1
|
Gupta N, Sharma PK, Yadav SS, Chauhan M, Datusalia AK, Saha S. Tricompartmental Microcarriers with Controlled Release for Efficient Management of Parkinson's Disease. ACS Biomater Sci Eng 2024; 10:5039-5056. [PMID: 38978474 DOI: 10.1021/acsbiomaterials.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's is a progressive neurodegenerative disease of the nervous system. It has no cure, but its symptoms can be managed by supplying dopamine artificially to the brain.This work aims to engineer tricompartmental polymeric microcarriers by electrohydrodynamic cojetting technique to encapsulate three PD (Parkinson's disease) drugs incorporated with high encapsulation efficiency (∼100%) in a single carrier at a fixed drug ratio of 4:1:8 (Levodopa (LD): Carbidopa(CD): Entacapone (ENT)). Upon oral administration, the drug ratio needs to be maintained during subsequent release from microparticles to enhance the bioavailability of primary drug LD. This presents a notable challenge, as the three drugs vary in their aqueous solubility (LD > CD > ENT). The equilibrium of therapeutic release was achieved using a combination of FDA-approved polymers (PLA, PLGA, PCL, and PEG) and the disc shape of particles. In vitro studies demonstrated the simultaneous release of all the three therapeutics in a sustained and controlled manner. Additionally, pharmacodynamics and pharmacokinetics studies in Parkinson's disease rats induced by rotenone showed a remarkable improvement in PD conditions for the microparticles-fed rats, thereby showing a great promise toward efficient management of PD.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pankaj Kumar Sharma
- Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar S3, New Delhi 110017, India
| | - Shreyash Santosh Yadav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Meenakshi Chauhan
- Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar S3, New Delhi 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
| |
Collapse
|
2
|
Robin B, Mousnier L, Lê H, Grabowski N, Chapron D, Bellance-Mina O, Huang N, Agnely F, Fattal E, Tsapis N. PLA-PEG forming worm-like nanoparticles despite unfavorable packing parameter: Formation mechanism, thermal stability and potential for cell internalization. Int J Pharm 2023; 643:123263. [PMID: 37482230 DOI: 10.1016/j.ijpharm.2023.123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Most nanoparticles produced for drug delivery purposes are spherical. However, the literature suggests that elongated particles are advantageous, notably in terms of cellular uptake. Thus, we synthesized biocompatible polylactide-b-poly(ethylene glycol) (PLA-PEG) polymers bearing carboxylate moieties, and used them to formulate worm-like nanoparticles by a simple emulsion-evaporation process. Worm-like nanoparticles with variable aspect ratio were obtained by simply adjusting the molar mass of the PLA block: the shorter the molar mass of the PLA block, the more elongated the particles. As PLA molar mass decreased from 80,000 g/mol to 13,000 g/mol, the proportion of worm-like nanoparticles increased from 0 to 46%, in contradiction with the usual behavior of block polymers based on their packing parameter. To explain this unusual phenomenon, we hypothesized the shape arises from a combination of steric and electrostatic repulsions between PEG chains bearing a carboxylate moiety present at the dichloromethane-water interface during the evaporation process. Worm-like particles turned out to be unstable when incubated at 37 °C, above polymer glass transition temperature. Indeed, above Tg, a Plateau-Rayleigh instability occurs, leading to the division of the worm-like particles into spheres. However, this instability was slow enough to assess worm-like particles uptake by murine macrophages. A slight but significant increase of internalization was observed for worm-like particles, compared to their spherical counterparts, confirming the interest of developing biocompatible anisotropic nanoparticles for pharmaceutical applications such as drug delivery.
Collapse
Affiliation(s)
- Baptiste Robin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Ludivine Mousnier
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Hung Lê
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Nadège Grabowski
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - David Chapron
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | | | - Nicolas Huang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Florence Agnely
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
3
|
Kargari Aghmiouni D, Khoee S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate-Drug Interaction Properties. Pharmaceutics 2023; 15:1214. [PMID: 37111700 PMCID: PMC10142803 DOI: 10.3390/pharmaceutics15041214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
By utilizing nanoparticles to upload and interact with several pharmaceuticals in varying methods, the primary obstacles associated with loading two or more medications or cargos with different characteristics may be addressed. Therefore, it is feasible to evaluate the benefits provided by co-delivery systems utilizing nanoparticles by investigating the properties and functions of the commonly used structures, such as multi- or simultaneous-stage controlled release, synergic effect, enhanced targetability, and internalization. However, due to the unique surface or core features of each hybrid design, the eventual drug-carrier interactions, release, and penetration processes may vary. Our review article focused on the drug's loading, binding interactions, release, physiochemical, and surface functionalization features, as well as the varying internalization and cytotoxicity of each structure that may aid in the selection of an appropriate design. This was achieved by comparing the actions of uniform-surfaced hybrid particles (such as core-shell particles) to those of anisotropic, asymmetrical hybrid particles (such as Janus, multicompartment, or patchy particles). Information is provided on the use of homogeneous or heterogeneous particles with specified characteristics for the simultaneous delivery of various cargos, possibly enhancing the efficacy of treatment techniques for illnesses such as cancer.
