1
|
Khan O, Jones G, Lazou M, Joseph-McCarthy D, Kozakov D, Beglov D, Vajda S. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. J Chem Inf Model 2024; 64:2084-2100. [PMID: 38456842 DOI: 10.1021/acs.jcim.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The knowledge of ligand binding hot spots and of the important interactions within such hot spots is crucial for the design of lead compounds in the early stages of structure-based drug discovery. The computational solvent mapping server FTMap can reliably identify binding hot spots as consensus clusters, free energy minima that bind a variety of organic probe molecules. However, in its current implementation, FTMap provides limited information on regions within the hot spots that tend to interact with specific pharmacophoric features of potential ligands. E-FTMap is a new server that expands on the original FTMap protocol. E-FTMap uses 119 organic probes, rather than the 16 in the original FTMap, to exhaustively map binding sites, and identifies pharmacophore features as atomic consensus sites where similar chemical groups bind. We validate E-FTMap against a set of 109 experimentally derived structures of fragment-lead pairs, finding that highly ranked pharmacophore features overlap with the corresponding atoms in both fragments and lead compounds. Additionally, comparisons of mapping results to ensembles of bound ligands reveal that pharmacophores generated with E-FTMap tend to sample highly conserved protein-ligand interactions. E-FTMap is available as a web server at https://eftmap.bu.edu.
Collapse
Affiliation(s)
- Omeir Khan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Diane Joseph-McCarthy
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Acpharis Inc., Holliston, Massachusetts 01746, United States
| | - Sandor Vajda
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Zhang H, Huang J, Xie J, Huang W, Yang Y, Xu M, Lei J, Chen H. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning. J Chem Inf Model 2024; 64:666-676. [PMID: 38241022 DOI: 10.1021/acs.jcim.3c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinchao Huang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Junjie Xie
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Weifeng Huang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyuan Xu
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xin Dao Huan Bei Road, Guangzhou 510005, China
| | - Jinping Lei
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongming Chen
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xin Dao Huan Bei Road, Guangzhou 510005, China
| |
Collapse
|
3
|
Ding Y, Xue X. Medicinal Chemistry Strategies for the Modification of Bioactive Natural Products. Molecules 2024; 29:689. [PMID: 38338433 PMCID: PMC10856770 DOI: 10.3390/molecules29030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Natural bioactive compounds are valuable resources for drug discovery due to their diverse and unique structures. However, these compounds often lack optimal drug-like properties. Therefore, structural optimization is a crucial step in the drug development process. By employing medicinal chemistry principles, targeted molecular operations can be applied to natural products while considering their size and complexity. Various strategies, including structural fragmentation, elimination of redundant atoms or groups, and exploration of structure-activity relationships, are utilized. Furthermore, improvements in physicochemical properties, chemical and metabolic stability, biophysical properties, and pharmacokinetic properties are sought after. This article provides a concise analysis of the process of modifying a few marketed drugs as illustrative examples.
Collapse
Affiliation(s)
- Yuyang Ding
- Shenzhen Borui Pharmaceutical Technology Co., Ltd., Shenzhen 518055, China;
| | - Xiaoqian Xue
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Grenier D, Audebert S, Preto J, Guichou JF, Krimm I. Linkers in fragment-based drug design: an overview of the literature. Expert Opin Drug Discov 2023; 18:987-1009. [PMID: 37466331 DOI: 10.1080/17460441.2023.2234285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION In fragment-based drug design, fragment linking is a popular strategy where two fragments binding to different sub-pockets of a target are linked together. This attractive method remains challenging especially due to the design of ideal linkers. AREAS COVERED The authors review the types of linkers and chemical reactions commonly used to the synthesis of linkers, including those utilized in protein-templated fragment self-assembly, where fragments are directly linked in the presence of the protein. Finally, they detail computational workflows and software including generative models that have been developed for fragment linking. EXPERT OPINION The authors believe that fragment linking offers key advantages for compound design, particularly for the design of bivalent inhibitors linking two distinct pockets of the same or different subunits. On the other hand, more studies are needed to increase the potential of protein-templated approaches in FBDD. Important computational tools such as structure-based de novo software are emerging to select suitable linkers. Fragment linking will undoubtedly benefit from developments in computational approaches and machine learning models.
Collapse
Affiliation(s)
- Dylan Grenier
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Solène Audebert
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jordane Preto
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Isabelle Krimm
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| |
Collapse
|
6
|
Howieson VM, Zeng J, Kloehn J, Spry C, Marchetti C, Lunghi M, Varesio E, Soper A, Coyne AG, Abell C, van Dooren GG, Saliba KJ. Pantothenate biosynthesis in Toxoplasma gondii tachyzoites is not a drug target. INTERNATIONAL JOURNAL FOR PARASITOLOGY: DRUGS AND DRUG RESISTANCE 2023; 22:1-8. [PMID: 37004488 PMCID: PMC10102396 DOI: 10.1016/j.ijpddr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.
Collapse
|
7
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
8
|
Tan Y, Dai L, Huang W, Guo Y, Zheng S, Lei J, Chen H, Yang Y. DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design. J Chem Inf Model 2022; 62:5907-5917. [PMID: 36404642 DOI: 10.1021/acs.jcim.2c00982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fragment-based drug discovery is a widely used strategy for drug design in both academic and pharmaceutical industries. Although fragments can be linked to generate candidate compounds by the latest deep generative models, generating linkers with specified attributes remains underdeveloped. In this study, we presented a novel framework, DRlinker, to control fragment linking toward compounds with given attributes through reinforcement learning. The method has been shown to be effective for many tasks from controlling the linker length and log P, optimizing predicted bioactivity of compounds, to various multiobjective tasks. Specifically, our model successfully generated 91.0% and 93.9% of compounds complying with the desired linker length and log P and improved the 7.5 pChEMBL value in bioactivity optimization. Finally, a quasi-scaffold-hopping study revealed that DRlinker could generate nearly 30% molecules with high 3D similarity but low 2D similarity to the lead inhibitor, demonstrating the benefits and applicability of DRlinker in actual fragment-based drug design.
Collapse
Affiliation(s)
- Youhai Tan
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Lingxue Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Weifeng Huang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou510006, China
| | - Yinfeng Guo
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou510006, China
| | - Shuangjia Zheng
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou510006, China.,Galixir Technologies, Beijing100083, China
| | - Jinping Lei
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou510006, China
| | - Hongming Chen
- Guangzhou Laboratory, No. 9 XinDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou510005, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
9
|
Tiemann M, Nawrotzky E, Schmieder P, Wehrhan L, Bergemann S, Martos V, Song W, Arkona C, Keller BG, Rademann J. A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments. Chemistry 2022; 28:e202201282. [PMID: 35781901 PMCID: PMC9804470 DOI: 10.1002/chem.202201282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/05/2023]
Abstract
Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2.
