1
|
Dayanara NL, Froelich J, Roome P, Perrin DM. Chemoselective, regioselective, and positionally selective fluorogenic stapling of unprotected peptides for cellular uptake and direct cell imaging. Chem Sci 2025; 16:584-595. [PMID: 39620082 PMCID: PMC11605703 DOI: 10.1039/d4sc04839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Peptide stapling reactions represent powerful methods for structuring native α-helices to improve their bioactivity in targeting protein-protein interactions (PPIs). In light of a growing need for regio- and positionally selective stapling methods involving natural amino acid residues in their unprotected states, we report a rapid, mild, and highly chemoselective three-component stapling reation using a class of molecular linchpins based on 2-arylketobenzaldehydes (ArKBCHOs) that create a fluorescent staple, hereafter referred to as a Fluorescent Isoindole Crosslink (FlICk). This methodology offers positional selectivity favouring i, i + 4 helical staples comprising a lysine and cysteine, in the presence of competing nucleophiles on unprotected peptides. In our efforts to further validate this chemistry, we have successfully shown in vitro cytotoxicity of a FlICk-ed peptide (IC50 = 5.10 ± 1.27 μM), equipotent to an olefin-stapled congener. In harnessing the innate fluorescence of the thiol-isoindole, we report new blue-green fluorophores, which arise as a consequence of stapling, with appreciable quantum yields that enable direct cellular imaging in the assessment of cell permeability, thus bridging therapeutic potential with cytological probe development.
Collapse
Affiliation(s)
- Naysilla L Dayanara
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Juliette Froelich
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Pascale Roome
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| |
Collapse
|
2
|
Guan Q, Xing S, Wang L, Zhu J, Guo C, Xu C, Zhao Q, Wu Y, Chen Y, Sun H. Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application. J Med Chem 2024; 67:7788-7824. [PMID: 38699796 DOI: 10.1021/acs.jmedchem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Triazole demonstrates distinctive physicochemical properties, characterized by weak basicity, various dipole moments, and significant dual hydrogen bond acceptor and donor capabilities. These features are poised to play a pivotal role in drug-target interactions. The inherent polarity of triazole contributes to its lower logP, suggesting the potential improvement in water solubility. The metabolic stability of triazole adds additional value to drug discovery. Moreover, the metal-binding capacity of the nitrogen atom lone pair electrons of triazole has broad applications in the development of metal chelators and antifungal agents. This Perspective aims to underscore the unique physicochemical attributes of triazole and its application. A comparative analysis involving triazole isomers and other heterocycles provides guiding insights for the subsequent design of triazoles, with the hope of offering valuable considerations for designing other heterocycles in medicinal chemistry.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
3
|
Todorovic M, Blanc A, Wang Z, Lozada J, Froelich J, Zeisler J, Zhang C, Merkens H, Benard F, Perrin DM. 5-Hydroxypyrroloindoline Affords Tryptathionine and 2,2'-bis-Indole Peptide Staples: Application to Melanotan-II. Chemistry 2024; 30:e202304270. [PMID: 38285527 DOI: 10.1002/chem.202304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Antoine Blanc
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Zhou Wang
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jerome Lozada
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Juliette Froelich
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| |
Collapse
|
4
|
Araszczuk AM, D'Amato A, Schettini R, Costabile C, Della Sala G, Pierri G, Tedesco C, De Riccardis F, Izzo I. Macrocyclic Triazolopeptoids: A Promising Class of Extended Cyclic Peptoids. Org Lett 2022; 24:7752-7756. [PMID: 36223077 DOI: 10.1021/acs.orglett.2c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Head-to-tail cyclization of linear oligoamides containing 4-benzylaminomethyl-1H-1,2,3-triazol-1-yl acetic acid monomers afforded a novel class of "extended macrocyclic peptoids". The identification of the conformation in solution for a cyclodimer and the X-ray crystal structure of a cyclic tetraamide are reported.