Collapse
Affiliation(s)
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
4
|
Kachwal V, Tan J. Stimuli-Responsive Electrospun Fluorescent Fibers Augmented with Aggregation-Induced Emission (AIE) for Smart Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204848. [PMID: 36373688 PMCID: PMC9811457 DOI: 10.1002/advs.202204848] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review addresses the latest advancements in the integration of aggregation-induced emission (AIE) materials with polymer electrospinning, to accomplish fine-scale electrospun fibers with tunable photophysical and photochemical properties. Micro- and nanoscale fibers augmented with AIE dyes (termed AIEgens) are bespoke composite systems that can overcome the limitation posed by aggregation-caused quenching, a critical deficiency of conventional luminescent materials. This review comprises three parts. First, the reader is exposed to the basic concepts of AIE and the fundamental mechanisms underpinning the restriction of intermolecular motions. This is followed by an introduction to electrospinning techniques pertinent to AIE-based fibers, and the core parameters for controlling fiber architecture and resultant properties. Second, exemplars are drawn from latest research to demonstrate how electrospun nanofibers and porous films incorporating modified AIEgens (especially tetraphenylethylene and triphenylamine derivatives) can yield enhanced photostability, photothermal properties, photoefficiency (quantum yield), and improved device sensitivity. Advanced applications are drawn from several promising sectors, encompassing optoelectronics, drug delivery and biology, chemosensors and mechanochromic sensors, and innovative photothermal devices, among others. Finally, the outstanding challenges together with potential opportunities in the nascent field of electrospun AIE-active fibers are presented, for stimulating frontier research and explorations in this exciting field.
Collapse
Affiliation(s)
- Vishal Kachwal
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Jin‐Chong Tan
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
5
|
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yilan Ye
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Lee J, Moon S, Han YB, Yang SJ, Lahann J, Lee KJ. Facile Fabrication of Anisotropic Multicompartmental Microfibers Using Charge Reversal Electrohydrodynamic Co-Jetting. Macromol Rapid Commun 2021; 43:e2100560. [PMID: 34643980 DOI: 10.1002/marc.202100560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Indexed: 12/13/2022]
Abstract
Anisotropic microstructures are utilized in various fields owing to their unique properties, such as reversible shape transitions or on-demand and sequential release of drug combinations. In this study, anisotropic multicompartmental microfibers composed of different polymers are prepared via charge reversal electrohydrodynamic (EHD) co-jetting. The combination of various polymers, such as thermoplastic polyurethane, poly(D,L-lactide-co-glycolide), poly(vinyl cinnamate), and poly(methyl methacrylate), results in microfibers with distinct compositional boundaries. Charge reversal during EHD co-jetting enables facile fabrication of multicompartmental microfibers with the desired composition and tunable inner architecture, broadening their spectrum of potential applications, such as functional microfibers and cell scaffolds with multiple physical and chemical properties.
Collapse
Affiliation(s)
- Jaeyu Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seongjun Moon
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (st), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Bin Han
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, Republic of Korea
| | - Seung Jae Yang
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, Republic of Korea
| | - Joerg Lahann
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
7
|
Liao C, Wang X. Triphasic Polymer Particles Assembled via Microphase Separation with Multiple Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11818-11834. [PMID: 34585922 DOI: 10.1021/acs.langmuir.1c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work investigated a unique type of triphasic colloidal particles composed of an azo polymer (PCNAZO), a fluorescent pyrene-containing polymer [P(MMA-co-PyMA)], and a poly(dimethylsiloxane)-based polymer (H2pdca-PDMS), focusing on the synthesis, forming mechanism, morphology control, and functions. The triphasic particles with well-defined morphologies were assembled through the microphase separation of the components in dichloromethane (DCM) droplets in an aqueous medium, induced by the gradual evaporation of the organic solvent. The real-time fluorescence emission spectra of the pyrenyl moieties and in situ microscopic observations show that the formation of the triphasic particles undergoes the segregation of the PCNAZO-rich phase, separation between P(MMA-co-PyMA)-rich and H2pdca-PDMS-rich phases, coalescence, and solidification in the dispersed droplets. The structure formation is due to the strong phase separation of the polymers as revealed by the calculations based on the Flory-Huggins theory. The morphologies and phase boundaries of the particles are found to be controlled by the interfacial energy between the phases and processing conditions. The triphasic particles thus obtained possess a series of interesting functions stemming from the polymers and the triple-compartmentalized structures. After being deposited on a substrate, the H2pdca-PDMS parts can tightly adhere on the surface, caused by the spreading nature of the polymer when slightly swelled by DCM. Upon irradiation with a linearly polarized laser beam at 488 nm, the azo polymer compartments show a significant elongation along the electric vibration direction of the polarized light, accompanied by the cooperative deformation of the H2pdca-PDMS pads. When dispersed in water and adhered on the substrate surface, the triphasic particles exhibit tunable colors originating from the fluorescence of the pyrenyl fluorophores and light absorption of the azo chromophores. The real-time investigation methods developed here could lead to the deep understanding of the structure formation process in the confined volume and be applied in phase-separation study of other polymers as well.
Collapse
Affiliation(s)
- Chuyi Liao
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P. R. China
| | - Xiaogong Wang
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Guo Y, Fang Y, Jia K, Yu Y, Yu L, Li H, Zhang J, Zheng X, Huang L, Wen W, Mai Y. Electroinduced Reconfiguration of Complex Emulsions for Fabrication of Polymer Particles with Tunable Morphology. Macromol Rapid Commun 2021; 42:e2100085. [DOI: 10.1002/marc.202100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Yongshun Guo
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yanxiong Fang
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Junjie Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Xiaoshan Zheng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Linjia Huang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Wu Wen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| |
Collapse
|
9
|
Moon S, Jones MS, Seo E, Lee J, Lahann L, Jordahl JH, Lee KJ, Lahann J. 3D jet writing of mechanically actuated tandem scaffolds. SCIENCE ADVANCES 2021; 7:7/16/eabf5289. [PMID: 33853783 PMCID: PMC8046364 DOI: 10.1126/sciadv.abf5289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/25/2021] [Indexed: 05/05/2023]
Abstract
The need for high-precision microprinting processes that are controllable, scalable, and compatible with different materials persists throughout a range of biomedical fields. Electrospinning techniques offer scalability and compatibility with a wide arsenal of polymers, but typically lack precise three-dimensional (3D) control. We found that charge reversal during 3D jet writing can enable the high-throughput production of precisely engineered 3D structures. The trajectory of the jet is governed by a balance of destabilizing charge-charge repulsion and restorative viscoelastic forces. The reversal of the voltage polarity lowers the net surface potential carried by the jet and thus dampens the occurrence of bending instabilities typically observed during conventional electrospinning. In the absence of bending instabilities, precise deposition of polymer fibers becomes attainable. The same principles can be applied to 3D jet writing using an array of needles resulting in complex composite materials that undergo reversible shape transitions due to their unprecedented structural control.