Collapse
Affiliation(s)
- Markus Tiemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Eric Nawrotzky
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Peter Schmieder
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Leon Wehrhan
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Silke Bergemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Vera Martos
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Wei Song
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Bettina G. Keller
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jörg Rademann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
10
|
Chana CK, Maisonneuve P, Posternak G, Grinberg NGA, Poirson J, Ona SM, Ceccarelli DF, Mader P, St-Cyr DJ, Pau V, Kurinov I, Tang X, Deng D, Cui W, Su W, Kuai L, Soll R, Tyers M, Röst HL, Batey RA, Taipale M, Gingras AC, Sicheri F. Discovery and Structural Characterization of Small Molecule Binders of the Human CTLH E3 Ligase Subunit GID4. J Med Chem 2022; 65:12725-12746. [PMID: 36117290 PMCID: PMC9574856 DOI: 10.1021/acs.jmedchem.2c00509] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Targeted protein
degradation (TPD) strategies exploit bivalent
small molecules to bridge substrate proteins to an E3 ubiquitin ligase
to induce substrate degradation. Few E3s have been explored as degradation
effectors due to a dearth of E3-binding small molecules. We show that
genetically induced recruitment to the GID4 subunit of the CTLH E3
complex induces protein degradation. An NMR-based fragment screen
followed by structure-guided analog elaboration identified two binders
of GID4, 16 and 67, with Kd values of 110 and 17 μM in vitro. A parallel DNA-encoded library (DEL) screen identified five binders
of GID4, the best of which, 88, had a Kd of 5.6 μM in vitro and an EC50 of 558 nM in cells with strong selectivity for GID4. X-ray
co-structure determination revealed the basis for GID4–small
molecule interactions. These results position GID4-CTLH as an E3 for
TPD and provide candidate scaffolds for high-affinity moieties that
bind GID4.
Collapse
Affiliation(s)
- Chetan K Chana
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Pierre Maisonneuve
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Ganna Posternak
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Nicolas G A Grinberg
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Juline Poirson
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Samara M Ona
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Derek F Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Pavel Mader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | | | - Victor Pau
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439, United States
| | - Xiaojing Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Dongjing Deng
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Richard Soll
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Québec H3C 3J7, Canada
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Robert A Batey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
11
|
Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Int J Mol Sci 2022; 23:10669. [PMID: 36142582 PMCID: PMC9500838 DOI: 10.3390/ijms231810669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of drug-resistant mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), poses an increasing global threat that urgently demands the development of new potent anti-mycobacterial drugs. One of the approaches toward the identification of new drugs is fragment-based drug discovery (FBDD), which is the most ingenious among other drug discovery models, such as structure-based drug design (SBDD) and high-throughput screening. Specialized techniques, such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and many others, are part of the drug discovery approach to combat the Mtb and NTM global menaces. Moreover, the primary drawbacks of traditional methods, such as the limited measurement of biomolecular toxicity and uncertain bioavailability evaluation, are successfully overcome by the FBDD approach. The current review focuses on the recognition of fragment-based drug discovery as a popular approach using virtual, computational, and biophysical methods to identify potent fragment molecules. FBDD focuses on designing optimal inhibitors against potential therapeutic targets of NTM and Mtb (PurC, ArgB, MmpL3, and TrmD). Additionally, we have elaborated on the challenges associated with the FBDD approach in the identification and development of novel compounds. Insights into the applications and overcoming the challenges of FBDD approaches will aid in the identification of potential therapeutic compounds to treat drug-sensitive and drug-resistant NTMs and Mtb infections.
Collapse
Affiliation(s)
| | | | | | | | - Sangeeta Tiwari
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
Chitti S, Van Calster K, Cappoen D, Nandikolla A, Khetmalis YM, Cos P, Kumar BK, Murugesan S, Gowri Chandra Sekhar KV. Design, synthesis and biological evaluation of benzo-[ d]-imidazo-[2,1- b]-thiazole and imidazo-[2,1- b]-thiazole carboxamide triazole derivatives as antimycobacterial agents. RSC Adv 2022; 12:22385-22401. [PMID: 36105967 PMCID: PMC9364363 DOI: 10.1039/d2ra03318f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
In the search for new anti-mycobacterial agents, we revealed the importance of imidazo-[2,1-b]-thiazole and benzo-[d]-imidazo-[2,1-b]-thiazole carboxamide derivatives. We designed, in silico ADMET predicted and synthesized four series of novel imidazo-[2,1-b]-thiazole and benzo-[d]-imidazo-[2,1-b]-thiazole carboxamide analogues in combination with piperazine and various 1,2,3 triazoles. All the synthesized derivatives were characterized by 1H NMR, 13C NMR, HPLC and MS spectral analysis and evaluated for in vitro antitubercular activity. The most active benzo-[d]-imidazo-[2,1-b]-thiazole derivative IT10, carrying a 4-nitro phenyl moiety, displayed IC90 of 7.05 μM and IC50 of 2.32 μM against Mycobacterium tuberculosis (Mtb) H37Ra, while no acute cellular toxicity was observed (>128 μM) towards the MRC-5 lung fibroblast cell line. Another benzo-[d]-imidazo-[2,1-b]-thiazole compound, IT06, which possesses a 2,4-dichloro phenyl moiety, also showed significant activity with IC50 2.03 μM and IC90 15.22 μM against the tested strain of Mtb. Furthermore, the selected hits showed no activity towards a panel of non-tuberculous mycobacteria (NTM), thus suggesting a selective inhibition of Mtb by the tested imidazo-[2,1-b]-thiazole derivatives over the selected panel of NTM. Molecular docking and dynamics studies were also carried out for the most active compounds IT06 and IT10 in order to understand the putative binding pattern, as well as stability of the protein-ligand complex, against the selected target Pantothenate synthetase of Mtb.
