1
|
Jeong S, Kang HW, Kim SH, Hong GS, Nam MH, Seong J, Yoon ES, Cho IJ, Chung S, Bang S, Kim HN, Choi N. Integration of reconfigurable microchannels into aligned three-dimensional neural networks for spatially controllable neuromodulation. SCIENCE ADVANCES 2023; 9:eadf0925. [PMID: 36897938 PMCID: PMC10005277 DOI: 10.1126/sciadv.adf0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Anisotropically organized neural networks are indispensable routes for functional connectivity in the brain, which remains largely unknown. While prevailing animal models require additional preparation and stimulation-applying devices and have exhibited limited capabilities regarding localized stimulation, no in vitro platform exists that permits spatiotemporal control of chemo-stimulation in anisotropic three-dimensional (3D) neural networks. We present the integration of microchannels seamlessly into a fibril-aligned 3D scaffold by adapting a single fabrication principle. We investigated the underlying physics of elastic microchannels' ridges and interfacial sol-gel transition of collagen under compression to determine a critical window of geometry and strain. We demonstrated the spatiotemporally resolved neuromodulation in an aligned 3D neural network by local deliveries of KCl and Ca2+ signal inhibitors, such as tetrodotoxin, nifedipine, and mibefradil, and also visualized Ca2+ signal propagation with a speed of ~3.7 μm/s. We anticipate that our technology will pave the way to elucidate functional connectivity and neurological diseases associated with transsynaptic propagation.
Collapse
Affiliation(s)
- Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- MEPSGEN Co. Ltd., Seoul 05836, Korea
| | - Hyun Wook Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
| | - So Hyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- SK Biopharmaceuticals Co. Ltd., Seongnam 13494, Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Eui-Sung Yoon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Nano and Information Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Seok Chung
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Medical Biotechnology, Dongguk University, Goyang 10326, Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
3
|
Kayal C, Moeendarbary E, Shipley RJ, Phillips JB. Mechanical Response of Neural Cells to Physiologically Relevant Stiffness Gradients. Adv Healthc Mater 2020; 9:e1901036. [PMID: 31793251 PMCID: PMC8407326 DOI: 10.1002/adhm.201901036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Understanding the influence of the mechanical environment on neurite behavior is crucial in the development of peripheral nerve repair solutions, and could help tissue engineers to direct and guide regeneration. In this study, a new protocol to fabricate physiologically relevant hydrogel substrates with controlled mechanical cues is proposed. These hydrogels allow the analysis of the relative effects of both the absolute stiffness value and the local stiffness gradient on neural cell behavior, particularly for low stiffness values (1-2 kPa). NG108-15 neural cell behavior is studied using well-characterized collagen gradient substrates with stiffness values ranging from 1 to 10 kPa and gradient slopes of either 0.84 or 7.9 kPa mm-1 . It is found that cell orientation is influenced by specific combinations of stiffness value and stiffness gradient. The results highlight the importance of considering the type of hydrogel as well as both the absolute value of the stiffness and the steepness of its gradient, thus introducing a new framework for the development of tissue engineered scaffolds and the study of substrate stiffness.
Collapse
Affiliation(s)
- Céline Kayal
- UCL Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- UCL School of PharmacyUniversity College LondonBrunswick Square, BloomsburyLondonWC1N 1AXUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Emad Moeendarbary
- UCL Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA 02142USA
| | - Rebecca J. Shipley
- UCL Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - James B. Phillips
- UCL School of PharmacyUniversity College LondonBrunswick Square, BloomsburyLondonWC1N 1AXUK
- UCL Centre for Nerve EngineeringUniversity College LondonLondonWC1E 6BTUK
| |
Collapse
|
4
|
Wang B, Shi J, Wei J, Tu X, Chen Y. Fabrication of elastomer pillar arrays with elasticity gradient for cell migration, elongation and patterning. Biofabrication 2019; 11:045003. [PMID: 31091518 DOI: 10.1088/1758-5090/ab21b3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The elasticity of the cell and that of the supporting extracellular matrices (ECMs) in tissue are correlated. In some cases, the modulus of the ECM varies with a high spatial gradient. To study the effect of such a modulus gradient on the cell culture behavior, we proposed a novel yet straightforward method to fabricate elastomeric micropillar substrates with different height gradients, which could provide a large range of elasticity gradient from 2.4 kPa to 60 kPa. The micropillars were integrated into a microfluidic chip to demonstrate the elasticity variation, with the theoretical results proving that the elasticity of the two micropillar substrates was in the same range but with distinguished gradient strengths. Fibroblast seeded on the micropillar substrates showed migration toward the stiffer area but their elongation highly depended on the strength of the elasticity gradient. In the case of high gradient strength, cells could easily migrate to the stiffer area and then elongated perpendicularly to their migration direction. Otherwise, cells were mostly elongated in the direction of the gradient. Our results also showed that when the cell density was sufficiently high, cells tended to be oriented in the same direction locally, which was affected by both underneath pillars and cell-cell contact. The elasticity gradients could also be generated in a ripple shape, and the cell behavior showed the feasibility of using the micropillars for cell patterning applications. Moreover, the gradient pillar substrates were further used for the aggregate formation of induced pluripotent stem cells, thus providing an alternative substrate to study the effect of substrate elasticity on stem cell behavior and differentiation.