Collapse
Affiliation(s)
- Alicja M Araszczuk
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Chiara Costabile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Giorgio Della Sala
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Irene Izzo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| |
Collapse
|
5
|
Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem Rev 2021; 121:13936-13995. [PMID: 33938738 PMCID: PMC8824434 DOI: 10.1021/acs.chemrev.0c01291] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/19/2023]
Abstract
This Review focuses on the establishment and development of self-assemblies governed by the supramolecular interactions between cyclic peptides. The Review first describes the type of cyclic peptides able to assemble into tubular structures to form supramolecular cyclic peptide nanotubes. A range of cyclic peptides have been identified to have such properties, including α-peptides, β-peptides, α,γ-peptides, and peptides based on δ- and ε-amino acids. The Review covers the design and functionalization of these cyclic peptides and expands to a recent advance in the design and application of these materials through their conjugation to polymer chains to generate cyclic peptide-polymer conjugates nanostructures. The Review, then, concentrates on the challenges in characterizing these systems and presents an overview of the various analytical and characterization techniques used to date. This overview concludes with a critical survey of the various applications of the nanomaterials obtained from supramolecular cyclic peptide nanotubes, with a focus on biological and medical applications, ranging from ion channels and membrane insertion to antibacterial materials, anticancer drug delivery, gene delivery, and antiviral applications.
Collapse
Affiliation(s)
- Qiao Song
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Zihe Cheng
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Maria Kariuki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Sophie K. Hill
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julia Y. Rho
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
So WH, Bao Y, Chen X, Xia J. On-Resin Ugi Reaction for C-Terminally Modified and Head-to-Tail Cyclized Antibacterial Peptides. Org Lett 2021; 23:8277-8281. [PMID: 34623168 DOI: 10.1021/acs.orglett.1c03014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a method to synthesize C-terminally modified peptides on resin. A four-component Ugi reaction of isocyanide resin, an Fmoc-protected amino acid, an amine, and a 6-nitroveratrylaldehyde gives C-terminal photocaged peptide amides, which can be photolyzed to generate C-terminal peptide amides. Changing the amine component in the Ugi reaction gives peptides with different C-terminal modifications including substituted anilides, alkyne, and azide. By installing an N-terminal azide and C-terminal alkyne, we synthesized a head-to-tail cyclized antibacterial peptide through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The cyclized peptide exhibited higher proteolytic stability and antibacterial activity than the linear peptide.
Collapse
Affiliation(s)
- Wing Ho So
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Chen
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Agouram N, El Hadrami EM, Bentama A. 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules 2021; 26:2937. [PMID: 34069302 PMCID: PMC8156386 DOI: 10.3390/molecules26102937] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.
Collapse
Affiliation(s)
- Naima Agouram
- Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco; (E.M.E.H.); (A.B.)
| | | | | |
Collapse
|
9
|
Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 2020; 49:2039-2059. [PMID: 32142086 DOI: 10.1039/c9cs00366e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne-azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C-H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.
Collapse
Affiliation(s)
- Daniel G Rivera
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Gerardo M Ojeda-Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
10
|
Rečnik LM, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. Molecules 2020; 25:E3576. [PMID: 32781656 PMCID: PMC7465391 DOI: 10.3390/molecules25163576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Thomas L. Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Virelli M, Wang W, Kuniyil R, Wu J, Zanoni G, Fernandez A, Scott J, Vendrell M, Ackermann L. BODIPY‐Labeled Cyclobutanes by Secondary C(sp
3
)−H Arylations for Live‐Cell Imaging. Chemistry 2019; 25:12712-12718. [DOI: 10.1002/chem.201903461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Matteo Virelli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 27100 Pavia Italy
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Giuseppe Zanoni
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 27100 Pavia Italy
| | - Antonio Fernandez
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Jamie Scott
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Department of ChemistryUniversity of Pavia Viale Taramelli 10 27100 Pavia Italy
- German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|
13
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
14
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User-friendly Stapling Reaction. Angew Chem Int Ed Engl 2019; 58:14120-14124. [PMID: 31211905 DOI: 10.1002/anie.201906514] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/14/2022]
Abstract
