1
|
Su D, Ding T, Gao P, Liu H, Song Y, Yuan G, He X, Meng F, Wang S. High-Performance Red Transparent Quantum Dot Light-Emitting Diodes via Fully Solution-Processed MXene/Ag NWs Top Electrode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54189-54198. [PMID: 39325447 PMCID: PMC11472265 DOI: 10.1021/acsami.4c11431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The integration of high-performance transparent top electrodes with the functional layers of transparent quantum dot light-emitting diodes (T-QLEDs) poses a notable challenge. This study presents a composite transparent top electrode composed of MXene and Ag NWs. The composite electrode demonstrates exceptional transparency (84.6% at 620 nm) and low sheet resistance (16.07 Ω sq-1), rendering it suitable for integration into T-QLEDs. The inclusion of MXene nanosheets in the composite electrode serves a dual role: adjusting the work function to enhance electron injection efficiency and enhancing the interface between Ag NWs and the emissive layer, thereby mitigating the common issue of interfacial resistance in conventional transparent electrodes. This strategic amalgamation results in notable improvements in device performance, yielding a maximum current efficiency of 23.12 cd A-1, an external quantum efficiency of 13.98%, and a brightness of 21,015 cd m-2. These performance metrics surpass those achieved by T-LEDs employing pristine Ag NW electrodes. This study offers valuable insights into T-QLED device advancement and provides a promising approach for transparent electrode fabrication in optoelectronic applications.
Collapse
Affiliation(s)
- Daojian Su
- School
of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Ting Ding
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Peili Gao
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Hang Liu
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Yinman Song
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Guoqiang Yuan
- School
of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
- Jiangmen
Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, P. R. China
| | - Xin He
- School
of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
- Jiangmen
Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, P. R. China
| | - Fanyuan Meng
- School
of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
- Jiangmen
Key Laboratory of Micro-Nano Functional Materials and Devices, Jiangmen 529020, P. R. China
| | - Shuangpeng Wang
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| |
Collapse
|
2
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
3
|
Dutta S, Sinelshchikova A, Andreo J, Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. NANOSCALE HORIZONS 2024; 9:885-899. [PMID: 38591932 DOI: 10.1039/d4nh00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water pollution and the global freshwater crisis are the most alarming concerns of the 21st century, as they threaten the sustainability and ecological balance of the environment. The growth of global population, climate change, and expansion of industrial processes are the main causes of these issues. Therefore, effective remediation of polluted water by means of detoxification and purification is of paramount importance. To this end, nanoscience and nanotechnology have emerged as viable options that hold tremendous potential toward the advancement of wastewater treatment methods to enhance treatment efficiency along with augmenting water supply via utilization of unconventional water sources. Materials at the nano level have shown great promise toward water treatment applications owing to their unique physicochemical properties. In this focus article, we highlight the role of new fundamental properties at the nano scale and material properties that are drastically increased due to the nano dimension (e.g. volume-surface ratio) and highlight their impact and potential toward water treatment. We identify and discuss how nano-properties could improve the three main domains of water remediation: the identification of pollutants, their adsorption and catalytic degradation. After discussing all the beneficial aspects we further discuss the key challenges associated with nanomaterials for water treatment. Looking at the current state-of-the-art, the potential as well as the challenges of nanomaterials, we believe that in the future we will see a significant impact of these materials on many water remediation strategies.
Collapse
Affiliation(s)
- Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Anna Sinelshchikova
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Ryapolov P, Vasilyeva A, Kalyuzhnaya D, Churaev A, Sokolov E, Shel’deshova E. Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:222. [PMID: 38276740 PMCID: PMC10819141 DOI: 10.3390/nano14020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Magnetic fluids were historically the first active nano-dispersion material. Despite over half a century of research, interest in these nano-objects continues to grow every year. This is due to the impressive development of nanotechnology, the synthesis of nanoscale structures, and surface-active systems. The unique combination of fluidity and magnetic response allows magnetic fluids to be used in engineering devices and biomedical applications. In this review, experimental results and fundamental theoretical approaches are systematized to predict the micro- and macroscopic behavior of magnetic fluid systems under different external influences. The article serves as working material for both experienced scientists in the field of magnetic fluids and novice specialists who are just beginning to investigate this topic.
Collapse
Affiliation(s)
- Petr Ryapolov
- Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia; (A.V.); (D.K.); (A.C.); (E.S.); (E.S.)
| | | | | | | | | | | |
Collapse
|
5
|
Strienz M, Schnepf A. Au 30(P iPr 2nBu) 12Cl 6-An Open Cluster Provides Insight into the Influence of the Sterical Demand of the Phosphine Ligand in the Formation of Metalloid Gold Clusters. Molecules 2024; 29:286. [PMID: 38257198 PMCID: PMC10819969 DOI: 10.3390/molecules29020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Phosphine-stabilized gold clusters are an important subgroup of metalloid gold cluster compounds and are important model compounds for nanoparticles. Although there are numerous gold clusters with different phosphine ligands, the effect of phosphine on cluster formation and structure remains unclear. While the linear alkyl-substituted phosphine gold chlorides result in a Au32 cluster, the bulky tBu3P leads to a Au20 cluster. The reduction of (iPr2nBuP)AuCl, with the steric demand of the phosphine ligand between the mentioned phosphines, results in the successful synthesis and crystallization of a new metalloid gold cluster, Au30(PiPr2nBu)12Cl6. Its structure is similar to the Au32 cluster but with two missing AuCl units. The UV/Vis studies and quantum chemical calculations show the similarities between the two clusters and the influence of the phosphine ligand in the synthesis of metalloid gold clusters.