Collapse
Affiliation(s)
- Bin Wang
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | | | | | | |
Collapse
|
5
|
Lim GS, Hor JH, Ho NR, Wong CY, Ng SY, Soh BS, Shao H. Microhexagon gradient array directs spatial diversification of spinal motor neurons. Theranostics 2019; 9:311-323. [PMID: 30809276 PMCID: PMC6376181 DOI: 10.7150/thno.29755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
Motor neuron diversification and regionalization are important hallmarks of spinal cord development and rely on fine spatiotemporal release of molecular cues. Here, we present a dedicated platform to engineer complex molecular profiles for directed neuronal differentiation. Methods: The technology, termed microhexagon interlace for generation of versatile and fine gradients (microHIVE), leverages on an interlocking honeycomb lattice of microstructures to dynamically pattern molecular profiles at a high spatial resolution. By packing the microhexagons as a divergent, mirrored array, the platform not only enables maximal mixing efficiency but also maintains a small device footprint. Results: Employing the microHIVE platform, we developed optimized profiles of growth factors to induce rostral-caudal patterning of spinal motor neurons, and directed stem cell differentiation in situ into a spatial continuum of different motor neuron subtypes. Conclusions: The differentiated cells showed progressive RNA and protein signatures, consistent with that of representative brachial, thoracic and lumbar regions of the human spinal cord. The microHIVE platform can thus be utilized to develop advanced biomimetic systems for the study of diseases in vitro.
Collapse
Affiliation(s)
- Geok Soon Lim
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Jin Hui Hor
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Nicholas R.Y. Ho
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Chi Yan Wong
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- National Neuroscience Institute, 308433, Singapore
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Boon Seng Soh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huilin Shao
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- National Neuroscience Institute, 308433, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117583, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| |
Collapse
|
6
|
Evans EB, Brady SW, Tripathi A, Hoffman-Kim D. Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients. Biomater Res 2018; 22:14. [PMID: 29780613 PMCID: PMC5948700 DOI: 10.1186/s40824-018-0124-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Successful nerve regeneration depends upon directed migration of morphologically specialized repair state Schwann cells across a nerve defect. Although several groups have studied directed migration of Schwann cells in response to chemical or topographic cues, the current understanding of how the mechanical environment influences migration remains largely understudied and incomplete. Therefore, the focus of this study was to evaluate Schwann cell migration and morphodynamics in the presence of stiffness gradients, which revealed that Schwann cells can follow extracellular gradients of increasing stiffness, in a form of directed migration termed durotaxis. Methods Polyacrylamide substrates were fabricated to mimic the range of stiffness found in peripheral nerve tissue. We assessed Schwann cell response to substrates that were either mechanically uniform or embedded with a shallow or steep stiffness gradient, respectively corresponding to the mechanical niche present during either the fluid phase or subsequent matrix phase of the peripheral nerve regeneration process. We examined cell migration (velocity and directionality) and morphology (elongation, spread area, nuclear aspect ratio, and cell process dynamics). We also characterized the surface morphology of Schwann cells by scanning electron microscopy. Results On laminin-coated polyacrylamide substrates embedded with either a shallow (∼0.04 kPa/mm) or steep (∼0.95 kPa/mm) stiffness gradient, Schwann cells displayed durotaxis, increasing both their speed and directionality along the gradient materials, fabricated with elastic moduli in the range found in peripheral nerve tissue. Uniquely and unlike cell behavior reported in other cell types, the durotactic response of Schwann cells was not dependent upon the slope of the gradient. When we examined whether durotaxis behavior was accompanied by a pro-regenerative Schwann cell phenotype, we observed altered cell morphology, including increases in spread area and the number, elongation, and branching of the cellular processes, on the steep but not the shallow gradient materials. This phenotype emerged within hours of the cells adhering to the materials and was sustained throughout the 24 hour duration of the experiment. Control experiments also showed that unlike most adherent cells, Schwann cells did not alter their morphology in response to uniform substrates of different stiffnesses. Conclusion This study is notable in its report of durotaxis of cells in response to a stiffness gradient slope, which is greater than an order of magnitude less than reported elsewhere in the literature, suggesting Schwann cells are highly sensitive detectors of mechanical heterogeneity. Altogether, this work identifies durotaxis as a new migratory modality in Schwann cells, and further shows that the presence of a steep stiffness gradient can support a pro-regenerative cell morphology. Electronic supplementary material The online version of this article (10.1186/s40824-018-0124-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth B Evans
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA
| | - Samantha W Brady
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA
| | - Anubhav Tripathi
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA.,2Center for Biomedical Engineering, Brown University, Providence, Rhode Island, 02912 USA
| | - Diane Hoffman-Kim
- 1Department of Molecular Pharmacology, Physiology, Brown University, Providence, Rhode Island, 02912 USA.,2Center for Biomedical Engineering, Brown University, Providence, Rhode Island, 02912 USA.,3Carney Institute for Brain Science, Brown University, Providence, Rhode Island, 02912 USA.,4Center to Advance Predictive Biology, Brown University, Providence, Rhode Island, 02912 USA
| |
Collapse
|
7
|
Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, Sanati-Nezhad A. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 2017; 62:42-63. [PMID: 28736220 DOI: 10.1016/j.actbio.2017.07.028] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. STATEMENT OF SIGNIFICANCE Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues.