The stabilization of peptide secondary structure via stapling is a ubiquitous goal for creating new probes, imaging agents, and drugs. Inspired by indole-derived crosslinks found in natural peptide toxins, we employed ortho-phthalaldehydes to create isoindole staples, thus transforming inactive linear and monocyclic precursors into bioactive monocyclic and bicyclic products. Mild, metal-free conditions give an array of macrocyclic α-melanocyte-stimulating hormone (α-MSH) derivatives, of which several isoindole-stapled α-MSH analogues (Ki ≈1 nm) are found to be as potent as α-MSH. Analogously, late-stage intra-annular isoindole stapling furnished a bicyclic peptide mimic of α-amanitin that is cytotoxic to CHO cells (IC50 =70 μm). Given its user-friendliness, we have termed this approach FlICk (fluorescent isoindole crosslink) chemistry.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Katerina D Schwab
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Jutta Zeisler
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| |
Collapse
|
15
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
16
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User‐friendly Stapling Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| | | | - Jutta Zeisler
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - David M. Perrin
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| |
Collapse
|
17
|
Schröder DC, Kracker O, Fröhr T, Góra J, Jewginski M, Nieß A, Antes I, Latajka R, Marion A, Sewald N. 1,4-Disubstituted 1 H-1,2,3-Triazole Containing Peptidotriazolamers: A New Class of Peptidomimetics With Interesting Foldamer Properties. Front Chem 2019; 7:155. [PMID: 30972322 PMCID: PMC6443886 DOI: 10.3389/fchem.2019.00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 12/25/2022] Open
Abstract
Peptidotriazolamers are hybrid foldamers with features of peptides and triazolamers, containing alternation of amide bonds and 1,4-disubstituted 1H-1,2,3-triazoles with conservation of the amino acid side chains. We report on the synthesis of a new class of peptidomimetics, containing 1,4-disubstituted 1H-1,2,3-triazoles in alternation with amide bonds and the elucidation of their conformational properties in solution. Based on enantiomerically pure propargylamines bearing the stereogenic center in the propargylic position and α-azido esters, building blocks were obtained by copper-catalyzed azide-alkyne cycloaddition. With these building blocks the peptidotriazolamers were readily available by solution phase synthesis. A panel of homo- and heterochiral tetramers, hexamers, and heptamers was synthesized and the heptamer Boc-Ala-Val-Ψ[4Tz]Phe-LeuΨ[4Tz]Phe-LeuΨ[4Tz]Val-OAll as well as an heterochiral and a Gly-containing equivalent were structurally characterized by NMR-based molecular dynamics simulations using a specifically tailored force field to determine their conformational and solvation properties. All three variants adopt a compact folded conformation in DMSO as well as in water. In addition to the heptamers we predicted the conformational behavior of similar longer oligomers i.e., Boc-Ala-(AlaΨ[4Tz]Ala)6-OAll as well as Boc-Ala-(d-AlaΨ[4Tz]Ala)6-OAll and Boc-Ala-(GlyΨ[4Tz]Ala)6-OAll. Our calculations predict a clear secondary structure of the first two molecules in DMSO that collapses in water due to the hydrophobic character of the side chains. The homochiral compound folds into a regular helical structure and the heterochiral one shows a twisted “S”-shape, while the Gly variant exhibits no clear secondary structure.
Collapse
Affiliation(s)
- David C Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Oliver Kracker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tanja Fröhr
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Jerzy Góra
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.,Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Michał Jewginski
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Anke Nieß
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Iris Antes
- Center for Integrated Protein Science, TUM School of Life Sciences, TU Munich, Freising, Germany
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Antoine Marion
- Center for Integrated Protein Science, TUM School of Life Sciences, TU Munich, Freising, Germany.,Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
18
|
Ben Haj Salah K, Das S, Ruiz N, Andreu V, Martinez J, Wenger E, Amblard M, Didierjean C, Legrand B, Inguimbert N. How are 1,2,3-triazoles accommodated in helical secondary structures? Org Biomol Chem 2019; 16:3576-3583. [PMID: 29693098 DOI: 10.1039/c8ob00686e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1,4-Disubstituted-1,2,3-triazole (Tz) is widely used in peptides as a trans-amide bond mimic, despite having hazardous effects on the native peptide activity. The impact of amide bond substitution by Tz on peptide secondary structures is scarcely documented. We performed a Tz scan, by systematically replacing peptide bonds following the Aib residues with Tz on two model peptaibols: alamethicin F50/5 and bergofungin D, which adopt stable α- and 310 helices, respectively. We observed that the Tz insertion, whatever its position in the peptide sequences, abolished their antimicrobial activity. The structural consequences of this insertion were further investigated using CD, NMR and X-ray diffraction. Importantly, five crystal structures that were incorporated with Tz were solved, showing various degrees of alteration of the helical structures, from minor structural perturbation of the helix to partial disorder. Together, these results showed that Tz insertions impair helical secondary structures.