Collapse
Affiliation(s)
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany;
| |
Collapse
|
6
|
Manaenkov O, Nikoshvili L, Bykov A, Kislitsa O, Grigoriev M, Sulman M, Matveeva V, Kiwi-Minsker L. An Overview of Heterogeneous Catalysts Based on Hypercrosslinked Polystyrene for the Synthesis and Transformation of Platform Chemicals Derived from Biomass. Molecules 2023; 28:8126. [PMID: 38138614 PMCID: PMC10745566 DOI: 10.3390/molecules28248126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Platform chemicals, also known as chemical building blocks, are substances that serve as starting materials for the synthesis of various value-added products, which find a wide range of applications. These chemicals are the key ingredients for many fine and specialty chemicals. Most of the transformations of platform chemicals are catalytic processes, which should meet the requirements of sustainable chemistry: to be not toxic for humans, to be safe for the environment, and to allow multiple reuses of catalytic materials. This paper presents an overview of a new class of heterogeneous catalysts based on nanoparticles of catalytically active metals stabilized by a polymer matrix of hypercrosslinked polystyrene (HPS). This polymeric support is characterized by hierarchical porosity (including meso- and macropores along with micropores), which is important both for the formation of metal nanoparticles and for efficient mass transfer of reactants. The influence of key parameters such as the morphology of nanoparticles (bimetallic versus monometallic) and the presence of functional groups in the polymer matrix on the catalytic properties is considered. Emphasis is placed on the use of this class of heterogeneous catalysts for the conversion of plant polysaccharides into polyols (sorbitol, mannitol, and glycols), hydrogenation of levulinic acid, furfural, oxidation of disaccharides, and some other reactions that might be useful for large-scale industrial processes that aim to be sustainable. Some challenges related to the use of HPS-based catalysts are addressed and multiple perspectives are discussed.
Collapse
Affiliation(s)
- Oleg Manaenkov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Linda Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Alexey Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Olga Kislitsa
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Maxim Grigoriev
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Mikhail Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Valentina Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Lioubov Kiwi-Minsker
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
- Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB-EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Slynchuk V, Schedel C, Scheele M, Schnepf A. Stabilization of Colloidal Germanium Nanoparticles: From the Study to the Prospects of the Application in Thin-Film Technology. Int J Mol Sci 2023; 24:15948. [PMID: 37958931 PMCID: PMC10649905 DOI: 10.3390/ijms242115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
We present the stabilization of halide-terminated Ge nanoparticles prepared via a disproportionation reaction of metastable Ge(I)X solutions with well-defined size distribution. Further tailoring of the stability of the Ge nanoparticles was achieved using variations in the substituent. Ge nanoparticles obtained in this way are readily dispersed in organic solvents, long-term colloidally stable, and are perfect prerequisites for thin-film preparation. This gives these nanomaterials a future in surface-dependent optical applications, as shown for the halide-terminated nanoparticles.
Collapse
Affiliation(s)
- Viktoriia Slynchuk
- Institute of Inorganic Chemistry, University of Tuebingen, Auf der Morgenstelle 18, D-72076 Tuebingen, Germany;
| | - Christine Schedel
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, Auf der Morgenstelle 18, D-72076 Tuebingen, Germany (M.S.)
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, Auf der Morgenstelle 18, D-72076 Tuebingen, Germany (M.S.)
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, University of Tuebingen, Auf der Morgenstelle 18, D-72076 Tuebingen, Germany;
| |
Collapse
|
8
|
Yu X, Andreo J, Walden M, Del Campo JF, Basabe-Desmonts L, Benito-Lopez F, Burg TP, Wuttke S. The Importance of Dean Flow in Microfluidic Nanoparticle Synthesis: A ZIF-8 Case Study. SMALL METHODS 2023:e2300603. [PMID: 37772633 DOI: 10.1002/smtd.202300603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The Dean Flow, a physics phenomenon that accounts for the impact of channel curvature on fluid dynamics, has great potential to be used in microfluidic synthesis of nanoparticles. This study explores the impact of the Dean Flow on the synthesis of ZIF-8 particles. Several variables that influence the Dean Equation (the mathematical expression of Dean Flow) are tested to validate the applicability of this expression in microfluidic synthesis, including the flow rate, radius of curvature, channel cross sectional area, and reagent concentration. It is demonstrated that the current standard of reporting, providing only the flow rate and crucially not the radius of curvature, is an incomplete description that will invariably lead to irreproducible syntheses across different laboratories. An alternative standard of reporting is presented and it is demonstrated how the sleek and simple math of the Dean Equation can be used to precisely tune the final dimensions of high quality, monodisperse ZIF-8 nanoparticles between 40 and 700 nm.
Collapse
Affiliation(s)
- Xiangjiang Yu
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Madeline Walden
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Javier F Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Lourdes Basabe-Desmonts
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, 01006, Spain
| | - Fernando Benito-Lopez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Thomas P Burg
- Department of Electrical Engineering and Information Technology, The Darmstadt University of Technology, 64283, Darmstadt, Germany
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
9
|
Lin Q, Zhu Y, Wang Y, Li D, Zhao Y, Liu Y, Li F, Huang W. Flexible Quantum Dot Light-Emitting Device for Emerging Multifunctional and Smart Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210385. [PMID: 36880739 DOI: 10.1002/adma.202210385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Quantum dot light-emitting diodes (QLEDs), owing to their exceptional performances in device efficiency, color purity/tunability in the visible region and solution-processing ability on various substrates, become a potential candidate for flexible and ultrathin electroluminescent (EL) lighting and display. Moreover, beyond the lighting and display, flexible QLEDs are enabled with endless possibilities in the era of the internet of things and artificial intelligence by acting as input/output ports in wearable integrated systems. Challenges remain in the development of flexible QLEDs with the goals for high performance, excellent flexibility/even stretchability, and emerging applications. In this paper, the recent developments of QLEDs including quantum dot materials, working mechanism, flexible/stretchable strategies and patterning strategies, and highlight its emerging multifunctional integrations and smart applications covering wearable optical medical devices, pressure-sensing EL devices, and neural smart EL devices, are reviewed. The remaining challenges are also summarized and an outlook on the future development of flexible QLEDs made. The review is expected to offer a systematic understanding and valuable inspiration for flexible QLEDs to simultaneously satisfy optoelectronic and flexible properties for emerging applications.