Collapse
|
8
|
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017; 8:2041731417725464. [PMID: 28890779 PMCID: PMC5574483 DOI: 10.1177/2041731417725464] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.
Collapse
Affiliation(s)
- Patricia A Redondo
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Marina Pavlou
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Umber Cheema
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| |
Collapse
|
9
|
Hartman CD, Isenberg BC, Chua SG, Wong JY. Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc Natl Acad Sci U S A 2016; 113:11190-11195. [PMID: 27647912 PMCID: PMC5056055 DOI: 10.1073/pnas.1611324113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mechanical compliance has been demonstrated to be a key determinant of cell behavior, directing processes such as spreading, migration, and differentiation. Durotaxis, directional migration from softer to more stiff regions of a substrate, has been observed for a variety of cell types. Recent stiffness mapping experiments have shown that local changes in tissue stiffness in disease are often accompanied by an altered ECM composition in vivo. However, the importance of ECM composition in durotaxis has not yet been explored. To address this question, we have developed and characterized a polyacrylamide hydrogel culture platform featuring highly tunable gradients in mechanical stiffness. This feature, together with the ability to control ECM composition, allows us to isolate the effects of mechanical and biological signals on cell migratory behavior. Using this system, we have tracked vascular smooth muscle cell migration in vitro and quantitatively analyzed differences in cell migration as a function of ECM composition. Our results show that vascular smooth muscle cells undergo durotaxis on mechanical gradients coated with fibronectin but not on those coated with laminin. These findings indicate that the composition of the adhesion ligand is a critical determinant of a cell's migratory response to mechanical gradients.
Collapse
Affiliation(s)
| | - Brett C Isenberg
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Samantha G Chua
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
10
|
Li Y, Chen P, Wang Y, Yan S, Feng X, Du W, Koehler SA, Demirci U, Liu BF. Rapid Assembly of Heterogeneous 3D Cell Microenvironments in a Microgel Array. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3543-8. [PMID: 26991071 DOI: 10.1002/adma.201600247] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/11/2016] [Indexed: 05/26/2023]
Abstract
Heterogeneous 3D cell microenvironment arrays are rapidly assembled by combining surface-wettability-guided assembly and microdroplet-array-based operations. This approach enables precise control over individual shapes, sizes, chemical concentrations, cell density, and 3D spatial distribution of multiple components. This technique provides a cost-effective solution to meet the increasing demand of stem cell research, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Yiwei Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Applied Physics, John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA, 02138, USA
| | - Pu Chen
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Yachao Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuangqian Yan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Du
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Stephan A Koehler
- Department of Applied Physics, John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA, 02138, USA
| | - Utkan Demirci
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Whang M, Kim J. Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds. Tissue Eng Regen Med 2016; 13:126-139. [PMID: 30603392 PMCID: PMC6170857 DOI: 10.1007/s13770-016-0026-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022] Open
Abstract
Migration of cells along the right direction is of paramount importance in a number of in vivo circumstances such as immune response, embryonic developments, morphogenesis, and healing of wounds and scars. While it has been known for a while that spatial gradients in chemical cues guide the direction of cell migration, the significance of the gradient in mechanical cues, such as stiffness of extracellular matrices (ECMs), in directed migration of cells has only recently emerged. With advances in synthetic chemistry, micro-fabrication techniques, and methods to characterize mechanical properties at a length scale even smaller than a single cell, synthetic ECMs with spatially controlled stiffness have been created with variations in design parameters. Since then, the synthetic ECMs have served as platforms to study the migratory behaviors of cells in the presence of the stiffness gradient of ECM and also as scaffolds for the regeneration of tissues. In this review, we highlight recent studies in cell migration directed by the stiffness gradient, called durotaxis, and discuss the mechanisms of durotaxis. We also summarize general methods and design principles to create synthetic ECMs with the stiffness gradients and, finally, conclude by discussing current limitations and future directions of synthetic ECMs for the study of durotaxis and the scaffold for tissue engineering.