Collapse
Affiliation(s)
- Surendar Chitti
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp Universiteitsplein 1, 2610 Wilrijk Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp Universiteitsplein 1, 2610 Wilrijk Belgium
| | - Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| | - Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp Universiteitsplein 1, 2610 Wilrijk Belgium
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| |
Collapse
|
13
|
Bajad NG, Singh SK, Singh SK, Singh TD, Singh M. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100119. [PMID: 35992375 PMCID: PMC9389259 DOI: 10.1016/j.crphar.2022.100119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Indole-containing small molecules have been reported to have diverse pharmacological activities. The aromatic heterocyclic scaffold, which resembles various protein structures, has received attention from organic and medicinal chemists. Exploration of indole derivatives in drug discovery has rapidly yielded a vast array of biologically active compounds with broad therapeutic potential. Nature is the major source of indole scaffolds, but various classical and advanced synthesis methods for indoles have also been reported. One-pot synthesis is widely considered an efficient approach in synthetic organic chemistry and has been used to synthesize some indole compounds. The rapid emergence of drug-resistant tuberculosis is a major challenge to be addressed. Identifying novel targets and drug candidates for tuberculosis is therefore crucial. Researchers have extensively explored indole derivatives as potential anti-tubercular agents or drugs. Indole scaffolds containing the novel non-covalent (decaprenylphosphoryl-β-D-ribose2'-epimerase) DprE1 inhibitor 1,4-azaindole is currently in clinical trials to treat Mycobacterium tuberculosis. In addition, DG167 indazole sulfonamide with potent anti-tubercular activity is undergoing early-stage development in preclinical studies. Indole bearing cationic amphiphiles with high chemical diversity have been reported to depolarize and disrupt the mycobacterial membrane. Some indole-based compounds have potential inhibitory activities against distinct anti-tubercular targets, including the inhibition of cell wall synthesis, replication, transcription, and translation, as summarized in the graphical abstract. The success of computer-aided drug design in the fields of cancer and anti-viral drugs has accelerated in silico studies in antibacterial drug development. This review describes the sources of indole scaffolds, the potential for novel indole derivatives to serve as anti-tubercular agents, in silico findings, and proposed actions to facilitate the design of novel compounds with anti-tubercular activity.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
14
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
15
|
Shulga DA, Ivanov NN, Palyulin VA. In Silico Structure-Based Approach for Group Efficiency Estimation in Fragment-Based Drug Design Using Evaluation of Fragment Contributions. Molecules 2022; 27:1985. [PMID: 35335347 PMCID: PMC8951103 DOI: 10.3390/molecules27061985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
The notion of a contribution of a specific group in an organic molecule's property and/or activity is both common in our thinking and is still not strictly correct due to the inherent non-additivity of free energy with respect to molecular fragments composing a molecule. The fragment- based drug discovery (FBDD) approach has proven to be fruitful in addressing the above notions. The main difficulty of the FBDD, however, is in its reliance on the low throughput and expensive experimental means of determining the fragment-sized molecules binding. In this article we propose a way to enhance the throughput and availability of the FBDD methods by judiciously using an in silico means of assessing the contribution to ligand-receptor binding energy of fragments of a molecule under question using a previously developed in silico Reverse Fragment Based Drug Discovery (R-FBDD) approach. It has been shown that the proposed structure-based drug discovery (SBDD) type of approach fills in the vacant niche among the existing in silico approaches, which mainly stem from the ligand-based drug discovery (LBDD) counterparts. In order to illustrate the applicability of the approach, our work retrospectively repeats the findings of the use case of an FBDD hit-to-lead project devoted to the experimentally based determination of additive group efficiency (GE)-an analog of ligand efficiency (LE) for a group in the molecule-using the Free-Wilson (FW) decomposition. It is shown that in using our in silico approach to evaluate fragment contributions of a ligand and to estimate GE one can arrive at similar decisions as those made using the experimentally determined activity-based FW decomposition. It is also shown that the approach is rather robust to the choice of the scoring function, provided the latter demonstrates a decent scoring power. We argue that the proposed approach of in silico assessment of GE has a wider applicability domain and expect that it will be widely applicable to enhance the net throughput of drug discovery based on the FBDD paradigm.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
16
|
Wang M, Sun H, Wang J, Pang J, Chai X, Xu L, Li H, Cao D, Hou T. Comprehensive assessment of deep generative architectures for de novo drug design. Brief Bioinform 2021; 23:6470970. [PMID: 34929743 DOI: 10.1093/bib/bbab544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.
Collapse
Affiliation(s)
- Mingyang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
17
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Zhou Y, Shen W, Peng J, Deng Y, Li X. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg Med Chem 2021; 45:116328. [PMID: 34364223 DOI: 10.1016/j.bmc.2021.116328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged to be a powerful ligand screening technology in drug discovery. Recently, we reported a DNA-encoded dynamic library (DEDL) approach that combines the principle of traditional dynamic combinatorial library (DCL) with DEL. DEDL has shown excellent potential in fragment-based ligand discovery with a variety of protein targets. Here, we further tested the utility of DEDL in identifying low molecular weight fragments that are selective for different isoforms or domains of the same protein family. A 10,000-member DEDL was selected against sirtuin-1, 2, and 5 (SIRT1, 2, 5) and the BD1 and BD2 domains of bromodomain 4 (BRD4), respectively. Albeit with modest potency, a series of isoform/domain-selective fragments were identified and the corresponding inhibitors were derived by fragment linking.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region; Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Innovation and Technology Commission, Hong Kong Special Administrative Region
| |
Collapse
|
19
|
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:273-343. [PMID: 34147204 DOI: 10.1016/bs.pmch.2021.01.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular docking has become an important component of the drug discovery process. Since first being developed in the 1980s, advancements in the power of computer hardware and the increasing number of and ease of access to small molecule and protein structures have contributed to the development of improved methods, making docking more popular in both industrial and academic settings. Over the years, the modalities by which docking is used to assist the different tasks of drug discovery have changed. Although initially developed and used as a standalone method, docking is now mostly employed in combination with other computational approaches within integrated workflows. Despite its invaluable contribution to the drug discovery process, molecular docking is still far from perfect. In this chapter we will provide an introduction to molecular docking and to the different docking procedures with a focus on several considerations and protocols, including protonation states, active site waters and consensus, that can greatly improve the docking results.
Collapse
Affiliation(s)
| | - Ilenia Giangreco
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| | - Jason C Cole
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| |
Collapse
|
20
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
21
|
Yu HS, Modugula K, Ichihara O, Kramschuster K, Keng S, Abel R, Wang L. General Theory of Fragment Linking in Molecular Design: Why Fragment Linking Rarely Succeeds and How to Improve Outcomes. J Chem Theory Comput 2021; 17:450-462. [PMID: 33372778 DOI: 10.1021/acs.jctc.0c01004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Linking two fragments binding in nearby subpockets together has become an important technique in fragment-based drug discovery to optimize the binding potency of fragment hits. Despite the expected favorable translational and orientational entropic contribution to the binding free energy of the linked molecule, brute force enumeration of chemical linker for linking fragments is rarely successful, and the vast majority of linked molecules do not exhibit the expected gains of binding potency. In this paper, we examine the physical factors that contribute to the change of binding free energy from fragment linking and develop a method to rigorously calculate these different physical contributions. We find from these analyses that multiple confounding factors make successful fragment linking strategies rare, including (1) possible change of the binding mode of the fragments in the linked state compared to separate binding of the fragments, (2) unfavorable intramolecular strain energy of the bioactive conformation of the linked molecule, (3) unfavorable interaction between the linker and the protein, (4) favorable interaction energies between two fragments in solution when not chemically linked that offset the expected entropy loss for the formation of fragment pair, (5) complex compensating configurational entropic effects beyond the simplistic rotational and translational analysis. We here have applied a statistically mechanically rigorous approach to compute the fragment linking coefficients of 10 pharmaceutically interesting systems and quantify the contribution of each physical component to the binding free energy of the linked molecule. Based on these studies, we have found that the change in the relative configurational entropy of the two fragments in the protein binding pocket (a term neglected to our knowledge in all previous analyses) substantially offsets the favorable expected rotational and translational entropic contributions to the binding free energy of the linked molecule. This configurational restriction of the fragments in the binding pocket of the proteins is found to be, in our analysis, the dominant reason why most fragment linking strategies do not exhibit the expected gains of binding potency. These findings have further provided rich physical insights, which we expect should facilitate more successful fragment linking strategies to be formulated in the future.