Collapse
Affiliation(s)
- Khoubaib Ben Haj Salah
- USR 3278 CRIOBE, PSL Research University, EPHE-UPVD-CNRS, Université de Perpignan Via Domitia, Laboratoire d'Excellence «CORAIL». Bâtiment T, 58 avenue P. Alduy, 66860 Perpignan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hamdan F, Tahoori F, Balalaie S. Synthesis of novel cyclopeptides containing heterocyclic skeletons. RSC Adv 2018; 8:33893-33926. [PMID: 35548835 PMCID: PMC9086729 DOI: 10.1039/c8ra03899f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/14/2018] [Indexed: 01/13/2023] Open
Abstract
Cyclopeptides can be considered as naturally biologically active compounds. Over the last several decades, many attempts have been made to synthesize complex naturally occurring cyclopeptides, and great progress has been achieved to advance the field of total synthesis. Moreover, cyclopeptides containing heterocyclic skeletons have been recently developed into powerful reactions and approaches. This review aims to highlight recent advances in the synthesis of cyclopeptides containing heterocyclic skeletons such as triazole, oxazole, thiazole, and tetrazole.
Collapse
Affiliation(s)
- Fatima Hamdan
- Peptide Chemistry Research Center, K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Fatemeh Tahoori
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
20
|
Kaldas SJ, Yudin AK. Achieving Skeletal Diversity in Peptide Macrocycles through The Use of Heterocyclic Grafts. Chemistry 2018; 24:7074-7082. [DOI: 10.1002/chem.201705418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
21
|
Bauer M, Wang W, Lorion MM, Dong C, Ackermann L. Internal Peptide Late-Stage Diversification: Peptide-Isosteric Triazoles for Primary and Secondary C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2017; 57:203-207. [PMID: 29135064 DOI: 10.1002/anie.201710136] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/11/2017] [Indexed: 12/16/2022]
Abstract
Secondary C(sp3 )-H arylations were accomplished by palladium catalysis with triazoles as peptide bond isosteres. The unique power of this approach is highlighted by the possibility of achieving secondary C(sp3 )-H functionalizations on terminal peptides as well as the unprecedented positional-selective C(sp3 )-H functionalization of internal peptide positions, setting the stage for modular peptide late-stage diversification.
Collapse
Affiliation(s)
- Michaela Bauer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077, Göttingen, Germany
| | - Wei Wang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077, Göttingen, Germany
| | - Mélanie M Lorion
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077, Göttingen, Germany
| | - Chuan Dong
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
22
|
Internal Peptide Late-Stage Diversification: Peptide-Isosteric Triazoles for Primary and Secondary C(sp3
)−H Activation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Chino M, Leone L, Maglio O, D'Alonzo D, Pirro F, Pavone V, Nastri F, Lombardi A. A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Linda Leone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Ornella Maglio
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
- IBB-National Research Council; Via Mezzocannone 16 80134 Napoli Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Fabio Pirro
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Flavia Nastri
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Angela Lombardi
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| |
Collapse
|
24
|
Cameron AJ, Squire CJ, Edwards PJB, Harjes E, Sarojini V. Crystal and NMR Structures of a Peptidomimetic β-Turn That Provides Facile Synthesis of 13-Membered Cyclic Tetrapeptides. Chem Asian J 2017; 12:3195-3202. [PMID: 29098772 DOI: 10.1002/asia.201701422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution.
Collapse
Affiliation(s)
- Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Elena Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
25
|
Chino M, Leone L, Maglio O, D'Alonzo D, Pirro F, Pavone V, Nastri F, Lombardi A. A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation. Angew Chem Int Ed Engl 2017; 56:15580-15583. [DOI: 10.1002/anie.201707637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Linda Leone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Ornella Maglio
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
- IBB-National Research Council; Via Mezzocannone 16 80134 Napoli Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Fabio Pirro
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Flavia Nastri
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Angela Lombardi
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| |
Collapse
|
26
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|
27
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
28
|
Weiss C, Figueras E, Borbely AN, Sewald N. Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. J Pept Sci 2017; 23:514-531. [PMID: 28661555 DOI: 10.1002/psc.3015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Cryptophycins are a class of 16-membered highly cytotoxic macrocyclic depsipeptides isolated from cyanobacteria. The biological activity is based on their ability to interact with tubulin. They interfere with microtubule dynamics and prevent microtubules from forming correct mitotic spindles, which causes cell-cycle arrest and apoptosis. Their strong antiproliferative activities with 100-fold to 1000-fold potency compared with those of paclitaxel and vinblastine have been observed. Cryptophycins are highly promising drug candidates, as their biological activity is not negatively affected by P-glycoprotein, a drug efflux system commonly found in multidrug-resistant cancer cell lines and solid tumors. Cryptophycin-52 had been investigated in phase II clinical trials but failed because of its high neurotoxicity. Recently, cryptophycin conjugates with peptides and antibodies have been developed for targeted delivery in tumor therapy. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine Weiss
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Adina N Borbely
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
29
|
Frost JR, Scully CCG, Yudin AK. Oxadiazole grafts in peptide macrocycles. Nat Chem 2016; 8:1105-1111. [PMID: 27874866 DOI: 10.1038/nchem.2636] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/05/2016] [Indexed: 02/08/2023]
Abstract
Synthetic methods that provide control over macrocycle conformation and, at the same time, mitigate the polarity of peptide bonds represent valuable tools for the discovery of new bioactive molecules. Here, we report a macrocyclization reaction between a linear peptide, an aldehyde and (N-isocyanimino)triphenylphosphorane. This process generates head-to-tail cyclic peptidomimetics in a single step. This method is tolerant to variation in the peptide and aldehyde components and has been applied for the synthesis of 15-, 18-, 21- and 24-membered rings. The resulting peptide macrocycles feature a 1,3,4-oxadiazole and a tertiary amine in their scaffolds. This non-canonical backbone region acts as an endocyclic control element that promotes and stabilizes a unique intramolecular hydrogen-bond network and can lead to macrocycles with conformationally rigid turn structures. Oxadiazole-containing macrocycles can also display a high passive membrane permeability, an important property for the development of bioavailable peptide-based therapeutics.