Collapse
Affiliation(s)
- Seongjun Moon
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Michael S Jones
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eunbyeol Seo
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Jaeyu Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Lucas Lahann
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacob H Jordahl
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Lahann
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
|
11
|
Mirza I, Saha S. Biocompatible Anisotropic Polymeric Particles: Synthesis, Characterization, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8241-8270. [DOI: 10.1021/acsabm.0c01075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ifra Mirza
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
12
|
Fu J, An D, Song Y, Wang C, Qiu M, Zhang H. Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213467] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
He T, Jokerst JV. Structured micro/nano materials synthesized via electrospray: a review. Biomater Sci 2020; 8:5555-5573. [PMID: 32985632 DOI: 10.1039/d0bm01313g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a "platform" approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures (e.g. simple, porous, Janus, and core-shell particles), non-spherical structures (e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions (e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment (e.g. temperature and humidity), and types of collection media are highlighted.
Collapse
Affiliation(s)
- Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
14
|
Becker F, Klaiber M, Franzreb M, Bräse S, Lahann J. On Demand Light-Degradable Polymers Based on 9,10-Dialkoxyanthracenes. Macromol Rapid Commun 2020; 41:e2000314. [PMID: 32608550 DOI: 10.1002/marc.202000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Light induced degradation of polymers has drawn increasing interest due to the need for externally controllable modulation of materials properties. However, the portfolio of polymers, that undergo precisely controllable degradation, is limited and typically requires UV light. A novel class of backbone-degradable polymers that undergo aerobic degradation in the presence of visible light, yet remain stable against broad-spectrum light under anaerobic conditions is reported. In this design, the polymer backbone is comprised of 9,10-dialkoxyanthracene units that are selectively cleaved by singlet oxygen in the presence of green light as confirmed by NMR and UV/vis spectroscopy. The resulting polymers have been processed by electrohydrodynamic (EHD) co-jetting into bicompartmental microfibers, where one hemisphere is selectively degraded on demand.
Collapse
Affiliation(s)
- Fabian Becker
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Marvin Klaiber
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany.,Institute of Biological and Chemical Systems - IBCS-FMS, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Joerg Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Biointerfaces Institute and Departments of Biomedical Engineering and Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Yu D, Wang M, Li X, Liu X, Zhu L, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1601. [DOI: 10.1002/wnan.1601] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Deng‐Guang Yu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Menglong Wang
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xiaoyan Li
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Xinkuan Liu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Li‐Min Zhu
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| | - Sim Wan Annie Bligh
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Caritas Institute of Higher Education Hong Kong
| |
Collapse
|
16
|
Zhao L, Xie S, Liu Y, Liu Q, Song X, Li X. Janus micromotors for motion-capture-lighting of bacteria. NANOSCALE 2019; 11:17831-17840. [PMID: 31552986 DOI: 10.1039/c9nr05503g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The rapid and sensitive identification of bacteria has long been a major challenge in quality control, environmental monitoring and food safety. In the current study, the "motion-capture-lighting" strategy is proposed via integration of motion-enhanced capture of bacteria and capture-induced fluorescence turn-on of micromotors. Compared with the commonly used microtubes and microparticles, micromotors of flexible fiber rods could offer multiple interactions with the bacterial surface with less steric hindrance. Janus fiber rods (JFRs) are prepared by cryocutting of aligned fibers prepared by side-by-side electrospinning. Catalase is grafted on one side of JFRs to produce oxygen bubbles for propulsion of Janus micromotors (JMs), and mannose is conjugated on the other side for specific recognition of FimH proteins from fimbriae on the bacterial surface. The biphasic Janus structure of JFRs and the separate grafting of catalase and mannose on the opposite sides of JMs are confirmed after fluorescent labelling. JMs with aspect ratios of 0.5, 1, 2 and 4 are fabricated, and the aspect ratios of JMs show significant effects on the tracking trajectories and motion speed. JMs with the aspect ratio of 2 exhibit significantly higher magnitudes of mean square displacement (MSD) with a directional motion trajectory, leading to higher bacterial capture and larger fluorescence intensity changes. The bacteria capture leads to lighting up of JMs due to the aggregation-induced emission (AIE) effect of tetraphenylethene (TPE) derivatives. Under an ultraviolet lamp, the fluorescence color of JM suspensions turns from blue to bluish-green and to green after incubation with E. coli of 102 and 105 CFU mL-1, respectively. The fluorescence intensities of JM suspensions could be fitted to an equation versus bacterial concentrations, and the limit of detection (LOD) was around 45 CFU mL-1 within 1 min. Thus, this study demonstrates a motion-capture-lighting strategy for visual, rapid and real-time detection of bacteria without complicated sample pretreatment, expensive apparatus, and trained operators.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Kirillova A, Marschelke C, Synytska A. Hybrid Janus Particles: Challenges and Opportunities for the Design of Active Functional Interfaces and Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9643-9671. [PMID: 30715834 DOI: 10.1021/acsami.8b17709] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Janus particles are a unique class of multifunctional patchy particles combining two dissimilar chemical or physical functionalities at their opposite sides. The asymmetry characteristic for Janus particles allows them to self-assemble into sophisticated structures and materials not attainable by their homogeneous counterparts. Significant breakthroughs have recently been made in the synthesis of Janus particles and the understanding of their assembly. Nevertheless, the advancement of their applications is still a challenging field. In this Review, we highlight recent developments in the use of Janus particles as building blocks for functional materials. We provide a brief introduction into the synthetic strategies for the fabrication of JPs and their properties and assembly, outlining the existing challenges. The focus of this Review is placed on the applications of Janus particles for active interfaces and surfaces. Active functional interfaces are created owing to the stabilization efficiency of Janus particles combined with their capability for interface structuring and functionalizing. Moreover, Janus particles can be employed as building blocks to fabricate active functional surfaces with controlled chemical and topographical heterogeneity. Ultimately, we will provide implications for the rational design of multifunctional materials based on Janus particles.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