Collapse
Affiliation(s)
- Haoyu S Yu
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Kalyan Modugula
- D. E. Shaw India Private Ltd., Plot No. 573, Jubilee Hills, Hyderabad, Telangana 500096, India
| | - Osamu Ichihara
- Schrodinger, K.K., 13F Marunouchi Trust Tower North, Chiyoda-ku, Tokyo 100-0005, Japan
| | - Kimberly Kramschuster
- Schrodinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| | - Simon Keng
- Schrodinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| | - Robert Abel
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Lingle Wang
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| |
Collapse
|
22
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
23
|
Suresh A, Srinivasarao S, Khetmalis YM, Nizalapur S, Sankaranarayanan M, Gowri Chandra Sekhar KV. Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis - a medicinal chemist perspective. RSC Adv 2020; 10:37098-37115. [PMID: 35521286 PMCID: PMC9057165 DOI: 10.1039/d0ra07398a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB), one of the most prevalent infections, is on the rise today. Although there are drugs available in the market to combat this lethal disorder, there are several shortcomings with the current drug regimen, such as prolonged treatment period, drug resistance, high cost, etc. Hence, it is inevitable for the current researchers across the globe to embark on new strategies for TB drug discovery, which will yield highly active low cost drugs with a shorter treatment period. To achieve this, novel strategies need to be adopted to discover new drugs. Pantothenate Synthetase (PS) is one such striking drug target in Mycobacterium tuberculosis (MTB). It was observed that the pantothenate biosynthetic pathway is crucial for the pathogenicity of MTB. Pantothenate is absent in mammals and needs to be obtained from dietary sources. Hence, the pantothenate biosynthesis pathway is an impending target for emerging new therapeutics to treat TB. Worldwide, several approaches have been implemented by researchers in the quest for these inhibitors such as high-throughput screening, simulating the reaction intermediate pantoyl adenylate, use of vibrant combinatorial chemistry, hybridization approach, virtual screening of databases, inhibitors based on the crystal structure of MTB PS, etc. The present review recapitulates current developments in PS inhibitors, important analogues of numerous metabolic intermediates, and newly established inhibitors with innumerable chemical structures.
Collapse
Affiliation(s)
- Amaroju Suresh
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Singireddi Srinivasarao
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani Pilani Campus Pilani 333031 Rajasthan India
| | | |
Collapse
|
24
|
Ribeiro JA, Hammer A, Libreros-Zúñiga GA, Chavez-Pacheco SM, Tyrakis P, de Oliveira GS, Kirkman T, El Bakali J, Rocco SA, Sforça ML, Parise-Filho R, Coyne AG, Blundell TL, Abell C, Dias MVB. Using a Fragment-Based Approach to Identify Alternative Chemical Scaffolds Targeting Dihydrofolate Reductase from Mycobacterium tuberculosis. ACS Infect Dis 2020; 6:2192-2201. [PMID: 32603583 DOI: 10.1021/acsinfecdis.0c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dihydrofolate reductase (DHFR), a key enzyme involved in folate metabolism, is a widely explored target in the treatment of cancer, immune diseases, bacteria, and protozoa infections. Although several antifolates have proved successful in the treatment of infectious diseases, they have been underexplored to combat tuberculosis, despite the essentiality of M. tuberculosis DHFR (MtDHFR). Herein, we describe an integrated fragment-based drug discovery approach to target MtDHFR that has identified hits with scaffolds not yet explored in any previous drug design campaign for this enzyme. The application of a SAR by catalog strategy of an in house library for one of the identified fragments has led to a series of molecules that bind to MtDHFR with low micromolar affinities. Crystal structures of MtDHFR in complex with compounds of this series demonstrated a novel binding mode that considerably differs from other DHFR antifolates, thus opening perspectives for the development of relevant MtDHFR inhibitors.
Collapse
Affiliation(s)
- João A. Ribeiro
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1474, São Paulo, SP 05508-000, Brazil
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz, CEP, Campinas, SP 13083-862, Brazil
| | - Alexander Hammer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Gerardo A. Libreros-Zúñiga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1474, São Paulo, SP 05508-000, Brazil
- Department of Biology, IBILCE-State University of São Paulo, Rua Cristóvão Colombo, 2265, J. Nazareth, São José do Rio Preto, SP 15054-000, Brazil
- Department of Microbiology, University of Valle, Calle 4B # 36-00, Cali 760043, Colombia
| | - Sair M. Chavez-Pacheco
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1474, São Paulo, SP 05508-000, Brazil
| | - Petros Tyrakis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Gabriel S. de Oliveira
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1474, São Paulo, SP 05508-000, Brazil
| | - Timothy Kirkman
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, U.K
| | - Jamal El Bakali
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Silvana A. Rocco
- National Laboratory of Biosciences, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, SP 13083-100, Brazil
| | - Mauricio L. Sforça
- National Laboratory of Biosciences, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, SP 13083-100, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil
| | - Anthony G. Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Marcio V. B. Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1474, São Paulo, SP 05508-000, Brazil
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz, CEP, Campinas, SP 13083-862, Brazil
- Department of Biology, IBILCE-State University of São Paulo, Rua Cristóvão Colombo, 2265, J. Nazareth, São José do Rio Preto, SP 15054-000, Brazil
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, U.K
| |
Collapse
|
25
|
Bancet A, Raingeval C, Lomberget T, Le Borgne M, Guichou JF, Krimm I. Fragment Linking Strategies for Structure-Based Drug Design. J Med Chem 2020; 63:11420-11435. [DOI: 10.1021/acs.jmedchem.0c00242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexandre Bancet
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Claire Raingeval
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Thierry Lomberget
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | | | - Isabelle Krimm
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
26
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA‐Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| |
Collapse
|
27
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA-Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020; 59:14965-14972. [PMID: 32436364 DOI: 10.1002/anie.202005070] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 11/11/2022]
Abstract
Dynamic combinatorial libraries (DCLs) is a powerful tool for ligand discovery in biomedical research; however, the application of DCLs has been hampered by their low diversity. Recently, the concept of DNA encoding has been employed in DCLs to create DNA-encoded dynamic libraries (DEDLs); however, all current DEDLs are limited to fragment identification, and a challenging process of fragment linking is required after selection. We report an anchor-directed DEDL approach that can identify full ligand structures from large-scale DEDLs. This method is also able to convert unbiased libraries into focused ones targeting specific protein classes. We demonstrated this method by selecting DEDLs against five proteins, and novel inhibitors were identified for all targets. Notably, several selective BD1/BD2 inhibitors were identified from the selections against bromodomain 4 (BRD4), an important anti-cancer drug target. This work may provide a broadly applicable method for inhibitor discovery.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology China, 1088 Xueyuan Road, Shenzhen, China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
28
|
Gelin M, Paoletti J, Nahori MA, Huteau V, Leseigneur C, Jouvion G, Dugué L, Clément D, Pons JL, Assairi L, Pochet S, Labesse G, Dussurget O. From Substrate to Fragments to Inhibitor Active In Vivo against Staphylococcus aureus. ACS Infect Dis 2020; 6:422-435. [PMID: 32017533 DOI: 10.1021/acsinfecdis.9b00368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic resistance is a worldwide threat due to the decreasing supply of new antimicrobials. Novel targets and innovative strategies are urgently needed to generate pathbreaking drug compounds. NAD kinase (NADK) is essential for growth in most bacteria, as it supports critical metabolic pathways. Here, we report the discovery of a new class of antibacterials that targets bacterial NADK. We generated a series of small synthetic adenine derivatives to screen those harboring promising substituents in order to guide efficient fragment linking. This led to NKI1, a new lead compound inhibiting NADK that showed in vitro bactericidal activity against Staphylococcus aureus. In a murine model of infection, NKI1 restricted survival of the bacteria, including methicillin-resistant S. aureus. Collectively, these findings identify bacterial NADK as a potential drug target and NKI1 as a lead compound in the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Muriel Gelin