Collapse
Affiliation(s)
- John R Frost
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Conor C G Scully
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
30
|
Chino M, Leone L, Maglio O, Lombardi A. Designing Covalently Linked Heterodimeric Four-Helix Bundles. Methods Enzymol 2016; 580:471-99. [PMID: 27586346 DOI: 10.1016/bs.mie.2016.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
De novo design has proven a powerful methodology for understanding protein folding and function, and for mimicking or even bettering the properties of natural proteins. Extensive progress has been made in the design of helical bundles, simple structural motifs that can be nowadays designed with a high degree of precision. Among helical bundles, the four-helix bundle is widespread in nature, and is involved in numerous and fundamental processes. Representative examples are the carboxylate bridged diiron proteins, which perform a variety of different functions, ranging from reversible dioxygen binding to catalysis of dioxygen-dependent reactions, including epoxidation, desaturation, monohydroxylation, and radical formation. The "Due Ferri" (two-irons; DF) family of proteins is the result of a de novo design approach, aimed to reproduce in minimal four-helix bundle models the properties of the more complex natural diiron proteins, and to address how the amino acid sequence modulates their functions. The results so far obtained point out that asymmetric metal environments are essential to reprogram functions, and to achieve the specificity and selectivity of the natural enzymes. Here, we describe a design method that allows constructing asymmetric four-helix bundles through the covalent heterodimerization of two different α-helical harpins. In particular, starting from the homodimeric DF3 structure, we developed a protocol for covalently linking the two α2 monomers by using the Cu(I) catalyzed azide-alkyne cycloaddition. The protocol was then generalized, in order to include the construction of several linkers, in different protein positions. Our method is fast, low cost, and in principle can be applied to any couple of peptides/proteins we desire to link.
Collapse
Affiliation(s)
- M Chino
- University of Napoli Federico II, Napoli, Italy
| | - L Leone
- University of Napoli Federico II, Napoli, Italy
| | - O Maglio
- University of Napoli Federico II, Napoli, Italy; Institute of Biostructures and Bioimages-IBB, CNR, Napoli, Italy
| | - A Lombardi
- University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
31
|
Xin D, Burgess K. Anthranilic acid-containing cyclic tetrapeptides: at the crossroads of conformational rigidity and synthetic accessibility. Org Biomol Chem 2016; 14:5049-58. [PMID: 27173439 PMCID: PMC4916954 DOI: 10.1039/c6ob00693k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Each amino acid in a peptide contributes three atom units to main-chains, hence natural cyclic peptides can be 9, 12, 15, …. i.e. 3n membered-rings, where n is the number of amino acids. Cyclic peptides that are 9 or 12-membered ring compounds tend to be hard to prepare because of strain, while their one amino acid homologs (15-membered cyclic pentapeptides) are not conformationally homogeneous unless constrained by strategically placed proline or d-amino acid residues. We hypothesized that replacing one genetically encoded amino acid in a cyclic tetrapeptide with a rigid β-amino acid would render peptidomimetic designs that rest at a useful crossroads between synthetic accessibility and conformational rigidity. Thus this research explored non-proline containing 13-membered ring peptides 1 featuring one anthranilic acid (Anth) residue. Twelve cyclic peptides of this type were prepared, and in doing so the viability of both solution- and solid-phase methods was demonstrated. The library produced contained a complete set of four diastereoisomers of the sequence 1aaf (i.e. cyclo-AlaAlaPheAnth). Without exception, these four diastereoisomers each adopted one predominant conformation in solution; basically these conformations feature amide N-H vectors puckering above and below the equatorial plane, and approximately oriented their N-H[combining low line] atoms towards the polar axis. Moreover, the shapes of these conformers varied in a logical and predictable way (NOE, temperature coefficient, D/H exchange, circular dichroism). Comparisons were made of the side-chain orientations presented by compounds 1aaa in solution with ideal secondary structures and protein-protein interaction interfaces. Various 1aaa stereoisomers in solution present side-chains in similar orientations to regular and inverse γ-turns, and to the most common β-turns (types I and II). Consistent with this, compounds 1aaa have a tendency to mimic various turns and bends at protein-protein interfaces. Finally, proteolytic- and hydrolytic stabilities of the compounds at different pHs indicate they are robust relative to related linear peptides, and rates of permeability through an artificial membrane indicate their structures are conducive to cell permeability.