Collapse
Affiliation(s)
- Qinghong Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yangbin Zhu
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, P. R. China
| | - Yue Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Deli Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
10
|
Korobkov SM, Birin KP, Khodan AN, Grafov OY, Gorbunova YG, Tsivadze AY. Nanostructured Aluminum Oxyhydroxide-A Prospective Support for Functional Porphyrin-Based Materials. Int J Mol Sci 2023; 24:12165. [PMID: 37569539 PMCID: PMC10418628 DOI: 10.3390/ijms241512165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A method for the grafting of unsymmetrical A2BC-type 5,15-bis(4-butoxyphenyl)-10-(4-carboxyphenyl)-20-(phenanthrenoimidazolyl)-porphyrin onto the surface of nanostructured aluminum oxyhydroxide modified with a single SiO2 layer (NAOM) was successfully developed. A straightforward procedure towards surface modification of NAOM allowed us to prepare a new porphyrin-containing hybrid material. The obtained 3D heterostructure was extensively characterized using XPS, TEM and diffuse reflectance spectroscopy. Structural and morphological peculiarities of the inorganic support before and after the immobilization procedure were studied and discussed in detail. The stability of the material against leaching and the porphyrin immobilization ratio ca. 14% by weight were also revealed.
Collapse
Affiliation(s)
- Stepan M. Korobkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
| | - Anatole N. Khodan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
| | - Oleg Yu. Grafov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, bldg 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| |
Collapse
|
11
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
12
|
Mohajer F, Mohammadi Ziarani G, Badiei A, Iravani S, Varma RS. Recent advances in covalent organic frameworks (COFs) for wound healing and antimicrobial applications. RSC Adv 2023; 13:8136-8152. [PMID: 36922952 PMCID: PMC10009765 DOI: 10.1039/d2ra07194k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/04/2023] [Indexed: 03/16/2023] Open
Abstract
Covalent organic frameworks (COFs) are crystal-like organic structures such as cartography buildings prepared from appropriately pre-designed construction block precursors. Moreover, after the expansion of the first COF in 2005, numerous researchers have been developing different materials for versatile applications such as sensing/imaging, cancer theranostics, drug delivery, tissue engineering, wound healing, and antimicrobials. COFs have harmonious pore size, enduring porosity, thermal stability, and low density. In addition, a wide variety of functional groups could be implanted during their construction to provide desired constituents, including antibodies and enzymes. The reticular organic frameworks comprising porous hybrid materials connected via a covalent bond have been studied for improving wound healing and dressing applications due to their long-standing antibacterial properties. Several COF-based systems have been planned for controlled drug delivery with wound healing purposes, targeting drugs to efficiently inhibit the growth of pathogenic microorganisms at the wound spot. In addition, COFs can be deployed for combinational therapy using photodynamic and photothermal antibacterial therapy along with drug delivery for healing chronic wounds and bacterial infections. Herein, the most recent advancements pertaining to the applications of COF-based systems against bacterial infections and for wound healing are considered, concentrating on challenges and future guidelines.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Tehran Iran
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL) Studentská 1402/2 Liberec 1 461 17 Czech Republic
| |
Collapse
|
13
|
Lu S, Morrow DJ, Li Z, Guo C, Yu X, Wang H, Schultz JD, O'Connor JP, Jin N, Fang F, Wang W, Cui R, Chen O, Su C, Wasielewski MR, Ma X, Li X. Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest-Host Electron and Vibrational Energy Transfer. J Am Chem Soc 2023; 145:5191-5202. [PMID: 36745391 DOI: 10.1021/jacs.2c11981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the field of supramolecular chemistry, host-guest systems have been extensively explored to encapsulate a wide range of substrates, owing to emerging functionalities in nanoconfined space that cannot be achieved in dilute solutions. However, host-guest chemistry is still limited to encapsulation of small guests. Herein, we construct a water-soluble metallo-supramolecular hexagonal prism with a large hydrophobic cavity by anchoring multiple polyethylene glycol chains onto the building blocks. Then, assembled prisms are able to encapsulate quantum dots (QDs) with diameters of less than 5.0 nm. Furthermore, we find that the supramolecular cage around each QD strongly modifies the photophysics of the QD by universally increasing the rates of QD relaxation processes via ultrafast electron and vibrational energy transfer. Taken together, these efforts expand the scope of substrates in host-guest systems and provide a new approach to tune the optical properties of QDs.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, Illinois 60208, United States.,Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Choi BK, Kim J, Luo Z, Kim J, Kim JH, Hyeon T, Mehraeen S, Park S, Park J. Shape Transformation Mechanism of Gold Nanoplates. ACS NANO 2023; 17:2007-2018. [PMID: 36692347 DOI: 10.1021/acsnano.2c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shape control is of key importance in utilizing the structure-property relationship of nanocrystals. The high surface-to-volume ratio of nanocrystals induces dynamic surface reactions on exposed facets of nanocrystals, such as adsorption, desorption, and diffusion of surface atoms, all of which are important in overall shape transformation. However, it is difficult to track shape transformation of nanocrystals and understand the underlying mechanism at the level of distinguishing events on individual facets. Herein, we investigate changes of individual surface-exposed facets during diverse shape transformations of Au nanocrystals using liquid phase TEM in various chemical potentials and kinetic Monte Carlo simulations. The results reveal that the diffusion of surface atoms on nanocrystals is the governing factor in determining the final structure in shape transformation, causing the fast transformation of unstable facets to truncated morphology with minimized surface energy. The role of surface diffusion introduced here can be further applied to understanding the formation mechanism of variously shaped nanocrystals.
Collapse
Affiliation(s)
- Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Zhen Luo
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Joodeok Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Shafigh Mehraeen
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, 145, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16229, Republic of Korea
| |
Collapse
|
15
|
Walker O, Rébiscoul D, Odorico M, Tardif S, Pellet-Rostaing S, Arrachart G. Toward a method of understanding the complexation of Rare Earth Element by functionalized organosilanes in aqueous media. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Liu F, Bagi SD, Su Q, Chakrabarti R, Barral R, Gamekkanda JC, Hu C, Mascia S. Targeting Particle Size Specification in Pharmaceutical Crystallization: A Review on Recent Process Design and Development Strategies and Particle Size Measurements. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| | - Sujay D. Bagi
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| | - Qinglin Su
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| | - Rajshree Chakrabarti
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| | - Rita Barral
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| | - Janaka C. Gamekkanda
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| | - Chuntian Hu
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| | - Salvatore Mascia
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts01801, United States
| |
Collapse
|
17
|
Takagai Y, Nagasaku M, Nakagawa T, Takase T, Hinze WL. Preparation of Highly Concentrated Uniform-Sized Silver Nanoparticles via Use of Thermoresponsive Zwitterionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13577-13583. [PMID: 36279511 DOI: 10.1021/acs.langmuir.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the popular use of citrate for the reduction of silver ions, this process suffers from slow crystal growth and broad size distribution. The rapid and effective synthesis of highly concentrated and stable spherical silver nanoparticles (AgNPs) confined in the surfactant-rich phase of thermoresponsive 3-(alkyldimethylammonio)-propyl sulfate surfactants obtained after reaction with citrate ions at high temperature is described. The present approach using the zwitterionic surfactant offers an alternative rapid approach for production of AgNPs and an in situ phase separation step that serves to "extract" and concentrate the AgNPs in the surfactant-rich phase. Almost all (synthetic yield 99.9%, extraction efficiency 98.6%) of the synthesized AgNPs with a diameter of 21.0 ± 2.5 nm were incorporated into the phase-separated surfactant-rich phase at pH 11, and the capacity (maximum concentration) was 3.4 × 1013 particles/mL. The AgNPs were stable upon long-term storage (at least 3 months).