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université Montpellier, 29 route de Navacelles, 34090 Montpellier, France
| | - Julie Paoletti
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Marie-Anne Nahori
- Unité des Toxines Bactériennes, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Valérie Huteau
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Clarisse Leseigneur
- Unité de Recherche Yersinia, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Grégory Jouvion
- Unité de Neuropathologie Expérimentale, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université, INSERM UMR S933, Unité de Génétique Médicale, Hôpital Armand Trousseau, APHP, 26 Avenue du Dr Arnold Netter, 75012 Paris, France
| | - Laurence Dugué
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - David Clément
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Jean-Luc Pons
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université Montpellier, 29 route de Navacelles, 34090 Montpellier, France
| | - Liliane Assairi
- INSERM U759, Institut Curie, Centre Universitaire Paris Sud, 91405 Orsay, France
| | - Sylvie Pochet
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Gilles Labesse
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université Montpellier, 29 route de Navacelles, 34090 Montpellier, France
| | - Olivier Dussurget
- Unité de Recherche Yersinia, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
29
|
de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Andrade CH, Silva FP. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front Chem 2020; 8:93. [PMID: 32133344 PMCID: PMC7040036 DOI: 10.3389/fchem.2020.00093] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Fragment-based drug (or lead) discovery (FBDD or FBLD) has developed in the last two decades to become a successful key technology in the pharmaceutical industry for early stage drug discovery and development. The FBDD strategy consists of screening low molecular weight compounds against macromolecular targets (usually proteins) of clinical relevance. These small molecular fragments can bind at one or more sites on the target and act as starting points for the development of lead compounds. In developing the fragments attractive features that can translate into compounds with favorable physical, pharmacokinetics and toxicity (ADMET-absorption, distribution, metabolism, excretion, and toxicity) properties can be integrated. Structure-enabled fragment screening campaigns use a combination of screening by a range of biophysical techniques, such as differential scanning fluorimetry, surface plasmon resonance, and thermophoresis, followed by structural characterization of fragment binding using NMR or X-ray crystallography. Structural characterization is also used in subsequent analysis for growing fragments of selected screening hits. The latest iteration of the FBDD workflow employs a high-throughput methodology of massively parallel screening by X-ray crystallography of individually soaked fragments. In this review we will outline the FBDD strategies and explore a variety of in silico approaches to support the follow-up fragment-to-lead optimization of either: growing, linking, and merging. These fragment expansion strategies include hot spot analysis, druggability prediction, SAR (structure-activity relationships) by catalog methods, application of machine learning/deep learning models for virtual screening and several de novo design methods for proposing synthesizable new compounds. Finally, we will highlight recent case studies in fragment-based drug discovery where in silico methods have successfully contributed to the development of lead compounds.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - José Teófilo Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno Junior Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
- Laboratory of Cheminformatics, Centro Universitário de Anápolis – UniEVANGÉLICA, Anápolis, Brazil
| | - Rocío Lucía Beatriz Riveros Maidana
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Floriano Paes Silva
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 2020; 12:85-104. [PMID: 32006251 PMCID: PMC7040159 DOI: 10.1007/s12551-020-00619-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is an accessible, rapid, and economical biophysical technique that has seen many applications over the years, ranging from protein folding state detection to the identification of ligands that bind to the target protein. In this review, we discuss the theory, applications, and limitations of DSF, including the latest applications of DSF by ourselves and other researchers. We show that DSF is a powerful high-throughput tool in early drug discovery efforts. We place DSF in the context of other biophysical methods frequently used in drug discovery and highlight their benefits and downsides. We illustrate the uses of DSF in protein buffer optimization for stability, refolding, and crystallization purposes and provide several examples of each. We also show the use of DSF in a more downstream application, where it is used as an in vivo validation tool of ligand-target interaction in cell assays. Although DSF is a potent tool in buffer optimization and large chemical library screens when it comes to ligand-binding validation and optimization, orthogonal techniques are recommended as DSF is prone to false positives and negatives.
Collapse
Affiliation(s)
- Kai Gao
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rick Oerlemans
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Matthew R Groves
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
31
|
Kwiatkowski J, Liu B, Pang S, Ahmad NHB, Wang G, Poulsen A, Yang H, Poh YR, Tee DHY, Ong E, Retna P, Dinie N, Kwek P, Wee JLK, Manoharan V, Low CB, Seah PG, Pendharkar V, Sangthongpitag K, Joy J, Baburajendran N, Jansson AE, Nacro K, Hill J, Keller TH, Hung AW. Stepwise Evolution of Fragment Hits against MAPK Interacting Kinases 1 and 2. J Med Chem 2020; 63:621-637. [DOI: 10.1021/acs.jmedchem.9b01582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacek Kwiatkowski
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Boping Liu
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Shermaine Pang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Nur Huda Binte Ahmad
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Gang Wang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Anders Poulsen
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Haiyan Yang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Yong Rui Poh
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Doris Hui Ying Tee
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Esther Ong
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Priya Retna
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Nurul Dinie
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Perlyn Kwek
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - John Liang Kuan Wee
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Vithya Manoharan
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Choon Bing Low
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Peck Gee Seah
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Vishal Pendharkar
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Kanda Sangthongpitag
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Joma Joy
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Anna Elisabet Jansson
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Jeffrey Hill
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Thomas H. Keller
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Alvin W. Hung
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| |
Collapse
|
32
|
Srinivasarao S, Nandikolla A, Suresh A, Calster KV, De Voogt L, Cappoen D, Ghosh B, Aggarwal H, Murugesan S, Chandra Sekhar KVG. Seeking potent anti-tubercular agents: design and synthesis of substituted- N-(6-(4-(pyrazine-2-carbonyl)piperazine/homopiperazine-1-yl)pyridin-3-yl)benzamide derivatives as anti-tubercular agents. RSC Adv 2020; 10:12272-12288. [PMID: 35497605 PMCID: PMC9050811 DOI: 10.1039/d0ra01348j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/19/2020] [Accepted: 03/18/2020] [Indexed: 11/21/2022] Open
Abstract
We herein report 27 pyrazinamide analogues as anti-tubercular agents, of which six exhibited excellent activity with IC50 ≤ 2.18 μM and these were less toxic against HEK 293 cells.