18
|
Jung CW, Lee JS, Jalani G, Hwang EY, Lim DW. Thermally-Induced Actuations of Stimuli-Responsive, Bicompartmental Nanofibers for Decoupled Drug Release. Front Chem 2019; 7:73. [PMID: 30838199 PMCID: PMC6390475 DOI: 10.3389/fchem.2019.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Stimuli-responsive anisotropic microstructures and nanostructures with different physicochemical properties in discrete compartments, have been developed as advanced materials for drug delivery systems, tissue engineering, regenerative medicine, and biosensing applications. Moreover, their stimuli-triggered actuations would be of great interest for the introduction of the functionality of drug delivery reservoirs and tissue engineering scaffolds. In this study, stimuli-responsive bicompartmental nanofibers (BCNFs), with completely different polymer compositions, were prepared through electrohydrodynamic co-jetting with side-by-side needle geometry. One compartment with thermo-responsiveness was composed of methacrylated poly(N-isopropylacrylamide-co-allylamine hydrochloride) (poly(NIPAM-co-AAh)), while the counter compartment was made of poly(ethylene glycol) dimethacrylates (PEGDMA). Both methacrylated poly(NIPAM-co-AAh) and PEGDMA in distinct compartments were chemically crosslinked in a solid phase by UV irradiation and swelled under aqueous conditions, because of the hydrophilicity of both poly(NIPAM-co-AAh) and PEGDMA. As the temperature increased, BCNFs maintained a clear interface between compartments and showed thermally-induced actuation at the nanoscale due to the collapsed poly(NIPAM-co-AAh) compartment under the PEGDMA compartment of identical dimensions. Different model drugs, bovine serum albumin, and dexamethasone phosphate were alternately loaded into each compartment and released at different rates depending on the temperature and molecular weight of the drugs. These BCNFs, as intelligent nanomaterials, have great potential as tissue engineering scaffolds and multi-modal drug delivery reservoirs with stimuli-triggered actuation and decoupled drug release.
Collapse
Affiliation(s)
| | | | | | | | - Dong Woo Lim
- Department of Bionano Engineering and Bionanotechnology, College of Engineering Sciences, Hanyang University, Ansan, South Korea
| |
Collapse
|
19
|
Kim EJ, Shin JM, Kim Y, Ku KH, Yun H, Kim BJ. Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A-b-B diblock copolymers and C-type copolymers within emulsion droplets. Polym Chem 2019. [DOI: 10.1039/c9py00306a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An approach to blend AB-type block copolymers and C-type copolymers within the emulsion droplet is an efficient particle shape-engineering strategy.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Jae Man Shin
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - YongJoo Kim
- KAIST Institute for Nanocentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Hongseok Yun
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- 34141 Republic of Korea
- KAIST Institute for Nanocentury
| |
Collapse
|
20
|
Yu X, Sun Y, Liang F, Jiang B, Yang Z. Triblock Janus Particles by Seeded Emulsion Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaotian Yu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Yijing Sun
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingyin Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Polymer Institute, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Yu B, Cong H, Peng Q, Gu C, Tang Q, Xu X, Tian C, Zhai F. Current status and future developments in preparation and application of nonspherical polymer particles. Adv Colloid Interface Sci 2018; 256:126-151. [PMID: 29705026 DOI: 10.1016/j.cis.2018.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/30/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022]
Abstract
Nonspherical polymer particles (NPPs) are nano/micro-particulates of macromolecules that are anisotropic in shape, and can be designed anisotropic in chemistry. Due to shape and surface anisotropies, NPPs bear many unique structures and fascinating properties which are distinctly different from those of spherical polymer particles (SPPs). In recent years, the research on NPPs has surprisingly blossomed in recent years, and many practical materials based on NPPs with potential applications in photonic device, material science and biomedical engineering have been generated. In this review, we give a systematic, balanced and comprehensive summary of the main aspects of NPPs related to their preparation and application, and propose perspectives for the future developments of NPPs.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Qi Tang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodan Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Tian
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhai
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
22
|
Gil M, Moon S, Yoon J, Rhamani S, Shin J, Lee KJ, Lahann J. Compartmentalized Microhelices Prepared via Electrohydrodynamic Cojetting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800024. [PMID: 29938185 PMCID: PMC6009775 DOI: 10.1002/advs.201800024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Anisotropically compartmentalized microparticles have attracted increasing interest in areas ranging from sensing, drug delivery, and catalysis to microactuators. Herein, a facile method is reported for the preparation of helically decorated microbuilding blocks, using a modified electrohydrodynamic cojetting method. Bicompartmental microfibers are twisted in situ, during electrojetting, resulting in helical microfibers. Subsequent cryosectioning of aligned fiber bundles provides access to helically decorated microcylinders. The unique helical structure endows the microfibers/microcylinders with several novel functions such as translational motion in response to rotating magnetic fields. Finally, microspheres with helically patterned compartments are obtained after interfacially driven shape shifting of helically decorated microcylinders.