Collapse
Affiliation(s)
- Minji Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| |
Collapse
|
12
|
Ordeig O, Chin SY, Kim S, Chitnis PV, Sia SK. An implantable compound-releasing capsule triggered on demand by ultrasound. Sci Rep 2016; 6:22803. [PMID: 26965207 PMCID: PMC4786798 DOI: 10.1038/srep22803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022] Open
Abstract
Implantable devices have a large potential to improve human health, but they are often made of biofouling materials that necessitate special coatings, rely on electrical connections for external communication, and require a continuous power source. This paper demonstrates an alternative platform, which we call iTAG (implantable thermally actuated gel), where an implanted capsule can be wirelessly controlled by ultrasound to trigger the release of compounds. We constructed a millimeter-sized capsule containing a co-polymer gel (NiPAAm-co-AAm) that contracts above body temperature (i.e. at 45 °C) to release compounds through an opening. This gel-containing capsule is biocompatible and free of toxic electronic or battery components. An ultrasound hardware, with a focused ultrasound (FUS) transducer and a co-axial A-mode imaging transducer, was used to image the capsule (to monitor in real time its position, temperature, and effectiveness of dose delivery), as well as to trigger a rapid local rise in temperature, contraction of gel, and release of compounds in vitro and in vivo. The combination of this gel-based capsule and compact ultrasound hardware can serve as a platform for triggering local release of compounds, including potentially in deep tissue, to achieve tailored personalized therapy.
Collapse
Affiliation(s)
- Olga Ordeig
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Sau Yin Chin
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Sohyun Kim
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, VA 22032, United States
- F. L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY 10038, United States
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| |
Collapse
|
13
|
Allena R, Scianna M, Preziosi L. A Cellular Potts Model of single cell migration in presence of durotaxis. Math Biosci 2016; 275:57-70. [PMID: 26968932 DOI: 10.1016/j.mbs.2016.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 01/02/2023]
Abstract
Cell migration is a fundamental biological phenomenon during which cells sense their surroundings and respond to different types of signals. In presence of durotaxis, cells preferentially crawl from soft to stiff substrates by reorganizing their cytoskeleton from an isotropic to an anisotropic distribution of actin filaments. In the present paper, we propose a Cellular Potts Model to simulate single cell migration over flat substrates with variable stiffness. We have tested five configurations: (i) a substrate including a soft and a stiff region, (ii) a soft substrate including two parallel stiff stripes, (iii) a substrate made of successive stripes with increasing stiffness to create a gradient and (iv) a stiff substrate with four embedded soft squares. For each simulation, we have evaluated the morphology of the cell, the distance covered, the spreading area and the migration speed. We have then compared the numerical results to specific experimental observations showing a consistent agreement.
Collapse
Affiliation(s)
- R Allena
- Arts et Metiers ParisTech, LBM/Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France.
| | - M Scianna
- Dipartimento di Scienze Mathematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L Preziosi
- Dipartimento di Scienze Mathematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
14
|
Yang W, Yu H, Li G, Wang B, Wang Y, Liu L. Regulation of breast cancer cell behaviours by the physical microenvironment constructed via projection microstereolithography. Biomater Sci 2016; 4:863-70. [DOI: 10.1039/c6bm00103c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A considerable number of studies have examined how intrinsic factors regulate breast cancer cell behaviours; however, physical microenvironmental cues may also modulate cellular morphology, proliferation, and migration and mechanical properties.
Collapse
Affiliation(s)
- Wenguang Yang
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang
- P. R. China
| | - Haibo Yu
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang
- P. R. China
| | - Gongxin Li
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang
- P. R. China
| | - Bo Wang
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang
- P. R. China
| | - Yuechao Wang
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang
- P. R. China
| | - Lianqing Liu
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang
- P. R. China
| |
Collapse
|
15
|
|
16
|
Le Goff GC, Lee J, Gupta A, Hill WA, Doyle PS. High-Throughput Contact Flow Lithography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500149. [PMID: 27980910 PMCID: PMC5115321 DOI: 10.1002/advs.201500149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/19/2015] [Indexed: 05/20/2023]
Abstract
High-throughput fabrication of graphically encoded hydrogel microparticles is achieved by combining flow contact lithography in a multichannel microfluidic device and a high capacity 25 mm LED UV source. Production rates of chemically homogeneous particles are improved by two orders of magnitude. Additionally, the custom-built contact lithography instrument provides an affordable solution for patterning complex microstructures on surfaces.
Collapse
Affiliation(s)
- Gaelle C Le Goff
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA; Novartis Institutes for Biomedical Research 250 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jiseok Lee
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA; School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology Eonyang-eup Ulju-gun Ulsan 689-798 South Korea
| | - Ankur Gupta
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - William Adam Hill
- Novartis Institutes for Biomedical Research 250 Massachusetts Avenue Cambridge MA 02139 USA
| | - Patrick S Doyle
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
17
|
Goldshmid R, Cohen S, Shachaf Y, Kupershmit I, Sarig-Nadir O, Seliktar D, Wechsler R. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair. Sci Rep 2015; 5:12607. [PMID: 26411496 PMCID: PMC4585928 DOI: 10.1038/srep12607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/11/2015] [Indexed: 02/02/2023] Open
Abstract
Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditions were made from cross-linked PEG-fibrinogen (PF) and compared to thrombin-activated fibrin. Cell morphology, protein expression, DNA and sulfated proteoglycan (GAG) content were correlated to substrate properties such as stiffness and adhesiveness. Cell aggregation and chondrogenic markers, including collagen II and aggrecan, were observed on all PF substrates but not on fibrin. Shielding fibrinogen's adhesion domains and increasing stiffness of the material are likely contributing factors that cause the BM-MSCs to display a more chondrogenic phenotype. One composition of PF corresponding to GelrinC™--a product cleared in the EU for cartilage repair--was found to be optimal for supporting chondrogenic differentiation of BM-MSC while minimizing hypertrophy (collagen X). These findings suggest that semi-synthetic biomaterials based on ECM proteins can be designed to favourably affect BM-MSC towards repair processes involving chondrogenesis.