Collapse
Affiliation(s)
- Dongyue Xin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | | |
Collapse
|
32
|
N-Boc-aminals as easily accessible precursors for less accessible N-Boc-imines: facile synthesis of optically active propargylamine derivatives using Mannich-type reactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Wang ZA, Ding XZ, Tian CL, Zheng JS. Protein/peptide secondary structural mimics: design, characterization, and modulation of protein–protein interactions. RSC Adv 2016. [DOI: 10.1039/c6ra13976k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review discusses general aspects of novel artificial peptide secondary structure mimics for modulation of PPIs, their therapeutic applications and future prospects.
Collapse
Affiliation(s)
- Zhipeng A. Wang
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
- China
- Department of Chemistry
| | - Xiaozhe Z. Ding
- School of Life Sciences
- Tsinghua University
- Beijing 100084
- China
- Department of Bioengineering
| | - Chang-Lin Tian
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
- China
| | - Ji-Shen Zheng
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|
34
|
Bartoloni M, Jin X, Marcaida MJ, Banha J, Dibonaventura I, Bongoni S, Bartho K, Gräbner O, Sefkow M, Darbre T, Reymond JL. Bridged bicyclic peptides as potential drug scaffolds: synthesis, structure, protein binding and stability. Chem Sci 2015; 6:5473-5490. [PMID: 29861888 PMCID: PMC5949603 DOI: 10.1039/c5sc01699a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/12/2015] [Indexed: 12/28/2022] Open
Abstract
Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of β-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.
Collapse
Affiliation(s)
- Marco Bartoloni
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Xian Jin
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Maria José Marcaida
- School of Life Sciences , Ecole Polytechnique de Lausanne , 1015 Lausanne , Switzerland
| | - João Banha
- caprotec bioanalytics GmbH , Berlin , Germany
| | - Ivan Dibonaventura
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Swathi Bongoni
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | | | | | | | - Tamis Darbre
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| |
Collapse
|
35
|
Jordan S, Starks SA, Whatley MF, Turlington M. Highly Stereoselective Synthesis of Terminal Chloro-Substituted Propargylamines and Further Functionalization. Org Lett 2015; 17:4842-5. [DOI: 10.1021/acs.orglett.5b02408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Savannah Jordan
- Department of Chemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Samuel A. Starks
- Department of Chemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Michael F. Whatley
- Department of Chemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Mark Turlington
- Department of Chemistry, Berry College, Mount Berry, Georgia 30149, United States
| |
Collapse
|
36
|
Valverde IE, Vomstein S, Fischer CA, Mascarin A, Mindt TL. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy. J Med Chem 2015; 58:7475-84. [DOI: 10.1021/acs.jmedchem.5b00994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ibai E. Valverde
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Christiane A. Fischer
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Alba Mascarin
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Thomas L. Mindt
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| |
Collapse
|
37
|
Salvador CEM, Pieber B, Neu PM, Torvisco A, Kleber Z Andrade C, Kappe CO. A sequential Ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids. J Org Chem 2015; 80:4590-602. [PMID: 25842982 DOI: 10.1021/acs.joc.5b00445] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a continuous flow multistep strategy for the synthesis of linear peptoids and their subsequent macrocyclization via Click chemistry is described. The central transformation of this process is an Ugi four-component reaction generating the peptidomimetic core structure. In order to avoid exposure to the often toxic and malodorous isocyanide building blocks, the continuous approach was telescoped by the dehydration of the corresponding formamide. In a concurrent operation, the highly energetic azide moiety required for the subsequent intramolecular copper-catalyzed azide-alkyne cycloaddition (Click reaction) was installed by nucleophilic substitution from a bromide precursor. All steps yielding to the linear core structures can be conveniently coupled without the need for purification steps resulting in a single process generating the desired peptidomimetics in good to excellent yields within a 25 min reaction time. The following macrocyclization was realized in a coil reactor made of copper without any additional additive. A careful process intensification study demonstrated that this transformation occurs quantitatively within 25 min at 140 °C. Depending on the resulting ring strain, either a dimeric or a monomeric form of the cyclic product was obtained.