Collapse
Affiliation(s)
- Manjae Gil
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Seongjun Moon
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Jaewon Yoon
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Sahar Rhamani
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Institute of Functional InterfacesKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| | - Jae‐Won Shin
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Kyung Jin Lee
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
- Institute of Functional InterfacesKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
23
|
Safari H, Adili R, Holinstat M, Eniola-Adefeso O. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range. J Colloid Interface Sci 2018; 518:174-183. [PMID: 29454188 DOI: 10.1016/j.jcis.2018.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 11/15/2022]
Abstract
HYPOTHESIS Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. EXPERIMENTS A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. FINDINGS The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Reheman Adili
- Department of pharmacology, University of Michigan, Ann Arbor, MI 48019, United States
| | - Michael Holinstat
- Department of pharmacology, University of Michigan, Ann Arbor, MI 48019, United States; Department of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, United States
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
24
|
Misra AC, Lahann J. Progress of Multicompartmental Particles for Medical Applications. Adv Healthc Mater 2018; 7:e1701319. [PMID: 29405610 DOI: 10.1002/adhm.201701319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Particulate materials are becoming increasingly used in the literature for medical applications, but translation to the clinical setting has remained challenging as many particle systems face challenges from in vivo barriers. Multicompartmental particles that can incorporate several materials in an individual particle may allow for more intricate control and addressing of issues that otherwise standard particles are unable to. Here, some of the advances made in the use of multicompartmental particles for medical applications are briefly described.
Collapse
Affiliation(s)
- Asish C. Misra
- Department of Surgery Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Joerg Lahann
- Biointerfaces Institute and Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Institute of Functional Interfaces Karlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
25
|
Rose JC, De Laporte L. Hierarchical Design of Tissue Regenerative Constructs. Adv Healthc Mater 2018; 7:e1701067. [PMID: 29369541 DOI: 10.1002/adhm.201701067] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Indexed: 02/05/2023]
Abstract
The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| |
Collapse
|
26
|
|
27
|
Hsu C, Du Y, Wang X. Janus and Strawberry-like Particles from Azo Molecular Glass and Polydimethylsiloxane Oligomer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10645-10654. [PMID: 28926714 DOI: 10.1021/acs.langmuir.7b02815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigated Janus and strawberry-like particles composed of azo molecular glass and polydimethylsiloxane (PDMS) oligomer, focusing on controllable fabrication and formation mechanism of these unique structures and morphologies. Two materials, the azo molecular glass (IA-Chol) and PDMS oligomer (H2pdca-PDMS), were prepared for this purpose. The Janus and strawberry-like particles were obtained from the droplets of a dichloromethane (DCM) solution containing both IA-Chol and H2pdca-PDMS, dispersed in water and stabilized by poly(vinyl alcohol). Results show that the structured particles are formed through segregation between the two components induced by gradual evaporation of DCM from the droplets, which is controlled by adding ethylene glycol (EG) into the above dispersion. Without the addition of EG, Janus particles are formed through the full segregation of the two components in the droplets. On the other hand, with the existence of EG in the dispersion, strawberry-like particles instead of Janus particles are formed in the phase separation process. The diffusion of EG molecules from the dispersion medium into the droplets causes the PDMS phase deswelling in the interfacial area due to the poor solvent effect. Caused by the surface coagulation, the coalescence of the isolated IA-Chol domains is jammed in the shell region, which results in the formation of the strawberry-like particles. For the particles separated from the dispersion and dried, the PDMS oligomer phase of the Janus particles can adhere and spread on the substrate to form unique "particle-on-pad" morphology due to its low surface energy and swelling ability, while the strawberry-like particles exist as "standstill" objects on the substrates. Upon irradiation with a linearly polarized laser beam at 488 nm, the azo molecular glass parts in the particles are significantly deformed along the light polarization direction, which show unique and distinct morphologies for these two types of the particles.
Collapse
Affiliation(s)
- Chungen Hsu
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University , Beijing, P. R. China 100084
| | - Yi Du
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University , Beijing, P. R. China 100084
| | - Xiaogong Wang
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University , Beijing, P. R. China 100084
| |
Collapse
|
28
|
Chen YL, Jiang HR. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array. J Vis Exp 2017:55950. [PMID: 28671656 PMCID: PMC5608505 DOI: 10.3791/55950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.
Collapse
Affiliation(s)
- Yu-Liang Chen
- Institute of Applied Mechanics, National Taiwan University
| | - Hong-Ren Jiang
- Institute of Applied Mechanics, National Taiwan University;
| |
Collapse
|
29
|
Rose JC, Cámara-Torres M, Rahimi K, Köhler J, Möller M, De Laporte L. Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance. NANO LETTERS 2017; 17:3782-3791. [PMID: 28326790 PMCID: PMC5537692 DOI: 10.1021/acs.nanolett.7b01123] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 05/19/2023]
Abstract
Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
| | | | - Khosrow Rahimi
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
| | - Jens Köhler
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
| | - Martin Möller
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH, 52062 Aachen, Germany
| | - Laura De Laporte
- DWI − Leibniz-Institute
for Interactive Materials, 52074 Aachen, Germany
- E-mail:
| |
Collapse
|
30
|
Castro AGB, Polini A, Azami Z, Leeuwenburgh SCG, Jansen JA, Yang F, van den Beucken JJJP. Incorporation of PLLA micro-fillers for mechanical reinforcement of calcium-phosphate cement. J Mech Behav Biomed Mater 2017; 71:286-294. [PMID: 28376362 DOI: 10.1016/j.jmbbm.2017.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/18/2017] [Accepted: 03/26/2017] [Indexed: 01/09/2023]
Abstract
Calcium phosphate cements (CPCs) are biocompatible, resorbable, injectable and osteoconductive. Those properties render such materials suitable for applications where bone repair and regeneration is required However, their brittle nature limits their application only to non-load-bearing applications. The incorporation of long polymeric fibers can improve the mechanical properties of CPCs, but aggregation is a major problem. Instead, short polymeric fillers can be easily dispersed in the cement matrix, but their reinforcing effect has not been studied yet. In this study, continuous poly-L-lactic acid fibers (PLLA) with a smooth or porous surface morphology were prepared by electrospinning. PLLA micro-fillers were developed, by means of an aminolysis process, and added to α-TCP or α-TCP/PLGA-based cements. Micro-filler distribution as well as the morphology, cohesiveness, setting times and mechanical properties were evaluated. PLLA micro-fillers were homogeneously dispersed throughout the cement while the handling properties were not significantly affected. A decrease in the initial setting times was observed when PLLA was added, while the mechanical properties were comparable to those of the α-TPC or α-TCP/PLGA compositions.