Collapse
Affiliation(s)
- Revital Goldshmid
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | - Dror Seliktar
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
18
|
Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, Lu TJ, Xu F. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. Crit Rev Biotechnol 2015; 36:553-65. [PMID: 25641330 DOI: 10.3109/07388551.2014.993588] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
Collapse
Affiliation(s)
- Lin Wang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Yuhui Li
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Guoyou Huang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Xiaohui Zhang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Belinda Pingguan-Murphy
- c Department of Biomedical Engineering , Faculty of Engineering, University of Malaya , Kuala Lumpur , Malaysia , and
| | - Bin Gao
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China .,d Department of Endocrinology and Metabolism , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Tian Jian Lu
- b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Feng Xu
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
19
|
Partially photodegradable hybrid hydrogels with elasticity tunable by light irradiation. Colloids Surf B Biointerfaces 2014; 126:575-9. [PMID: 25511440 DOI: 10.1016/j.colsurfb.2014.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/22/2014] [Accepted: 11/13/2014] [Indexed: 01/27/2023]
Abstract
This paper reports a simple technique to synthesize elasticity tunable hybrid hydrogels using photocleavable (N-hydroxysuccinimide terminated photocleavable tetra-arm poly(ethylene glycol); NHS-PC-4armPEG) and non-photocleavable (N-hydroxysuccinimide terminated tetra-arm poly(ethylene glycol); NHS-4armPEG) activated-ester type crosslinkers. Partially photodegradable hybrid hydrogels were synthesized by reacting the crosslinker mixture with amino-terminated tetra-arm poly(ethylene glycol) (amino-4armPEG). The photocleavable crosslinks are cleaved by irradiating light while the non-photocleavable crosslinks remain intact, resulting in decreased elasticity. We demonstrate that hydrogel elasticity can be controlled by adjusting the ratio of photocleavable NHS-PC-4armPEG and non-photocleavable NHS-4armPEG, and by varying the light exposure energy. We also show how micropatterned elasticity can be obtained in the hydrogels by irradiating with micropatterned light. These techniques could provide a novel platform to tailor the elasticity of hydrogels with microscale precision for biological studies in the near future.
Collapse
|
20
|
Prauzner-Bechcicki S, Raczkowska J, Madej E, Pabijan J, Lukes J, Sepitka J, Rysz J, Awsiuk K, Bernasik A, Budkowski A, Lekka M. PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. J Mech Behav Biomed Mater 2014; 41:13-22. [PMID: 25460399 DOI: 10.1016/j.jmbbm.2014.09.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
A deep understanding of the interaction between cancerous cells and surfaces is particularly important for the design of lab-on-chip devices involving the use of polydimethylsiloxane (PDMS). In our studies, the effect of PDMS substrate stiffness on mechanical properties of cancerous cells was investigated in conditions where the PDMS substrate is not covered with any of extracellular matrix proteins. Two human prostate cancer (Du145 and PC-3) and two melanoma (WM115 and WM266-4) cell lines were cultured on two groups of PDMS substrates that were characterized by distinct stiffness, i.e. 0.75 ± 0.06 MPa and 2.92 ± 0.12 MPa. The results showed the strong effect on cellular behavior and morphology. The detailed analysis of chemical and physical properties of substrates revealed that cellular behavior occurs only due to substrate elasticity.
Collapse
Affiliation(s)
- Szymon Prauzner-Bechcicki
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Joanna Raczkowska
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Ewelina Madej
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Joanna Pabijan
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Jaroslav Lukes
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague, Czech Republic
| | - Josef Sepitka
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague, Czech Republic
| | - Jakub Rysz
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Kamil Awsiuk
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science & Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Reymonta 19, 30-049 Kraków, Poland
| | - Andrzej Budkowski
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Małgorzata Lekka
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland.
