyme's binding pocket is achieved by biotinylating the mutant EcoRI at the mutation site. Biotinylated enzyme is incubated with dsDNA and NeutrAvidin-coated, fluorescent nanospheres under conditions that allow enzyme binding but prevent cleavage. Marker-laden DNA is then fluorescently stained and stretched on polylysine-coated glass slides so that the positions of the bound markers along individual DNA molecules can be measured. We demonstrate the marker's ability to bind specifically to its target sequence using both bulk gel-shift assays and single-molecule methods.
Collapse
Affiliation(s)
- Rebecca Dylla-Spears
- Department of Chemical Engineering, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
28
|
Blackburn ME, Veloro AM, Fanucci GE. Monitoring inhibitor-induced conformational population shifts in HIV-1 protease by pulsed EPR spectroscopy. Biochemistry 2009; 48:8765-7. [PMID: 19691291 DOI: 10.1021/bi901201q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Double electron-electron resonance (DEER), a pulsed electron paramagnetic resonance (EPR) spectroscopy technique, was utilized to characterize conformational population shifts in HIV-1 protease (HIV-1PR) upon interaction with various inhibitors. Distances between spin-labeled sites in the flap region of HIV-1PR were determined, and detailed analyses provide population percentages for the ensemble flap conformations upon interaction with inhibitor or substrate. Comparisons are made between the percentage of the closed conformer seen with DEER and enzymatic inhibition constants, thermodynamic dissociation constants, and the number of hydrogen bonds identified in crystallographic complexes.
Collapse
Affiliation(s)
- Mandy E Blackburn
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | |
Collapse
|