Collapse
Affiliation(s)
- Antonio G B Castro
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Alessandro Polini
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Zohal Azami
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboudumc, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | | |
Collapse
|
31
|
Choi A, Seo KD, Kim DW, Kim BC, Kim DS. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications. LAB ON A CHIP 2017; 17:591-613. [PMID: 28101538 DOI: 10.1039/c6lc01023g] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Kyoung Duck Seo
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Do Wan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Bum Chang Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| |
Collapse
|
32
|
Castro AGB, Lo Giudice MC, Vermonden T, Leeuwenburgh SCG, Jansen JA, van den Beucken JJJP, Yang F. Top-Down Approach for the Preparation of Highly Porous PLLA Microcylinders. ACS Biomater Sci Eng 2016; 2:2099-2107. [DOI: 10.1021/acsbiomaterials.6b00522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Antonio G. B. Castro
- Department of Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Maria Cristina Lo Giudice
- Department of Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical
Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | | | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| |
Collapse
|
33
|
Rahmani S, Villa CH, Dishman AF, Grabowski ME, Pan DC, Durmaz H, Misra AC, Colón-Meléndez L, Solomon MJ, Muzykantov VR, Lahann J. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J Drug Target 2016; 23:750-8. [PMID: 26453170 DOI: 10.3109/1061186x.2015.1076428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. PURPOSE Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. METHODS EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. RESULTS AND DISCUSSION Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. CONCLUSION EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.
Collapse
Affiliation(s)
- Sahar Rahmani
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA .,c Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) , Germany
| | - Carlos H Villa
- d Department of Pharmacology , University of Pennsylvania , Philadelphia , PA , USA , and
| | - Acacia F Dishman
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA
| | - Marika E Grabowski
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Daniel C Pan
- d Department of Pharmacology , University of Pennsylvania , Philadelphia , PA , USA , and
| | - Hakan Durmaz
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Asish C Misra
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Laura Colón-Meléndez
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Michael J Solomon
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Vladimir R Muzykantov
- d Department of Pharmacology , University of Pennsylvania , Philadelphia , PA , USA , and
| | - Joerg Lahann
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA .,c Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) , Germany .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
34
|
Zhou X, Du Y, Wang X. Azo Polymer Janus Particles Possessing Photodeformable and Magnetic-Field-Responsive Dual Functions. Chem Asian J 2016; 11:2130-4. [DOI: 10.1002/asia.201600796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xinran Zhou
- Department of Chemical Engineering; Key Laboratory of Advanced Materials (MOE); Tsinghua University; Beijing 100084 People's Republic of China
| | - Yi Du
- Department of Chemical Engineering; Key Laboratory of Advanced Materials (MOE); Tsinghua University; Beijing 100084 People's Republic of China
| | - Xiaogong Wang
- Department of Chemical Engineering; Key Laboratory of Advanced Materials (MOE); Tsinghua University; Beijing 100084 People's Republic of China
| |
Collapse
|
35
|
Abstract
Janus particles, named after the two-faced Roman god Janus, have different surface makeups, structures or compartments on two sides. This review highlights recent advances in employing Janus particles as novel analytical tools for live cell imaging and biosensing. Unlike conventional particles used in analytical science, two-faced Janus particles provide asymmetry and directionality, and can combine different or even incompatible properties within a single particle. The broken symmetry enables imaging and quantification of rotational dynamics, revealing information beyond what traditional measurements offer. The spatial segregation of molecules on the surface of a single particle also allows analytical functions that would otherwise interfere with each other to be decoupled, opening up opportunities for novel multimodal analytical methods. We summarize here the development of Janus particles, a few general methods for their fabrication and, more importantly, the emerging and novel applications of Janus particles as multi-functional imaging probes and sensors.
Collapse
Affiliation(s)
- Yi Yi
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
36
|
Rahmani S, Ashraf S, Hartmann R, Dishman AF, Zyuzin MV, Yu CKJ, Parak WJ, Lahann J. Engineering of nanoparticle size via electrohydrodynamic jetting. Bioeng Transl Med 2016; 1:82-93. [PMID: 29313008 PMCID: PMC5689507 DOI: 10.1002/btm2.10010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 12/27/2022] Open
Abstract
Engineering the physical properties of particles, especially their size, is an important parameter in the fabrication of successful carrier systems for the delivery of therapeutics. Here, various routes were explored for the fabrication of particles in the nanosize regime. It was demonstrated that the use of a charged species and/or solvent with high dielectric constant can influence the size and distribution of particles, with the charged species having a greater effect on the size of the particles and the solvent a greater effect on the distribution of the particles. In addition to the fabrication of nanoparticles, their fractionation into specific size ranges using centrifugation was also investigated. The in vitro particle uptake and intracellular transport of these nanoparticles was studied as a function of size and incubation period. The highest level of intralysosomal localization was observed for the smallest nanoparticle group (average of 174 nm), followed by the groups with increasing sizes (averages of 378 and 575 nm), most likely due to the faster endosomal uptake of smaller particles. In addition, the internalization of nanoparticle clusters and number of nanoparticles per cell increased with longer incubation periods. This work establishes a technological approach to compartmentalized nanoparticles with defined sizes. This is especially important as relatively subtle differences in size can modulate cell uptake and determine intercellular fate. Future work will need to address the role of specific targeting ligands on cellular uptake and intracellular transport of compartmentalized nanoparticles.