Collapse
Affiliation(s)
- Singireddi Srinivasarao
- Department of Chemistry
- Birla Institute of Technology and Science, Pilani
- Hyderabad-500078
- India
| | - Adinarayana Nandikolla
- Department of Chemistry
- Birla Institute of Technology and Science, Pilani
- Hyderabad-500078
- India
| | - Amaroju Suresh
- Department of Chemistry
- Birla Institute of Technology and Science, Pilani
- Hyderabad-500078
- India
| | - Kevin Van Calster
- Department of Green Chemistry and Technology
- Faculty of Bioscience Engineering
- Ghent University
- Ghent
- Belgium
| | - Linda De Voogt
- Department of Green Chemistry and Technology
- Faculty of Bioscience Engineering
- Ghent University
- Ghent
- Belgium
| | - Davie Cappoen
- Department of Green Chemistry and Technology
- Faculty of Bioscience Engineering
- Ghent University
- Ghent
- Belgium
| | - Balaram Ghosh
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani
- Hyderabad-500078
- India
| | - Himanshu Aggarwal
- Department of Chemistry
- Birla Institute of Technology and Science, Pilani
- Hyderabad-500078
- India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani
- India
| | | |
Collapse
|
33
|
Mali SN, Sawant S, Chaudhari HK, Mandewale MC. In Silico Appraisal, Synthesis, Antibacterial Screening and DNA Cleavage for 1,2,5-thiadiazole Derivative. Curr Comput Aided Drug Des 2019; 15:445-455. [DOI: 10.2174/1573409915666190206142756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 11/22/2022]
Abstract
Background: :
Thiadiazole not only acts as “hydrogen binding domain” and “two-electron donor
system” but also as constrained pharmacophore.
Methods::
The maleate salt of 2-((2-hydroxy-3-((4-morpholino-1, 2,5-thiadiazol-3-yl) oxy) propyl) amino)-
2-methylpropan-1-ol (TML-Hydroxy)(4) has been synthesized. This methodology involves preparation of
4-morpholino-1, 2,5-thiadiazol-3-ol by hydroxylation of 4-(4-chloro-1, 2,5-thiadiazol-3-yl) morpholine followed
by condensation with 2-(chloromethyl) oxirane to afford 4-(4-(oxiran-2-ylmethoxy)-1,2,5-thiadiazol-
3-yl) morpholine. Oxirane ring of this compound was opened by treating with 2-amino-2-methyl propan-1-
ol to afford the target compound TML-Hydroxy. Structures of the synthesized compounds have been elucidated
by NMR, MASS, FTIR spectroscopy.
Results: :
The DSC study clearly showed that the compound 4-maleate salt is crystalline in nature. In vitro
antibacterial inhibition and little potential for DNA cleavage of the compound 4 were explored. We extended
our study to explore the inhibition mechanism by conducting molecular docking, ADMET and molecular
dynamics analysis by using Schrödinger. The molecular docking for compound 4 showed better interactions
with target 3IVX with docking score of -8.508 kcal/mol with respect to standard ciprofloxacin (docking
score= -3.879 kcal/mol). TML-Hydroxy was obtained in silico as non-carcinogenic and non-AMES
toxic with good percent human oral absorption profile (69.639%). TML-Hydroxy showed the moderate inhibition
against Mycobacteria tuberculosis with MIC 25.00 μg/mL as well as moderate inhibition against S.
aureus, Bacillus sps, K. Pneumoniae and E. coli species.
Conclusion: :
In view of the importance of the 1,2,5-thiadiazole moiety involved, this study would pave the
way for future development of more effective analogs for applications in medicinal field.
Collapse
Affiliation(s)
- Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, India
| | - Sudhir Sawant
- FDC Limited Research & Development Centre, Charkop, Kandivali West, Mumbai, Maharashtra, India
| | - Hemchandra K. Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, India
| | - Mustapha C. Mandewale
- FDC Limited Research & Development Centre, Charkop, Kandivali West, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Abstract
Tuberculosis (TB) is a major issue in global health and affects millions of people each year. Multidrug-resistant tuberculosis (MDR-TB) annually causes many deaths worldwide. Development of a way to diagnose and treat patients with MDR-TB can potentially reduce the incidence of the disease. The current study reviews the risk factors, pattern of progression, mechanism of resistance, and interaction between bacteria and the host immune system, which disrupts the immune response. It also targets the components of Mycobacterium tuberculosis (Mtb) and diagnosis and treatment options that could be available for clinical use in the near future. Mutations play an important role in development of MDR-TB and the selection of appropriate mutations can help to understand the type of resistance in patients to anti-TB drugs. In this way, they can be initially treated with proper and effective therapeutic choices, which can accelerate the course of treatment and improve patient health. Targeting the components and enzymes of Mtb is necessary for understanding bacterial survival and finding a way to destroy the pathogen and allow patients to recover faster and prevent the spread of disease, especially resistant strains.
Collapse
Affiliation(s)
- Majid Faridgohar
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
35
|
Abstract
Introduction: The development of drug candidates with a defined selectivity profile and a unique molecular structure is of fundamental interest for drug discovery. In contrast to the costly screening of large substance libraries, the targeted de novo design of a drug by using structural information of either the biological target and/or structure-activity relationship data of active modulators offers an efficient and intellectually appealing alternative. Areas covered: This review provides an overview on the different techniques of de novo drug design (ligand-based drug design, structure-based drug design, and fragment-based drug design) and highlights successful examples of this targeted approach toward selective modulators of therapeutically relevant targets. Expert opinion: De novo drug design has established itself as a very efficient method for the development of potent and selective modulators for a variety of different biological target classes. The ever-growing wealth of structural data on therapeutic targets will certainly further enhance the importance of de novo design for the drug discovery process in the future. However, a consistent use of the terminology of de novo drug design in the scientific literature should be sought.