Collapse
Affiliation(s)
- Yoshitaka Takagai
- Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima960-1296, Japan
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima960-1296, Japan
| | - Miyu Nagasaku
- Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima960-1296, Japan
| | - Taichi Nakagawa
- Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima960-1296, Japan
| | - Tsugiko Takase
- Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima960-1296, Japan
| | - Willie L Hinze
- Department of Chemistry, Wake Forest University, P.O. Box 7486, Winston-Salem, North Carolina27109, United States
| |
Collapse
|
18
|
Zheng J, Karmakar B, El-kott AF, Elsaid FG, Shati AA, Negm S, Alsayegh AA, El-Saber Batiha G. Characterization and cytotoxicity and antihuman renal cell carcinoma potentials of starch capped-copper oxide nanoparticles synthesized by ultrasonic irradiation: Introducing a novel chemotherapeutic drug. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
20
|
Rodrigues MO, Isoppo VG, Moro AV, Rodembusch FS. Photoactive organic-inorganic hybrid materials: From silylated compounds to optical applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Tella JO, Adekoya JA, Ajanaku KO. Mesoporous silica nanocarriers as drug delivery systems for anti-tubercular agents: a review. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220013. [PMID: 35706676 PMCID: PMC9174711 DOI: 10.1098/rsos.220013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
The treatment and management of tuberculosis using conventional drug delivery systems remain challenging due to the setbacks involved. The lengthy and costly treatment regime and patients' non-compliance have led to drug-resistant tuberculosis, which is more difficult to treat. Also, anti-tubercular drugs currently used are poor water-soluble drugs with low bioavailability and poor therapeutic efficiency except at higher doses which causes drug-related toxicity. Novel drug delivery carrier systems such as mesoporous silica nanoparticles (MSNs) have been identified as nanomedicines capable of addressing the challenges mentioned due to their biocompatibility. The review discusses the sol-gel synthesis and chemistry of MSNs as porous drug nanocarriers, surface functionalization techniques and the influence of their physico-chemical properties on drug solubility, loading and release kinetics. It outlines the physico-chemical characteristics of MSNs encapsulated with anti-tubercular drugs.
Collapse
Affiliation(s)
| | - Joseph Adeyemi Adekoya
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112212, Nigeria
| | - Kolawole Oluseyi Ajanaku
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112212, Nigeria
| |
Collapse
|
22
|
Ruiz Arana L, Ströh J, Amtsfeld J, Doungmo G, Novikov D, Khadiev A, Etter M, Wharmby M, Suta M, Terraschke H. Crystallisation of phosphates revisited: a multi-step formation process for SrHPO 4. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2021-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
SrHPO4 is used in a multitude of applications, including biomedicine, catalysts, luminescent materials, and batteries. However, the performance of these materials depends on the ability to control the formation and transformation of strontium phosphates. This work focuses on the application of in situ and ex situ measurements, including synchrotron-based X-ray diffraction (XRD) analysis, luminescence of Ce3+ and Eu3+ dopants, light transmission, reflectance, and thermogravimetry to track structural changes in SrHPO4 under different experimental conditions. Ex situ analysis of aliquots revealed favourable crystallisation of β-SrHPO4 through the formation of Sr6H3(PO4)5·2H2O as an intermediate. Furthermore, in situ analysis showed that the reaction mechanism evolves via the initial formation of amorphous strontium phosphate and Sr5(PO4)3OH, which subsequently transforms to γ-SrHPO4. Analysis of the luminescence properties of the lanthanide dopants provided insights into the coordination environments of the substituted Sr2+ sites.
Collapse
Affiliation(s)
- Laura Ruiz Arana
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Jonas Ströh
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Jasper Amtsfeld
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Giscard Doungmo
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
| | - Dmitri Novikov
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Azat Khadiev
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Michael Wharmby
- Deutsches Elektronen-Synchrotron (DESY), FS-PETRA-D , Notkestraße 85, 22607 Hamburg , Germany
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf , Universitätsstraße 1, 40225 , Düsseldorf , Germany
| | - Huayna Terraschke
- Institut für Anorgansiche Chemie, Christian-Albrechts-Universität zu Kiel , Max-Eyth-Straße 2, 24118 Kiel , Germany
- Kiel Nano, Surface and Interface Science (KINSIS), Christian-Albrechts-Universität zu Kiel , Christian-Albrechts-Platz 4 , 24118 Kiel , Germany
| |
Collapse
|
23
|
Rana P, Jeevanandam P. Synthesis of NiO Nanoparticles via Calcination of Surfactant Intercalated Layered Nickel Hydroxides and their Application as Adsorbent. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Doherty S, Knight JG, Alharbi HY, Paterson R, Wills C, Dixon C, Šiller L, Chamberlain TW, Griffiths A, Collins SM, Wu K, Simmons MD, Bourne RA, Lovelock KRJ, Seymour J. Efficient Hydrolytic Hydrogen Evolution from Sodium Borohydride Catalyzed by Polymer Immobilized Ionic Liquid‐Stabilized Platinum Nanoparticles. ChemCatChem 2022. [DOI: 10.1002/cctc.202101752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Simon Doherty
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Julian G. Knight
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Hussam Y. Alharbi
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Reece Paterson
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Corinne Wills
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Casey Dixon
- Newcastle University Centre for Catalysis (NUCAT) School of Chemistry, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Lidija Šiller
- School of Engineering, Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Thomas W. Chamberlain
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Anthony Griffiths
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Sean M. Collins
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Kejun Wu
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Matthew D. Simmons
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Richard A. Bourne
- Institute of Process Research & Development School of Chemistry and School of Chemical and Process Engineering University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | | | - Jake Seymour
- School of Chemistry, Food and Pharmacy University of Reading Reading RG6 6AT UK
| |
Collapse
|
25
|
Doungmo G, Morais AF, Mustafa D, Kamgaing T, Njanja E, Etter M, Tonlé IK, Terraschke H. How do layered double hydroxides evolve? First in situ insights into their synthesis processes. RSC Adv 2022; 12:33469-33478. [DOI: 10.1039/d2ra05269e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
In situ characterisation techniques granted unprecedented experimental access to the formation dynamics of carbonate-intercalated Mg2+/Al3+ LDHs.