Collapse
Affiliation(s)
- Sahar Rahmani
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Biomedical Engineering University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Sumaira Ashraf
- Dept. of Physics Philipps University of Marburg Marburg Germany
| | - Raimo Hartmann
- Dept. of Physics Philipps University of Marburg Marburg Germany
| | - Acacia F Dishman
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | | | - Chris K J Yu
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Biomedical Engineering University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | | | - Joerg Lahann
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Biomedical Engineering University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany.,Chemical Engineering University of Michigan Ann Arbor MI 48109
| |
Collapse
|
37
|
Yanagawa F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther 2016; 3:45-57. [PMID: 31245472 PMCID: PMC6581842 DOI: 10.1016/j.reth.2016.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
The development of biologically relevant three-dimensional (3D) tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.
Collapse
Affiliation(s)
- Fumiki Yanagawa
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
38
|
Lee J, Park TH, Lee KJ, Lahann J. Snail-like Particles from Compartmentalized Microfibers. Macromol Rapid Commun 2015; 37:73-78. [PMID: 26488433 DOI: 10.1002/marc.201500431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Jaemin Lee
- Department of Fine Chemical Engineering and Applied Chemistry; College of Engineering; Chungnam National University; Daejeon 305-764 Korea
| | - Tae-Hong Park
- Department of Chemical Engineering; Macromolecular Science and Engineering and Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
- Nuclear Chemistry Research Division; Korea Atomic Energy Research Institute; Daejeon 305-353 Korea
| | - Kyung Jin Lee
- Department of Fine Chemical Engineering and Applied Chemistry; College of Engineering; Chungnam National University; Daejeon 305-764 Korea
- Department of Chemical Engineering; Macromolecular Science and Engineering and Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| | - Joerg Lahann
- Department of Chemical Engineering; Macromolecular Science and Engineering and Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
39
|
Misra AC, Luker KE, Durmaz H, Luker GD, Lahann J. CXCR4-Targeted Nanocarriers for Triple Negative Breast Cancers. Biomacromolecules 2015; 16:2412-7. [PMID: 26154069 PMCID: PMC5474759 DOI: 10.1021/acs.biomac.5b00653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CXCR4 is a cell membrane receptor that is overexpressed in triple-negative breast cancers and implicated in growth and metastasis of this disease. Using electrohydrodynamic cojetting, we prepared multicompartmental drug delivery carriers for CXCR4 targeting. The particles are comprised of a novel poly(lactide-co-glycolide) derivative that allows for straightforward immobilization of 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (Plerixafor), a small molecule with affinity for CXCR4. Targeted nanocarriers are selectively taken up by CXCR4-expressing cells and effectively block CXCR4 signaling. This study suggests that CXCR4 may be an effective target for nanocarrier-based therapies.
Collapse
Affiliation(s)
- Asish C. Misra
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Hakan Durmaz
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Joerg Lahann
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
40
|
Yoon J, Eyster TW, Misra AC, Lahann J. Cardiomyocyte-Driven Actuation in Biohybrid Microcylinders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4509-4515. [PMID: 26109501 PMCID: PMC4844906 DOI: 10.1002/adma.201501284] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Indexed: 05/23/2023]
Abstract
Biohybrid microcylinders are fabricated using electrohydrodynamic cojetting followed by a surface chemistry approach to maximize cell-adhesive characteristics. As proper cell alignment and mechanical stiffness are important components of bioactuator design, spatial cell selectivity and stress/strain properties of microcylinders are characterized to demonstrate their capability of response to rat cardio-myocyte contraction. These microcylinders can find applications in a host of micromechanical systems.
Collapse
Affiliation(s)
- Jaewon Yoon
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tom W Eyster
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Asish C Misra
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
41
|
Cho K, Lee HJ, Han SW, Min JH, Park H, Koh W. Multi‐Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew Chem Int Ed Engl 2015; 54:11511-5. [DOI: 10.1002/anie.201504317] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Kanghee Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Hyun Jong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Sang Won Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Ji Hong Min
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Hansoo Park
- School of Integrative Engineering, Chung‐Ang University, 84 Heukseok‐ro, Dongjak‐gu, Seoul 156‐756 (South Korea)
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| |
Collapse
|
42
|
Cho K, Lee HJ, Han SW, Min JH, Park H, Koh WG. Multi-Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Kim J, Bae S, Song S, Chung K, Kwon S. Fiber composite slices for multiplexed immunoassays. BIOMICROFLUIDICS 2015; 9:044109. [PMID: 26339310 PMCID: PMC4522008 DOI: 10.1063/1.4927590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/17/2015] [Indexed: 05/11/2023]
Abstract
Fabrication methods for the development of multiplexed immunoassay platforms primarily depend on the individual functionalization of reaction chambers to achieve a heterogeneous reacting substrate composition, which increases the overall manufacturing time and cost. Here, we describe a new type of low-cost fabrication method for a scalable immunoassay platform based on cotton threads. The manufacturing process involves the fabrication of functionalized fibers and the arrangement of these fibers into a bundle; this bundle is then sectioned to make microarray-like particles with a predefined surface architecture. With these sections, composed of heterogeneous thread fragments with different types of antibodies, we demonstrated quantitative and 7-plex immunoassays. We expect that this methodology will prove to be a versatile, low-cost, and highly scalable method for the fabrication of multiplexed bioassay platforms.