| |
Collapse
|
21
|
Mosiewicz KA, Kolb L, van der Vlies AJ, Lutolf MP. Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater Sci 2014; 2:1640-1651. [PMID: 32481945 DOI: 10.1039/c4bm00262h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mammalian cell behavior is strongly influenced by physical and chemical cues originating from the extracellular matrix (ECM). In vivo, ECM signals are displayed in a spatiotemporally complex fashion, often composed as gradients and in concentration profiles that change in time. Most in vitro models to study the role of ECM signals in regulating cell behavior are limited in capturing this microenvironmental complexity, as they are static and homogeneous. In order to achieve a dynamic control of the physical properties of a hydrogel network, we here designed a chemical scheme to control poly(ethylene glycol) (PEG) hydrogel stiffness in space, time and intensity. Specifically, we combined caging chemistry and Michael-type addition to enable the light-triggered local control of hydrogel crosslinking density. Thiol moieties of one of the reactive PEG macromers undergoing crosslinking were equipped with caging groups to prevent their susceptibility to the counter-reactive vinyl sulfone groups on the termini of the complementary PEG macromers. Thus, the crosslinking density of the hydrogel network could be tuned by uncaging with light which directly translated into differential patterns of hydrogel stiffness. Using this approach, user-defined stiffness patterns in a range of soft tissue microenvironments (i.e. between 3-8 kPa) were obtained and shown to influence the migratory behavior of primary human mesenchymal stem cells (hMSC). Stiffness gradients in the higher range (5.5-8 kPa) were able to elicit durotaxis towards the more densely crosslinked regions, whereas those in the lower range (3-5.5 kPa) showed no significant directional preference in hMSC migration. Our patterning tool should be useful for the manipulation of cell fate in various other contexts.
Collapse
Affiliation(s)
- Katarzyna A Mosiewicz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
22
|
Shao Y, Fu J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1494-533. [PMID: 24339188 PMCID: PMC4076293 DOI: 10.1002/adma.201304431] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/11/2013] [Indexed: 04/14/2023]
Abstract
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed.
Collapse
Affiliation(s)
- Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA). Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| |
Collapse
|
23
|
Roca-Cusachs P, Sunyer R, Trepat X. Mechanical guidance of cell migration: lessons from chemotaxis. Curr Opin Cell Biol 2013; 25:543-9. [DOI: 10.1016/j.ceb.2013.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/26/2013] [Indexed: 01/04/2023]
|
24
|
Monge C, Saha N, Boudou T, Pózos-Vásquez C, Dulong V, Glinel K, Picart C. Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3432-3442. [PMID: 25100929 PMCID: PMC4119880 DOI: 10.1002/adfm.201203580] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In vivo, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. In vitro studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions.
Collapse
Affiliation(s)
- Claire Monge
- CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France
| | - Naresh Saha
- CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France; Institute of Condensed Matter & Nanosciences, Bio & Soft Matter division Croix du Sud 1, box L7.04.02 B-1348 Louvain-la-Neuve, Belgium
| | - Thomas Boudou
- CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France
| | - Cuauhtemoc Pózos-Vásquez
- Institute of Condensed Matter & Nanosciences, Bio & Soft Matter division Croix du Sud 1, box L7.04.02 B-1348 Louvain-la-Neuve, Belgium
| | - Virginie Dulong
- Laboratoire Polymères, Biopolymères, Surfaces, CNRS-UMR 6270 Université de Rouen Bd Maurice de Broglie F-76821 Mont Saint Aignan, France
| | | | | |
Collapse
|
25
|
Buchanan C, Rylander MN. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnol Bioeng 2013; 110:2063-72. [PMID: 23616255 DOI: 10.1002/bit.24944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 02/03/2023]
Abstract
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment.
Collapse
Affiliation(s)
- Cara Buchanan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Lab 340 ICTAS Building I, Stanger Street, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
26
|
Martinez JS, Lehaf AM, Schlenoff JB, Keller TCS. Cell durotaxis on polyelectrolyte multilayers with photogenerated gradients of modulus. Biomacromolecules 2013; 14:1311-20. [PMID: 23505966 DOI: 10.1021/bm301863a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Behaviors of rat aortic smooth muscle (A7r5) and human osteosarcoma (U2OS) cells on photo-cross-linked polyelectrolyte multilayers (PEMUs) with uniform, or gradients of, moduli were investigated. The PEMUs were built layer-by-layer with the polycation poly(allylamine hydrochloride) (PAH) and a polyanion poly(acrylic acid) (PAA) that was modified with photoreactive 4-(2-hydroxyethoxy) benzophenone (PAABp). PEMUs with different uniform and gradients of modulus were generated by varying the time of uniform ultraviolet light exposure and by exposure through optical density gradient filters. Analysis of adhesion, morphology, cytoskeletal organization, and motility of the cells on the PEMUs revealed that A7r5 cells established a polarized orientation toward increasing modulus on shallow modulus gradients (approximately 4.7 MPa mm(-1)) and durotaxed toward stiffer regions on steeper gradients (approximately 55 MPa mm(-1)). In contrast, U2OS cells exhibited little orientation or durotaxis on modulus gradients. These results demonstrate the utility of photo-cross-linked PEMUs to direct vascular and osteoblast cell behavior, a potential application for PEMU coatings on biomedical implants.