Collapse
Affiliation(s)
- Thomas Fischer
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| | - Silvia Gazzola
- b Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Como , Italy
| | - Rainer Riedl
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| |
Collapse
|
36
|
Maddali NK, Viswanath* IVK, Murthy* YLN, Bera R, Takhi M, Rao NS, Gudla V. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02313-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Sommer K, Flachsenberg F, Rarey M. NAOMInext – Synthetically feasible fragment growing in a structure-based design context. Eur J Med Chem 2019; 163:747-762. [DOI: 10.1016/j.ejmech.2018.11.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022]
|
38
|
van Hilten N, Chevillard F, Kolb P. Virtual Compound Libraries in Computer-Assisted Drug Discovery. J Chem Inf Model 2019; 59:644-651. [PMID: 30624918 DOI: 10.1021/acs.jcim.8b00737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of virtual compound libraries in computer-assisted drug discovery has gained in popularity and has already lead to numerous successes. Here, we examine key static and dynamic virtual library concepts that have been developed over the past decade. To facilitate the search for new drugs in the vastness of chemical space, there are still several hurdles to overcome, including the current difficulties in screening and parsing efficiency and the need for more reliable vendors and accurate synthesis prediction tools. These challenges should be tackled by both the developers of virtual libraries and by their users, in order for the exploration of chemical space to live up to its potential.
Collapse
Affiliation(s)
- Niek van Hilten
- Department of Pharmaceutical Chemistry , Philipps-University Marburg , Marbacher Weg 6 , 35032 Marburg , Germany
| | - Florent Chevillard
- Department of Pharmaceutical Chemistry , Philipps-University Marburg , Marbacher Weg 6 , 35032 Marburg , Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry , Philipps-University Marburg , Marbacher Weg 6 , 35032 Marburg , Germany
| |
Collapse
|
39
|
Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J, Li XD, Li X, Huang X, Li X. DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J Am Chem Soc 2018; 140:15859-15867. [DOI: 10.1021/jacs.8b09277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Chen Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
| | - Jianzhao Peng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Liangxu Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Ling Meng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Qingrong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jianfu Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
40
|
Malothu N, Kulandaivelu U, Jojula M, Gunda SK, Akkinepally RR. Synthesis, Antimycobacterial Evaluation and Docking Studies of Some 7-Methyl-5,6,7,8-tetrahydropyrido[4′,3′:4,5]thieno[2,3- d]pyrimidin-4(3 H)-ones. Chem Pharm Bull (Tokyo) 2018; 66:923-931. [DOI: 10.1248/cpb.c17-00999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Narender Malothu
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences
| | | | - Malathi Jojula
- Department of Microbiology, Sri Shivani College of Pharmacy
| | | | | |
Collapse
|
41
|
Dakarapu VV, Allaka TR, Uppalla LK, Jha A. Design, Synthesis, and Molecular Modeling of Asymmetric Tolterodine Derivatives as Anticancer Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Veera venkatarao Dakarapu
- Department of Chemistry, GIS; GITAM University; Rushikonda Visakhapatnam Andhra Pradesh 530045 India
- API, R & D Unit; Shilpa Medicare Ltd; Modavalasa Vizianagaram Andhra Pradesh 531162 India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Department of Chemistry, Institute of Science & Technology; Jawaharlal Nehru Technological University Hyderabad; Kukatpally Hyderabad Telangana 500085 India
| | - Lav Kumar Uppalla
- API, R & D Unit; Shilpa Medicare Ltd; Modavalasa Vizianagaram Andhra Pradesh 531162 India
| | - Anjali Jha
- Department of Chemistry, GIS; GITAM University; Rushikonda Visakhapatnam Andhra Pradesh 530045 India
| |
Collapse
|
42
|
Abstract
After decades of relative inactivity, a large increase in efforts to discover antitubercular therapeutics has brought insights into the biology of Mycobacterium tuberculosis (Mtb) and promising new drugs such as bedaquiline, which inhibits ATP synthase, and the nitroimidazoles delamanid and pretomanid, which inhibit both mycolic acid synthesis and energy production. Despite these advances, the drug discovery pipeline remains underpopulated. The field desperately needs compounds with novel mechanisms of action capable of inhibiting multi- and extensively drug -resistant Mtb (M/XDR-TB) and, potentially, nonreplicating Mtb with the hope of shortening the duration of required therapy. New knowledge about Mtb, along with new methods and technologies, has driven exploration into novel target areas, such as energy production and central metabolism, that diverge from the classical targets in macromolecular synthesis. Here, we review new small molecule drug candidates that act on these novel targets to highlight the methods and perspectives advancing the field. These new targets bring with them the aspiration of shortening treatment duration as well as a pipeline of effective regimens against XDR-TB, positioning Mtb drug discovery to become a model for anti-infective discovery.
Collapse
Affiliation(s)
- Samantha Wellington
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
43
|
Ashok D, Gundu S, Aamate VK, Devulapally MG, Bathini R, Manga V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Unterlass JE, Baslé A, Blackburn TJ, Tucker J, Cano C, Noble ME, Curtin NJ. Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based drug discovery in PHGDH-amplified breast cancer. Oncotarget 2018; 9:13139-13153. [PMID: 29568346 PMCID: PMC5862567 DOI: 10.18632/oncotarget.11487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022] Open
Abstract
3-Phosphoglycerate dehydrogenase (PHGDH) has recently been identified as an attractive target in cancer therapy as it links upregulated glycolytic flux to increased biomass production in cancer cells. PHGDH catalyses the first step in the serine synthesis pathway and thus diverts glycolytic flux into serine synthesis. We have used siRNA-mediated suppression of PHGDH expression to show that PHGDH is a potential therapeutic target in PHGDH-amplified breast cancer. Knockdown caused reduced proliferation in the PHGDH-amplified cell line MDA-MB-468, whereas breast cancer cells with low PHGDH expression or with elevated PHGDH expression in the absence of genomic amplification were not affected. As a first step towards design of a chemical probe for PHGDH, we report a fragment-based drug discovery approach for the identification of PHGDH inhibitors. We designed a truncated PHGDH construct that gave crystals which diffracted to high resolution, and could be used for fragment soaking. 15 fragments stabilising PHGDH were identified using a thermal shift assay and validated by X-ray crystallography and ITC competition experiments to exhibit 1.5-26.2 mM affinity for PHGDH. A structure-guided fragment growing approach was applied to the PHGDH binders from the initial screen, yielding greater understanding of the binding site and suggesting routes to achieve higher affinity NAD-competitive inhibitors.
Collapse
Affiliation(s)
- Judith E. Unterlass
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Arnaud Baslé
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Timothy J. Blackburn
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Julie Tucker
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Céline Cano
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Martin E.M. Noble
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicola J. Curtin
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
45
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
46
|
Chevillard F, Rimmer H, Betti C, Pardon E, Ballet S, van Hilten N, Steyaert J, Diederich WE, Kolb P. Binding-Site Compatible Fragment Growing Applied to the Design of β 2-Adrenergic Receptor Ligands. J Med Chem 2018; 61:1118-1129. [PMID: 29364664 DOI: 10.1021/acs.jmedchem.7b01558] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragment-based drug discovery is intimately linked to fragment extension approaches that can be accelerated using software for de novo design. Although computers allow for the facile generation of millions of suggestions, synthetic feasibility is however often neglected. In this study we computationally extended, chemically synthesized, and experimentally assayed new ligands for the β2-adrenergic receptor (β2AR) by growing fragment-sized ligands. In order to address the synthetic tractability issue, our in silico workflow aims at derivatized products based on robust organic reactions. The study started from the predicted binding modes of five fragments. We suggested a total of eight diverse extensions that were easily synthesized, and further assays showed that four products had an improved affinity (up to 40-fold) compared to their respective initial fragment. The described workflow, which we call "growing via merging" and for which the key tools are available online, can improve early fragment-based drug discovery projects, making it a useful creative tool for medicinal chemists during structure-activity relationship (SAR) studies.