Collapse
Affiliation(s)
- Jiyun Kim
- Nano Systems Institute, Seoul National University , Seoul 151-744, South Korea
| | | | | | - Keumsim Chung
- QuantaMatrix Inc., Se oul National University , Seoul 151-744, South Korea
| | | |
Collapse
|
44
|
Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2014.12.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Kobaku SPR, Kwon G, Kota AK, Karunakaran RG, Wong P, Lee DH, Tuteja A. Wettability engendered templated self-assembly (WETS) for fabricating multiphasic particles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4075-80. [PMID: 25625176 DOI: 10.1021/am507964k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Precise control over the geometry and chemistry of multiphasic particles is of significant importance for a wide range of applications. In this work, we have developed one of the simplest methodologies for fabricating monodisperse, multiphasic micro- and nanoparticles possessing almost any composition, projected shape, modulus, and dimensions as small as 25 nm. The synthesis methodology involves the fabrication of a nonwettable surface patterned with monodisperse, wettable domains of different sizes and shapes. When such patterned templates are dip-coated with polymer solutions or particle dispersions, the liquids, and consequently the polymer or the particles, preferentially self-assemble within the wettable domains. Utilizing this phenomenon, we fabricate multiphasic assemblies with precisely controlled geometry and composition through multiple, layered depositions of polymers and/or particles within the patterned domains. Upon releasing these multiphasic assemblies from the template using a sacrificial layer, we obtain multiphasic particles. The templates can then be readily reused (over 20 times in our experiments) for fabricating a new batch of particles, enabling a rapid, inexpensive, and easily reproducible method for large-scale manufacturing of multiphasic particles.
Collapse
Affiliation(s)
- Sai P R Kobaku
- Department of Macromolecular Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Choi CH, Kang SM, Jin SH, Yi H, Lee CS. Controlled fabrication of multicompartmental polymeric microparticles by sequential micromolding via surface-tension-induced droplet formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1328-35. [PMID: 25551788 DOI: 10.1021/la504404y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polymeric multicompartmental microparticles have significant potential in many applications due to the capability to hold various functions in discrete domains within a single particle. Despite recent progress in microfluidic techniques, simple and scalable fabrication methods for multicompartmental particles remain challenging. This study reports a simple sequential micromolding method to produce monodisperse multicompartmental particles with precisely controllable size, shape, and compartmentalization. Specifically, our fabrication procedure involves sequential formation of primary and secondary compartments in micromolds via surface-tension-induced droplet formation coupled with simple photopolymerization. Results show that monodisperse bicompartmental particles with precisely controllable size, shape, and chemistry can be readily fabricated without sophisticated control or equipment. This technique is then extended to produce multicompartmental particles with controllable number of compartments and their size ratios through simple design of mold geometry. Also, core-shell particles with controlled number of cores for primary compartments can be readily produced by simple tuning of wettability. Finally, we demonstrate that the as-prepared multicompartmental particles can exhibit controlled release of multiple payloads based on design of particle compositions. Combined, these results illustrate a simple, robust, and scalable fabrication of highly monodisperse and complex multicompartmental particles in a controlled manner based on sequential micromolding.
Collapse
Affiliation(s)
- Chang-Hyung Choi
- Department of Chemical Engineering, Chungnam National University , Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | | | | | | | | |
Collapse
|
47
|
Lin CXC, Jambhrunkar S, Yuan P, Zhou CHC, Zhao GXS. Design and synthesis of periodic mesoporous organosilica materials with a multi-compartment structure. RSC Adv 2015. [DOI: 10.1039/c5ra16497d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multi-compartment periodic mesoporous organosilica materials show desirable properties as anticancer drug carrier with high loading capacity and slow release rate.
Collapse
Affiliation(s)
- Chun Xiang Cynthia Lin
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Siddharth Jambhrunkar
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Pei Yuan
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- China
| | - Chun Hui Clayton Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | | |
Collapse
|
48
|
Lee SY, Yang S. Compartment fabrication of magneto-responsive Janus microrod particles. Chem Commun (Camb) 2015; 51:1639-42. [DOI: 10.1039/c4cc07863b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Monodispersed magneto-responsive microrod particles of variable magnetic/non-magnetic ratios and chemical compositions are created by compartment fabrication in a single poly(dimethylsiloxane) (PDMS) mold.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Materials Science and Engineering
- University of Pennsylvania
- Philadelphia
- USA
| | - Shu Yang
- Department of Materials Science and Engineering
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
49
|
Liang F, Zhang C, Yang Z. Rational design and synthesis of Janus composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6944-9. [PMID: 24648407 DOI: 10.1002/adma.201305415] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/25/2014] [Indexed: 05/26/2023]
Abstract
Janus composites with two different components divided on the same object have gained growing interest in many fields, such as solid emulsion stabilizers, sensors, optical probes and self-propellers. Over the past twenty years, various synthesis methods have been developed including Pickering emulsion interfacial modification, block copolymer self-assembly, microfluidics, electro co-jetting, and swelling emulsion polymerization. Anisotropic shape and asymmetric spatial distribution of compositions and functionalities determine their unique performances. Rational design and large scale synthesis of functional Janus materials are crucial for the systematical characterization of performance and exploitation of practical applications.
Collapse
Affiliation(s)
- Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | | |
Collapse
|
50
|
Cheng Y, Zheng F, Lu J, Shang L, Xie Z, Zhao Y, Chen Y, Gu Z. Bioinspired multicompartmental microfibers from microfluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5184-90. [PMID: 24934291 DOI: 10.1002/adma.201400798] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/24/2014] [Indexed: 05/23/2023]
Abstract
Bioinspired multicompartmental microfibers are generated by novel capillary microfluidics. The resultant microfibers possess multicompartment body-and-shell compositions with specifically designed geometries. Potential use of these microfibers for tissue-engineering applications is demonstrated by creating multifunctional fibers with a spatially controlled encapsulation of cells.
Collapse
Affiliation(s)
- Yao Cheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | | | | | | | | | | | | | | |
Collapse
|