Collapse
Affiliation(s)
- G. Doungmo
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max Eyth-Str. 2, 24118 Kiel, Germany
- Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - A. F. Morais
- Instituto de Física da Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - D. Mustafa
- Instituto de Física da Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - T. Kamgaing
- Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - E. Njanja
- Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - M. Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - I. K. Tonlé
- Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - H. Terraschke
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max Eyth-Str. 2, 24118 Kiel, Germany
| |
Collapse
|
26
|
Korath Shivan S, Maier A, Scheele M. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chem Commun (Camb) 2022; 58:6998-7017. [DOI: 10.1039/d2cc00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a comprehensive account of the optical, electrical and mechanical properties that result from the self-assembly of colloidal nanocrystals or atomically precise nanoclusters into crystalline arrays with long-range order....
Collapse
|
27
|
Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010141] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metallic nanoparticles are a new class of materials with applications in medicine, pharmaceutical and agriculture. Using biological, chemical and physical approaches, nanoparticles with amazing properties are obtained. Copper is one of the most-found elements and plays an important part in the normal functioning of organisms. Coper nanoparticles have superior antibacterial properties when comparing them to present day antibiotics. Moreover, apart from their antibacterial role, antifungal, antiviral and anticancer properties have been described. Although the mechanism of actions is not completely understood, copper nanoparticles can become a viable alternative in fighting multi-resistant bacteria strains. We hereby review the already existing data on copper nanoparticle synthesis, effects and mechanisms of action as well as toxicity.
Collapse
|
28
|
Green Fabrication of Zinc Oxide Nanoparticles Using Phlomis Leaf Extract: Characterization and In Vitro Evaluation of Cytotoxicity and Antibacterial Properties. Molecules 2021; 26:molecules26206140. [PMID: 34684721 PMCID: PMC8537537 DOI: 10.3390/molecules26206140] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023] Open
Abstract
Green nanoparticle synthesis is an environmentally friendly approach that uses natural solvents. It is preferred over chemical and physical techniques due to the time and energy savings. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) through a green method that used Phlomis leaf extract as an effective reducing agent. The synthesis and characterization of ZnO NPs were confirmed by UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, and Field Emission Scanning Electron Microscope (FESEM) techniques. In vitro cytotoxicity was determined in L929 normal fibroblast cells using MTT assay. The antibacterial activity of ZnO nanoparticles was investigated using a disk-diffusion method against S. aureus and E. coli, as well as minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) content concentrations. XRD results confirmed the nanoparticles’ crystalline structure. Nanoparticle sizes were found to be around 79 nm by FESEM, whereas the hydrodynamic radius of nanoparticles was estimated to be around 165 ± 3 nm by DLS. FTIR spectra revealed the formation of ZnO bonding and surfactant molecule adsorption on the surface of ZnO NPs. It is interesting to observe that aqueous extracts of Phlomis leave plant are efficient reducing agents for green synthesis of ZnO NPs in vitro, with no cytotoxic effect on L929 normal cells and a significant impact on the bacteria tested.
Collapse
|
29
|
Uflyand IE, Shcherbakov IN, Popov LD, Drogan EG, Tautieva MA, Burlakova VE. Copper(II) Stearate-Based Copper-Containing Nanomaterials as Antifriction Additives to Lubricating Oils. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221070089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. CHEMOSPHERE 2021; 281:130717. [PMID: 34020194 DOI: 10.1016/j.chemosphere.2021.130717] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Porous Metal-Organic Frameworks (MOFs) have emerged as eye-catching materials in recent years. They are widely used in numerous fields of chemistry thanks to their desirable properties. MOFs have a key role in the development of bioimaging platforms that are hopefully expected to effectually pave the way for accurate and selective detection and diagnosis of abnormalities. Recently, many types of MOFs have been employed for detection of RNA, DNA, enzyme activity and small-biomolecules, as well as for magnetic resonance imaging (MRI) and computed tomography (CT), which are valuable methods for clinical analysis. The optimal performance of the MOF in the bio-imaging field depends on the core structure, synthesis method and modifications processes. In this review, we have attempted to present crucial parameters for designing and achieving an efficient MOF as bioimaging platforms, and provide a roadmap for researchers in this field. Moreover, the influence of modifications/fractionalizations on MOFs performance has been thoroughly discussed and challenging problems have been extensively addressed. Consideration is mainly focused on the principal concepts and applications that have been achieved to modify and synthesize advanced MOFs for future applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
31
|
Qin P, Yan J, Zhang W, Pan T, Zhang X, Huang W, Zhang W, Fu Y, Shen Y, Huo F. Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal-Organic Framework Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38325-38332. [PMID: 34365788 DOI: 10.1021/acsami.1c10140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal nanoparticles (MNPs) have exhibited superior catalytic performance in various heterogeneous catalysis applications, which is usually influenced or even determined by the physicochemical properties of their porous supports. It is well acknowledged that understanding the regulation mechanism of supports is an important prerequisite to predict the catalytic performance of supported MNPs as well as the development of advanced catalysts. Here, we demonstrated that different transition-metal clusters (from Group IIIB to Group IIB) within metal-organic frameworks (MOFs) could accurately regulate the surface electronic status of supported platinum nanoparticles (Pt NPs), and the Pt/MOF composites showed a periodic activity trend in hydrogenation of 1-hexene. A strong correlation was found between the catalytic activity of Pt/MOF composites and the number of electrons in their outmost d orbitals of the transition-metal species, suggesting that the latter could play the role of prediction descriptor. Furthermore, this descriptor can be extended to predict the hydrogenation activity of more Pt/MOF composites and provide an important guiding principle for the design of supported MNPs catalysts.