Collapse
Affiliation(s)
- Florent Chevillard
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Helena Rimmer
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology, Philipps-University Marburg , Hans-Meerwein-Straße 3, 35032 Marburg, Germany
| | - Cecilia Betti
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB , 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , 1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Niek van Hilten
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB , 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , 1050 Brussels, Belgium
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry and Center for Tumor Biology and Immunology, Philipps-University Marburg , Hans-Meerwein-Straße 3, 35032 Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
47
|
Bigatti M, Dal Corso A, Vanetti S, Cazzamalli S, Rieder U, Scheuermann J, Neri D, Sladojevich F. Impact of a Central Scaffold on the Binding Affinity of Fragment Pairs Isolated from DNA-Encoded Self-Assembling Chemical Libraries. ChemMedChem 2017; 12:1748-1752. [PMID: 28944578 DOI: 10.1002/cmdc.201700569] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/19/2022]
Abstract
The screening of encoded self-assembling chemical libraries allows the identification of fragment pairs that bind to adjacent pockets on target proteins of interest. For practical applications, it is necessary to link these ligand pairs into discrete organic molecules, devoid of any nucleic acid component. Here we describe the discovery of a synergistic binding pair for acid alpha-1 glycoprotein and a chemical strategy for the identification of optimal linkers, connecting the two fragments. The procedure yielded a set of small organic ligands, the best of which exhibited a dissociation constant of 9.9 nm, as measured in solution by fluorescence polarization.
Collapse
Affiliation(s)
| | - Alberto Dal Corso
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Samuele Cazzamalli
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | | |
Collapse
|
48
|
Cavalluzzi MM, Mangiatordi GF, Nicolotti O, Lentini G. Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Expert Opin Drug Discov 2017; 12:1087-1104. [PMID: 28814111 DOI: 10.1080/17460441.2017.1365056] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ligand efficiency metrics are almost universally accepted as a valuable indicator of compound quality and an aid to reduce attrition. Areas covered: In this review, the authors describe ligand efficiency metrics giving a balanced overview on their merits and points of weakness in order to enable the readers to gain an informed opinion. Relevant theoretical breakthroughs and drug-like properties are also illustrated. Several recent exemplary case studies are discussed in order to illustrate the main fields of application of ligand efficiency metrics. Expert opinion: As a medicinal chemist guide, ligand efficiency metrics perform in a context- and chemotype-dependent manner; thus, they should not be used as a magic box. Since the 'big bang' of efficiency metrics occurred more or less ten years ago and the average time to develop a new drug is over the same period, the next few years will give a clearer outlook on the increased rate of success, if any, gained by means of these new intriguing tools.
Collapse
Affiliation(s)
| | | | - Orazio Nicolotti
- a Department of Pharmacy - Drug Sciences , University of Bari Aldo Moro , Bari , Italy
| | - Giovanni Lentini
- a Department of Pharmacy - Drug Sciences , University of Bari Aldo Moro , Bari , Italy
| |
Collapse
|
49
|
Mukherjee R, Chandra Pal A, Banerjee M. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis (Edinb) 2017; 106:44-52. [PMID: 28802404 DOI: 10.1016/j.tube.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Management of tuberculosis, already a global health emergency, is becoming increasingly challenging with extensive misuse of second line drugs and their inaccessibility to eighty percent of the eligible patients. Rising statistics of antimicrobial resistance underscores the need for a set of completely new and more effective class of compounds with novel mechanisms of action that can be administered in combination to replace and shorten the present intensive six months regimen. In this review, we stress on the importance and the successes of phenotypic screening for discovery of anti-mycobacterial compound and discuss the importance of performing secondary screens and counter screens to get early estimate on compound's potentials for a successful development. We also highlight the recent advances and the related caveats in the assays that have been developed and discuss new screening modalities that can be incorporated during hit-selection to gain a quick insight into the mechanism of action, thus enabling quicker decisions in a hit triage.
Collapse
Affiliation(s)
- Raju Mukherjee
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India.
| | - Anup Chandra Pal
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India
| | - Mousumi Banerjee
- Indian Institute of Technology, Tirupati, Renigunta Road, Tirupati, 517506, India
| |
Collapse
|
50
|
Goud GL, Ramesh S, Ashok D, Reddy VP, Yogeeswari P, Sriram D, Saikrishna B, Manga V. Design, synthesis, molecular-docking and antimycobacterial evaluation of some novel 1,2,3-triazolyl xanthenones. MEDCHEMCOMM 2017; 8:559-570. [PMID: 30108772 PMCID: PMC6072411 DOI: 10.1039/c6md00593d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/26/2016] [Indexed: 11/21/2022]
Abstract
As part of an ongoing effort to develop new antitubercular and antimicrobial agents, a series of substituted xanthenone derivatives (7a-p) were synthesized. Xanthenone derivatives (7a-p) were prepared via a one-pot three-component thermal cyclization reaction of β-naphthol (5), substituted 1-aryl-1H-[1,2,3]triazole-4-carbaldehydes (4a-h), and cyclic-1,3-diones (6a, b) in the presence of a catalytic amount of iodine. The newly synthesized compounds were characterized by IR, NMR, mass spectral data, and elemental analysis. These compounds (4a-h and 7a-p) were screened for in vitro antitubercular activity against the M. tuberculosis H37Rv (ATCC 27294) strain, for antibacterial activity against Gram-positive and Gram-negative strains, and for antifungal activity against a pathogenic strain of fungi. Among the compounds tested, most of them showed good to excellent antimicrobial and antitubercular activity. The active compounds displaying good potency in the MTB were further examined for toxicity in a HEK cell line. In addition, the structure and antitubercular activity relationship were further supported by in silico molecular-docking studies of the active compounds against the pantothenate synthetase (PS) enzyme of M. tuberculosis.
Collapse
Affiliation(s)
- Gudikadi Linga Goud
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Seela Ramesh
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Dongamanti Ashok
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Vummenthala Prabhakar Reddy
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Perumal Yogeeswari
- Department of Pharmacy , Birla Institute of Technology & Science - Hyderabad Campus , Jawahar Nagar , Hyderabad , Telangana-500 078 , India
| | - Dharmarajan Sriram
- Department of Pharmacy , Birla Institute of Technology & Science - Hyderabad Campus , Jawahar Nagar , Hyderabad , Telangana-500 078 , India
| | - Balabadra Saikrishna
- Molecular Modeling and Medicinal Chemistry Group , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India
| |
Collapse
|