Collapse
Affiliation(s)
- Carlos Eduardo M Salvador
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,‡Laboratório de Química Metodológica e Orgânica Sintética, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, C.P. 4478, 70904-970, Brasília-DF, Brazil
| | - Bartholomäus Pieber
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Philipp M Neu
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Ana Torvisco
- §Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Carlos Kleber Z Andrade
- ‡Laboratório de Química Metodológica e Orgânica Sintética, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, C.P. 4478, 70904-970, Brasília-DF, Brazil
| | - C Oliver Kappe
- †Institute of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
38
|
Xu L, Li Y, Li Y. Application of “Click” Chemistry to the Construction of Supramolecular Functional Systems. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201300245] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Kumar S, Thornton PD, Santini C. Diversity by divergence: Solution-phase parallel synthesis of a library of N-diversified 1-oxa-7-azaspiro[4.5]decan-2-yl-propanes and -butanes. ACS COMBINATORIAL SCIENCE 2013; 15:564-71. [PMID: 24079459 DOI: 10.1021/co4001056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a 162-member compound library derived from a single precursor via a multistage divergence strategy is described. Divergence is sequentially introduced in three ways: (1) by early preparation of two separable spirocyclic diastereomers, (2) by elaboration of each spirocyclic diastereomer to a different scaffold using four Horner-Emmons-Wadsworth reagents, and (3) by employing three different modes of nitrogen diversification with each scaffold to afford the final compounds. This 2 diastereomers × 4 reagents × 3 modes of diversification strategy leads to 24 unique synthetic pathways that ultimately afforded, in parallel format, the 162-compound set.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Center for Chemical Methodologies
and Library Development, The University of Kansas, 2034 Becker
Drive, Lawrence, Kansas 66047, United States
| | - Paul D. Thornton
- Center for Chemical Methodologies
and Library Development, The University of Kansas, 2034 Becker
Drive, Lawrence, Kansas 66047, United States
| | - Conrad Santini
- Center for Chemical Methodologies
and Library Development, The University of Kansas, 2034 Becker
Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
40
|
Peptide conjugation via CuAAC 'click' chemistry. Molecules 2013; 18:13148-74. [PMID: 24284482 PMCID: PMC6270195 DOI: 10.3390/molecules181113148] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/14/2023] Open
Abstract
The copper (I)-catalyzed alkyne azide 1,3-dipolar cycloaddition (CuAAC) or ‘click’ reaction, is a highly versatile reaction that can be performed under a variety of reaction conditions including various solvents, a wide pH and temperature range, and using different copper sources, with or without additional ligands or reducing agents. This reaction is highly selective and can be performed in the presence of other functional moieties. The flexibility and selectivity has resulted in growing interest in the application of CuAAC in various fields. In this review, we briefly describe the importance of the structural folding of peptides and proteins and how the 1,4-disubstituted triazole product of the CuAAC reaction is a suitable isoster for an amide bond. However the major focus of the review is the application of this reaction to produce peptide conjugates for tagging and targeting purpose, linkers for multifunctional biomacromolecules, and reporter ions for peptide and protein analysis.
Collapse
|
41
|
Li H, Aneja R, Chaiken I. Click chemistry in peptide-based drug design. Molecules 2013; 18:9797-817. [PMID: 23959192 PMCID: PMC4155329 DOI: 10.3390/molecules18089797] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms.