Collapse
Affiliation(s)
- Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Junyang Yan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wenlei Zhang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
32
|
Peller M, Lanza A, Wuttke S. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Peller
- Department of Radiology University Hospital, LMU Munich Munich 80539 Germany
| | - Arianna Lanza
- Center for Nanotechnology Innovation @NEST Istituto Italiano di Tecnologia Pisa 56127 Italy
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Ikerbasque‐Basque Foundation for Science Bilbao 48011 Spain
| |
Collapse
|
33
|
Yang J, Yoo J, Yu WS, Choi MK. Polymer-Assisted High-Resolution Printing Techniques for Colloidal Quantum Dots. Macromol Res 2021. [DOI: 10.1007/s13233-021-9055-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Banga I, Paul A, Sardesai AU, Muthukumar S, Prasad S. ZEUS (ZIF-based electrochemical ultrasensitive screening) device for isopentane analytics with focus on lung cancer diagnosis. RSC Adv 2021; 11:20519-20528. [PMID: 35479925 PMCID: PMC9033977 DOI: 10.1039/d1ra03093k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 01/28/2023] Open
Abstract
Breath analytics is currently being explored for the development of point-of-care devices in non-invasive disease detection. It is based on the measurement of volatile organic compounds (VOCs) and gases that are produced by the body because of the metabolic pathways. The levels of these metabolites vary due to alteration in the endogenous oxidative stress-related metabolic pathways and can be correlated to understand the underlying disease condition. The levels of exhaled hydrocarbons in human breath can be used to design a rapid, easy to use method for lung cancer detection. This work outlines the development of an electrochemical sensing platform that can be used for the non-invasive diagnosis of lung cancer by monitoring isopentane levels in breath. This electrochemical sensor platform involves the use of [BMIM]BF4@ZIF-8 for sensing the target analyte. This synthesized nanocomposite offers advantages for gas sensing applications as it possesses unique properties such as an electrochemically active Room Temperature Ionic Liquid (RTIL) and a crosslinking Metal Organic Framework (MOF) that provides increased surface area for gas absorption. This is the first report of a hydrocarbon-based sensor platform developed for lung cancer diagnosis. The developed sensor platform displays sensitivity and specificity for the detection of isopentane up to 600 parts-per-billion. We performed structural and morphological characterization of the synthesized nanocomposite using various analytical techniques such as PXRD, FESEM, FTIR, and DLS. We further analyzed the electrochemical activity of the synthesized nanocomposite using a standard glassy carbon electrode. The application of the nanocomposite for isopentane sensing was done using a commercially available carbon screen printed electrode. The results so obtained helped in strengthening our hypothesis and serve as a proof-of-concept for the development of a breathomics-enabled electrochemical strategy. We illustrated the specificity of the developed nanocomposite by cross-reactivity studies. We envision that the detection platform will allow sensitive and specific sensing of isopentane levels such that it can used for point of care applications in noninvasive and early diagnosis of lung cancer, thereby leading to its early treatment and decrease in mortality rate.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
| | - Abha Umesh Sardesai
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
- EnLiSense LLC 1813 Audubon Pond Way Allen TX 75013 USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
- EnLiSense LLC 1813 Audubon Pond Way Allen TX 75013 USA
| |
Collapse
|
35
|
Kohl Y, Hesler M, Drexel R, Kovar L, Dähnhardt-Pfeiffer S, Selzer D, Wagner S, Lehr T, von Briesen H, Meier F. Influence of Physicochemical Characteristics and Stability of Gold and Silver Nanoparticles on Biological Effects and Translocation across an Intestinal Barrier-A Case Study from In Vitro to In Silico. NANOMATERIALS 2021; 11:nano11061358. [PMID: 34063963 PMCID: PMC8224057 DOI: 10.3390/nano11061358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
A better understanding of their interaction with cell-based tissue is a fundamental prerequisite towards the safe production and application of engineered nanomaterials. Quantitative experimental data on the correlation between physicochemical characteristics and the interaction and transport of engineered nanomaterials across biological barriers, in particular, is still scarce, thus hampering the development of effective predictive non-testing strategies. Against this background, the presented study investigated the translocation of gold and silver nanoparticles across the gastrointestinal barrier along with related biological effects using an in vitro 3D-triple co-culture cell model. Standardized in vitro assays and quantitative polymerase chain reaction showed no significant influence of the applied nanoparticles on both cell viability and generation of reactive oxygen species. Transmission electron microscopy indicated an intact cell barrier during the translocation study. Single particle ICP-MS revealed a time-dependent increase of translocated nanoparticles independent of their size, shape, surface charge, and stability in cell culture medium. This quantitative data provided the experimental basis for the successful mathematical description of the nanoparticle transport kinetics using a non-linear mixed effects modeling approach. The results of this study may serve as a basis for the development of predictive tools for improved risk assessment of engineered nanomaterials in the future.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
- Correspondence: (Y.K.); (F.M.); Tel.: +49-6897-9071-256 (Y.K.); +49-8191-985-6880 (F.M.)
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Roland Drexel
- Postnova Analytics GmbH, 86899 Landsberg am Lech, Germany;
| | - Lukas Kovar
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | | | - Dominik Selzer
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Thorsten Lehr
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Florian Meier
- Postnova Analytics GmbH, 86899 Landsberg am Lech, Germany;
- Correspondence: (Y.K.); (F.M.); Tel.: +49-6897-9071-256 (Y.K.); +49-8191-985-6880 (F.M.)
| |
Collapse
|
36
|
Sahm CD, Mates-Torres E, Eliasson N, Sokołowski K, Wagner A, Dalle KE, Huang Z, Scherman OA, Hammarström L, García-Melchor M, Reisner E. Imidazolium-modification enhances photocatalytic CO 2 reduction on ZnSe quantum dots. Chem Sci 2021; 12:9078-9087. [PMID: 34276937 PMCID: PMC8261709 DOI: 10.1039/d1sc01310f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Colloidal photocatalysts can utilize solar light for the conversion of CO2 to carbon-based fuels, but controlling the product selectivity for CO2 reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO2 reduction even in the absence of transition metal co-catalysts. Besides H2, imidazolium-modified ZnSe QDs evolve up to 2.4 mmolCO gZnSe -1 (TONQD > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using 1H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO2 - intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO2 reduction.