Collapse
Affiliation(s)
- Jessica S Martinez
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States
| | | | | | | |
Collapse
|
27
|
Diederich VE, Studer P, Kern A, Lattuada M, Storti G, Sharma RI, Snedeker JG, Morbidelli M. Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness. Biotechnol Bioeng 2013; 110:1508-19. [DOI: 10.1002/bit.24810] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/23/2022]
|
28
|
Abstract
It is increasingly recognized that cell signaling, as a chemical process, must be considered at the local, micrometer scale. Micro- and nanofabrication techniques provide access to these dimensions, with the potential to capture and manipulate the spatial complexity of intracellular signaling in experimental models. This review focuses on recent advances in adapting surface engineering for use with biomolecular systems that interface with cell signaling, particularly with respect to surfaces that interact with multiple receptor systems on individual cells. The utility of this conceptual and experimental approach is demonstrated in the context of epithelial cells and T lymphocytes, two systems whose ability to perform their physiological function is dramatically impacted by the convergence and balance of multiple signaling pathways.
Collapse
Affiliation(s)
- L.C. Kam
- Deparment of Biomedical Engineering, Columbia University, New York, NY 10027
| | - K. Shen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;
| | - M.L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
29
|
Raab M, Swift J, Dingal PCDP, Shah P, Shin JW, Discher DE. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. ACTA ACUST UNITED AC 2012; 199:669-83. [PMID: 23128239 PMCID: PMC3494847 DOI: 10.1083/jcb.201205056] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytoskeletal polarization occurs in response to mechanosensing of a transition from soft to stiff matrix during migration and promotes dephosphorylation of myosin-IIA, rearward localization of myosin-IIB, and durotaxis. On rigid surfaces, the cytoskeleton of migrating cells is polarized, but tissue matrix is normally soft. We show that nonmuscle MIIB (myosin-IIB) is unpolarized in cells on soft matrix in 2D and also within soft 3D collagen, with rearward polarization of MIIB emerging only as cells migrate from soft to stiff matrix. Durotaxis is the tendency of cells to crawl from soft to stiff matrix, and durotaxis of primary mesenchymal stem cells (MSCs) proved more sensitive to MIIB than to the more abundant and persistently unpolarized nonmuscle MIIA (myosin-IIA). However, MIIA has a key upstream role: in cells on soft matrix, MIIA appeared diffuse and mobile, whereas on stiff matrix, MIIA was strongly assembled in oriented stress fibers that MIIB then polarized. The difference was caused in part by elevated phospho-S1943–MIIA in MSCs on soft matrix, with site-specific mutants revealing the importance of phosphomoderated assembly of MIIA. Polarization is thus shown to be a highly regulated compass for mechanosensitive migration.
Collapse
Affiliation(s)
- Matthew Raab
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater 2012; 8:1838-48. [PMID: 22285429 DOI: 10.1016/j.actbio.2011.12.034] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 12/17/2011] [Accepted: 12/30/2011] [Indexed: 11/16/2022]
Abstract
Cell-encapsulating hydrogels used in regenerative medicine are designed to undergo a rapid liquid-to-solid phase transition in the presence of cells and tissues so as to maximize crosslinking and minimize cell toxicity. Light-activated free-radical crosslinking (photopolymerization) is of particular interest in this regard because it can provide rapid reaction rates that result in uniform hydrogel properties with excellent temporal and spatial control features. Among the many initiator systems available for photopolymerization, only a few have been identified as suitable for cell-based hydrogel formation owing to their water solubility, crosslinking properties and non-toxic reaction conditions. In this study, three long-wave ultraviolet (UV) light-activtied photoinitiators (PIs) were comparatively tested in terms of cytotoxicity, crosslinking efficiency and crosslinking kinetics of cell-encapsulating hydrogels. The hydrogels were photopolymerized from poly(ethylene glycol) (PEG) diacrylate or PEG-fibrinogen precursors using Irgacure® PIs I2959, I184 and I651, as well as with a chemical initiator/accelerator (APS/TEMED). The study specifically evaluated the PI type, PI concentration and UV light intensity, and how these affected the mechanical properties of the hydrogel (i.e. maximum storage modulus), the crosslinking reaction times and the reaction's cytotoxicity to encapsulated cells. Only two initiators (I2959 and I184) were identified as being suitable for achieving both high cell viability and efficient crosslinking of the cell-encapsulating hydrogels during the photopolymerization reaction. Optimization of PI concentration or irradiation intensity was particularly important for achieving maximum mechanical properties; a sub-optimal choice of PI concentration or irradiation intensity resulted in a substantial reduction in hydrogel modulus. Cytocompatibility may be compromised by unnecessarily prolonging exposure to cytotoxic free radicals or inadvertently enhancing the instantaneous dose of radicals in solution, both of which are dependent on the PI type/concentration and irradiation intensity. In the absence of a radical initiator, the short exposures to long-wave UV light irradiation (up to 5 min, 20 mW cm(-2), 365 nm) did not prove to be cytotoxic to cells. Therefore, it is important to understand the relationship between PIs, light irradiation conditions and crosslinking when attempting to identify a suitable hydrogel formation process for cell encapsulating hydrogels.