Collapse
Affiliation(s)
- Huiyuan Li
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, 245 N 15th Street, New College Building, Room 11102, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
42
|
Systematic replacement of amides by 1,4-disubstituted[1,2,3]triazoles in Leu-enkephalin and the impact on the delta opioid receptor activity. Bioorg Med Chem Lett 2013; 23:5267-9. [PMID: 23988352 DOI: 10.1016/j.bmcl.2013.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 12/28/2022]
Abstract
Using Cu(I)-catalyzed azide-alkyne cycloaddition in a mixed classical organic phase and solid phase peptide synthesis approach, we synthesized four analogs of Leu-enkephalin to systematically replace amides by 1,4-disubstituted[1,2,3]triazoles. The peptidomimetics obtained were characterized by competitive binding, contractility assays and ERK1/2 phosphorylation. The present study reveals that the analog bearing a triazole between Phe and Leu retains some potency, more than all the others, suggesting that the hydrogen bond acceptor capacity of the last amide of Leu-enkephalin is essential for the biological activity of the peptide.
Collapse
|
43
|
Wong CTT, Lam HY, Song T, Chen G, Li X. Synthesis of Constrained Head-to-Tail Cyclic Tetrapeptides by an Imine-Induced Ring-Closing/Contraction Strategy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Wong CTT, Lam HY, Song T, Chen G, Li X. Synthesis of constrained head-to-tail cyclic tetrapeptides by an imine-induced ring-closing/contraction strategy. Angew Chem Int Ed Engl 2013; 52:10212-5. [PMID: 23934633 DOI: 10.1002/anie.201304773] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Clarence T T Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P.R. China)
| | | | | | | | | |
Collapse
|
45
|
Caumes C, Fernandes C, Roy O, Hjelmgaard T, Wenger E, Didierjean C, Taillefumier C, Faure S. Cyclic α,β-tetrapeptoids: sequence-dependent cyclization and conformational preference. Org Lett 2013; 15:3626-9. [PMID: 23806006 DOI: 10.1021/ol401478j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The presence of at least one N-Cα branched side chain is crucial for successful cyclization of α,β-tetrapeptoids. The ctct amide sequence revealed in the crystal structure of the 14-membered cyclotetrapeptoid 8 is also the most populated conformation in solution and is reminiscent of the predominant amide arrangement of the 12-membered cyclic tetrapeptides (CTPs).
Collapse
Affiliation(s)
- Cécile Caumes
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
47
|
Lesma G, Cecchi R, Cagnotto A, Gobbi M, Meneghetti F, Musolino M, Sacchetti A, Silvani A. Tetrahydro-β-carboline-based spirocyclic lactam as type II' β-turn: application to the synthesis and biological evaluation of somatostatine mimetics. J Org Chem 2013; 78:2600-10. [PMID: 23409740 DOI: 10.1021/jo302737j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The synthesis of novel spirocyclic lactams, embodying D-tryptophan (Trp) amino acid as the central core and acting as peptidomimetics, is presented. It relies on the strategic combination of Seebach's self-reproduction of chirality chemistry and Pictet-Spengler condensation as key steps. Investigation of the conformational behavior by molecular modeling, X-ray crystallography, and NMR and IR spectroscopies suggests very stable and highly predictable type II' β-turn conformations for all compounds. Relying on this feature, we also pursued their application to two potential mimetics of the hormone somatostatin, a pharmaceutically relevant natural peptide, which contains a Trp-based type II' β-turn pharmacophore.
Collapse
Affiliation(s)
- Giordano Lesma
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sokolova NV, Nenajdenko VG. Recent advances in the Cu(i)-catalyzed azide–alkyne cycloaddition: focus on functionally substituted azides and alkynes. RSC Adv 2013. [DOI: 10.1039/c3ra42482k] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
49
|
Olsen CA, Montero A, Leman LJ, Ghadiri MR. Macrocyclic peptoid-Peptide hybrids as inhibitors of class I histone deacetylases. ACS Med Chem Lett 2012; 3:749-53. [PMID: 24900543 DOI: 10.1021/ml300162r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/07/2012] [Indexed: 01/04/2023] Open
Abstract
We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC6 in cultured Jurkat cells. Compared to the natural product apicidin (1), one inhibitor (compound 10) showed equivalent potency against K-562 cells, but was more cytoselective across a panel of cancer cell lines.
Collapse
Affiliation(s)
- Christian A. Olsen
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| | - Ana Montero
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| | - Luke J. Leman
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| | - M. Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| |
Collapse
|
50
|
Das Adhikary N, Chattopadhyay P. Design and Synthesis of 1,2,3-Triazole-Fused Chiral Medium-Ring Benzo-Heterocycles, Scaffolds Mimicking Benzolactams. J Org Chem 2012; 77:5399-405. [DOI: 10.1021/jo3004327] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nirmal Das Adhikary
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata
700032, India
| | - Partha Chattopadhyay
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata
700032, India
| |
Collapse
|