Collapse
Affiliation(s)
- Constantin D Sahm
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| | - Eric Mates-Torres
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green Dublin 2 Ireland
| | - Nora Eliasson
- Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Kamil Sokołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk.,Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK.,Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| | - Kristian E Dalle
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| | - Zehuan Huang
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk.,Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK
| | - Oren A Scherman
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk.,Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green Dublin 2 Ireland
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| |
Collapse
|
37
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
38
|
Bhat SA, Rao DSS, Prasad SK, Yelamaggad CV. Chiral plasmonic liquid crystal gold nanoparticles: self-assembly into a circular dichroism responsive helical lamellar superstructure. NANOSCALE ADVANCES 2021; 3:2269-2279. [PMID: 36133755 PMCID: PMC9419753 DOI: 10.1039/d0na01070g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/19/2021] [Indexed: 05/09/2023]
Abstract
Owing to their proven and promising potential in various technological endeavors ranging from catalysis and sensing to invisibility cloaks made from metamaterials, chiral plasmonic superstructures resulting from the directed self-assembly of optically active metal nanoparticles (MNPs) have been pursued intensively in recent years. Several strategic efforts have emerged especially to accomplish advanced nanomaterials assembling into liquid crystalline (LC) helical structures, where MNPs are regularly packed in fluid/frozen arrays/layers or wires (columns). While the helical fluid columnar arrays (molecular wires) showing circular dichroism (CD) have been realized, the discovery of fluid chiral lamellar ordering, where the dielectric and conducting regimes are arranged alternatively, has hitherto remained highly elusive. Herein we report the first examples of monodisperse LC-gold NPs (LC-GNPs) self-assembling into a fluid/frozen lamellar structure exhibiting CD activity. Notably, these new, exceptional LC-GNPs have been realized by simple, hassle-free protocols that involve the room temperature addition of LC dimer-like arylamines to Au(iii), where the amines not only reduce Au(iii) to Au(0) but also bind strongly to the central GNP scaffold. Their molecular structure, mesomorphism, and ability to interact with circularly polarized light have been evidenced unambiguously and could play an important role in realizing metamaterials in the visible region.
Collapse
Affiliation(s)
- Sachin A Bhat
- Centre for Nano and Soft Matter Sciences (CeNS) P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli Bengaluru 560012 India
- Department of Chemistry, Mangalore University Mangalagangotri 574 199 India
| | - D S Shankar Rao
- Centre for Nano and Soft Matter Sciences (CeNS) P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli Bengaluru 560012 India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences (CeNS) P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli Bengaluru 560012 India
| | | |
Collapse
|
39
|
Luminescent Nanomaterials (I). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33782869 DOI: 10.1007/978-981-33-6158-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
From molecular probes, also known as fluorophores (typically emitting a longer wavelength than the absorbing wavelength), to inorganic nanoparticles, various light-emitting materials have been actively studied and developed for various applications in life science owing to their superior imaging and sensing ability. Especially after the breakthrough development of quantum dots (QDs), studies have pursued the development of the optical properties and biological applications of luminescent inorganic nanoparticles such as upconversion nanoparticles (UCNPs), metal nanoclusters, carbon dots, and so on. In this review, we first provide a brief explanation about the theoretical background and traditional concepts of molecular fluorophores. Then, currently developed luminescent nanoparticles are described as sensing and imaging platforms from general aspects to technical views.
Collapse
|
40
|
Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS NANO 2021; 15:3900-3926. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.
Collapse
Affiliation(s)
- Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Orysia T Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- University of California-Berkeley, Berkeley, California 94720, United States
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Evelyn Ploetz
- Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation for Science, Bilbao 48009, Spain
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
41
|
Egeberg A, Wenzel O, Popescu R, Gerthsen D, Feldmann C. Pyridine-based Liquid-Phase Synthesis of Crystalline TiN and ZnSiN 2 Nanoparticles. ChemistryOpen 2021; 10:334-339. [PMID: 33369889 PMCID: PMC7953485 DOI: 10.1002/open.202000315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
TiN and ZnSiN2 nanoparticles are obtained via a novel pyridine-based synthesis route. This one-pot liquid-phase route strictly avoids all oxygen sources (including starting materials, surface functionalization, solvents), which is highly relevant in regard of the material purity and material properties. Colloidally stable suspensions of crystalline, small-sized TiN (5.4±0.4 nm) and ZnSiN2 (5.2±1.1 nm) are instantaneously available from the liquid phase. Elemental analysis and electron energy loss spectroscopy confirm the purity of the compounds and specifically the absence of oxygen. The as-prepared ZnSiN2 show yellowish emission (500-700 nm) already at room temperature with its maximum at 570 nm.