Collapse
Affiliation(s)
- Iris Mironi-Harpaz
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
31
|
Rao SS, Bentil S, DeJesus J, Larison J, Hissong A, Dupaix R, Sarkar A, Winter JO. Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors. PLoS One 2012; 7:e35852. [PMID: 22558241 PMCID: PMC3338483 DOI: 10.1371/journal.pone.0035852] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/26/2012] [Indexed: 11/29/2022] Open
Abstract
Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems.
Collapse
Affiliation(s)
- Shreyas S. Rao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah Bentil
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Jessica DeJesus
- Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - John Larison
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Alex Hissong
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Rebecca Dupaix
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Atom Sarkar
- Department of Neurosurgery and Laboratory for Nanomedicine, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Jessica O. Winter
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Potential of engineering methodologies for the application to pharmaceutical research. Arch Pharm Res 2012; 35:299-309. [DOI: 10.1007/s12272-012-0209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 01/19/2023]
|
33
|
Gillette BM, Rossen NS, Das N, Leong D, Wang M, Dugar A, Sia SK. Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials 2011; 32:8067-76. [PMID: 21840047 DOI: 10.1016/j.biomaterials.2011.05.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/12/2011] [Indexed: 01/12/2023]
Abstract
In native tissues, microscale variations in the extracellular matrix (ECM) structure can drive different cellular behaviors. Although control over ECM structure could prove useful in tissue engineering and in studies of cellular behavior, isotropic 3D matrices poorly replicate variations in local microenvironments. In this paper, we demonstrate a method to engineer local variations in the density and size of collagen fibers throughout 3D tissues. The results showed that, in engineered multiphase tissues, the structures of collagen fibers in both the bulk ECM phases (as measured by mesh size and width of fibers) as well as at tissue interfaces (as measured by density of fibers and thickness of tissue interfaces) could be modulated by varying the collagen concentrations and gelling temperatures. As the method makes use of a previously published technique for tissue bonding, we also confirmed that significant adhesion strength at tissue interfaces was achieved under all conditions tested. Hence, this study demonstrates how collagen fiber structures can be engineered within all regions of a multiphase tissue scaffold by exploiting knowledge of collagen assembly, and presents an approach to engineer local collagen structure that complements methods such as flow alignment and electrospinning.
Collapse
Affiliation(s)
- Brian M Gillette
- Department of Biomedical Engineering Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kobel S, Lutolf MP. Biomaterials meet microfluidics: building the next generation of artificial niches. Curr Opin Biotechnol 2011; 22:690-7. [PMID: 21821410 DOI: 10.1016/j.copbio.2011.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/03/2011] [Indexed: 02/06/2023]
Abstract
Biomaterials are increasingly being developed as in vitro microenvironments mimicking in vivo stem cell niches. However, current macroscale methodologies to produce these niche models fail to recapitulate the spatial and temporal characteristics of the complex native stem cell regulatory systems. Microfluidic technology offers unprecedented control over the spatial and temporal display of biological signals and therefore promises new avenues for stem cell niche engineering. Here we discuss how the two approaches can be combined to generate more physiological models of stem cell niches that could facilitate the identification of new mechanisms of stem cell regulation, profoundly impacting drug discovery and ultimately therapeutic applications of stem cells.
Collapse
Affiliation(s)
- Stefan Kobel
- Laboratory of Stem Cell Bioengineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
35
|
Kshitiz, Kim DH, Beebe DJ, Levchenko A. Micro- and nanoengineering for stem cell biology: the promise with a caution. Trends Biotechnol 2011; 29:399-408. [PMID: 21549437 PMCID: PMC3726268 DOI: 10.1016/j.tibtech.2011.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/09/2023]
Abstract
Current techniques used in stem cell research only crudely mimic the physiological complexity of the stem cell niches. Recent advances in the field of micro- and nanoengineering have brought an array of in vitro cell culture models that have enabled development of novel, highly precise and standardized tools that capture physiological details in a single platform, with greater control, consistency, and throughput. In this review, we describe the micro- and nanotechnology-driven modern toolkit for stem cell biologists to design novel experiments in more physiological microenvironments with increased precision and standardization, and caution them against potential challenges that the modern technologies might present.
Collapse
Affiliation(s)
- Kshitiz
- Department of Biomedical Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | |
Collapse
|
36
|
Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING. CAN J CHEM ENG 2010; 88:899-911. [PMID: 21874065 DOI: 10.1002/cjce.20411] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell-material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell-material interactions in context with the long-term goals of tissue engineering.
Collapse
Affiliation(s)
- Shilpa Sant
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139
| | | | | | | | | |
Collapse
|
37
|
The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation. Biomaterials 2010; 31:5805-12. [DOI: 10.1016/j.biomaterials.2010.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/04/2010] [Indexed: 12/21/2022]
|