Collapse
Affiliation(s)
- Alexander Egeberg
- Institut für Anorganische ChemieKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Olivia Wenzel
- Laboratorium für ElektronenmikroskopieKarlsruhe Institute of Technology (KIT)Engesserstrasse 776131KarlsruheGermany
| | - Radian Popescu
- Laboratorium für ElektronenmikroskopieKarlsruhe Institute of Technology (KIT)Engesserstrasse 776131KarlsruheGermany
| | - Dagmar Gerthsen
- Laboratorium für ElektronenmikroskopieKarlsruhe Institute of Technology (KIT)Engesserstrasse 776131KarlsruheGermany
| | - Claus Feldmann
- Institut für Anorganische ChemieKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| |
Collapse
|
42
|
Copper-Containing Nanomaterials Derived from Copper(II) Laurate as Antifriction Additives for Oil Lubricants. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01855-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Synthesis and thermal properties of magnetite nano structures and DFT analysis of Fe3O4 cluster as its smallest representative unit*. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Uflyand IE, Shcherbakov IN, Popov LD, Irkha VA, Drogan EG, Zadoshenko EG, Burlakova VE, Kharissova OV. The influence of the nature of carboxylate precursors on the composition and tribological performance of copper-containing nanomaterials. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1850705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Igor N. Shcherbakov
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Leonid D. Popov
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Vladimir A. Irkha
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Science, Rostov-on-Don, Russian Federation
- Research and Education Center “Materials”, Don State Technical University, Rostov-on-Don, Russian Federation
| | - Ekaterina G. Drogan
- Department of Chemistry, Don State Technical University, Rostov-on-Don, Russian Federation
| | - Elena G. Zadoshenko
- Department of Chemistry, Don State Technical University, Rostov-on-Don, Russian Federation
| | - Victoria E. Burlakova
- Department of Chemistry, Don State Technical University, Rostov-on-Don, Russian Federation
| | - Oxana V. Kharissova
- Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
45
|
Franco-Ulloa S, Tatulli G, Bore SL, Moglianetti M, Pompa PP, Cascella M, De Vivo M. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat Commun 2020; 11:5422. [PMID: 33110063 PMCID: PMC7591489 DOI: 10.1038/s41467-020-19164-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
The fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability. Citrate-stabilized metallic colloids are key materials towards chemosensing and catalysis applications. Here the authors introduce a new theoretical model to estimate how the stoichiometry of citrate molecules absorbed onto spherical metallic nanoparticles influences their aggregation phenomena.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Giuseppina Tatulli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway.
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
46
|
Franco-Ulloa S, Tatulli G, Bore SL, Moglianetti M, Pompa PP, Cascella M, De Vivo M. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat Commun 2020. [DOI: 10.2149/tmh1973.23.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AbstractThe fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability.
Collapse
|
47
|
Griffin LA, Gaponenko I, Bassiri-Gharb N. Better, Faster, and Less Biased Machine Learning: Electromechanical Switching in Ferroelectric Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002425. [PMID: 32794355 DOI: 10.1002/adma.202002425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Machine-learning techniques are more and more often applied to the analysis of complex behaviors in materials research. Frequently used to identify fundamental behaviors within large and multidimensional datasets, these techniques are strictly based on mathematical models. Thus, without inherent physical or chemical meaning or constraints, they are prone to biased interpretation. The interpretability of machine-learning results in materials science, specifically materials' functionalities, can be vastly improved through physical insights and careful data handling. The use of techniques such as dimensional stacking can provide the much needed physical and chemical constraints, while proper understanding of the assumptions imposed by model parameters can help avoid overinterpretation. These concepts are illustrated by application to recently reported ferroelectric switching experiments in PbZr0.2 Ti0.8 O3 thin films. Through systematic analysis and introduction of physical constraints, it is argued that the behaviors present are not necessarily due to exotic mechanisms previously suggested, but rather well described by classical ferroelectric switching superimposed by non-ferroelectric phenomena, such as electrochemical deformation, electrostatic interactions, and/or charge injection.
Collapse
Affiliation(s)
- Lee A Griffin
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Iaroslav Gaponenko
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Quantum Matter Physics, University of Geneva, Geneva, 1204, Switzerland
| | - Nazanin Bassiri-Gharb
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
48
|
Affiliation(s)
- Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) Consiglio Nazionale delle Ricerche via G. Fantoli 16/15 20138 Milan Italy
| | - Giorgio Molteni
- Dipartimento di Chimica Università degli Studi di Milano via Golgi 19 20133 Milan Italy
| |
Collapse
|
49
|
Filippova EO, Shafigulin RV, Tokranov AA, Shmelev AА, Bulanova AV, Pimerzin AА, Karaev AA. Study of adsorption properties of synthesized mesoporous silica doped with dysprosium and modified with nickel. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | - Alexander A. Karaev
- Institute of Petrochemical SynthesisRussian Academy of Sciences Moscow Russia
| |
Collapse
|
50
|
Sun H, Gao Y, Hu N, Zhang Y, Guo C, Gao G, Ma Z, Ivan Ivanovich K, Qiu Y. Electronic coupling between molybdenum disulfide and gold nanoparticles to enhance the peroxidase activity for the colorimetric immunoassays of hydrogen peroxide and cancer cells. J Colloid Interface Sci 2020; 578:366-378. [PMID: 32535419 DOI: 10.1016/j.jcis.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023]
Abstract
Peroxidase nanoenzymes exhibit a specific affinity toward substrates, thereby demonstrating application potential for realizing the colorimetric immunoassays of hydrogen peroxide (H2O2), which can be further used as a probe for imaging cancer cells. To enhance the intrinsic peroxidase activity of molybdenum sulfide (MoS2) nanomaterials, gold (Au) nanoparticles with an average diameter of approximately 2.1 nm were modified on a MoS2/carbon surface (denoted as MoS2/C-Au600) via ascorbic acid reduction. MoS2/C-Au600 can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to generate a blue oxidation product in the presence of H2O2; this product exhibits peroxidase-like activities, superior to those of most existing MoS2-based nanoenzymes. Furthermore, MoS2/C-Au600 exhibits a high detection capability for H2O2 in the range of 1 × 10-5 to 2 × 10-4 mol/L (R2 = 0.99), and the lowest detection limit is 1.82 µmol/L in a sodium acetate and acetic acid buffer solution. Steady state kinetics studies indicate that the catalytic mechanism is consistent with the ping-pong mechanism. Given its strong absorption peak at 652 nm in the visible region, MoS2/C-Au600 can be used to image cancer cells due to the enhanced permeability and retention effect. Our findings demonstrate that the synergistic electronic coupling between multiple components can enhance the peroxidase activity, which can facilitate the development of an effective, facile, and reliable method to perform colorimetric immunoassays of H2O2 and cancer cells.
Collapse
Affiliation(s)
- Haohao Sun
- College of Pharmacy, Jiamusi University, No. 258 Xuefu Street, Jiamusi 154007, People's Republic of China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Narisu Hu
- Oral Implant Center, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yongxia Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China.
| | - Guanggang Gao
- College of Pharmacy, Jiamusi University, No. 258 Xuefu Street, Jiamusi 154007, People's Republic of China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China.
| | - Krasnyuk Ivan Ivanovich
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str. Moscow 119991, Russian Federation
| | - Yunfeng Qiu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China; Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin 150080, People's Republic of China; Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str. Moscow 119991, Russian Federation.
| |
Collapse
|