1
|
Yang N, Li T, Dong S, Zhang S, Jia Y, Mao H, Zhang Z, Zhang F, Pan X, Zhang X, Dong Z. Detection of airborne pathogens with single photon counting and a real-time spectrometer on microfluidics. LAB ON A CHIP 2022; 22:4995-5007. [PMID: 36440701 DOI: 10.1039/d2lc00934j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The common practice for monitoring pathogenic bioaerosols is to collect bioaerosols from air and then detect them, which lacks timeliness and accuracy. In order to improve the detection speed, here we demonstrate an innovative airflow-based optical detection method for directly identifying aerosol pathogens, and built a microfluidic-based counter composite spectrometer detection platform, which simplifies sample preparation and collection detection from two steps to one step. The method is based on principal component analysis and partial least squares discriminant analysis for particle species identification and dynamic transmission spectroscopy analysis, and single-photon measurement is used for particle counting. Compared with traditional microscopic counting and identification methods, the particle counting accuracy is high, the standard deviation is small, and the counting accuracy exceeds 92.2%. The setup of dynamic transmission spectroscopy analysis provides high-precision real-time particle identification with an accuracy rate of 93.75%. As the system is further refined, we also foresee potential applications of this method in agricultural disease control, environmental control, and infectious disease control in aerosol pathogen detection.
Collapse
Affiliation(s)
- Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Taiwei Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Sizhe Dong
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Faculty of Science and Technology - ECE, Institute of Microelectronics, University of Macau, Macau 999078, China.
| | - Suliang Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Faculty of Science and Technology - ECE, Institute of Microelectronics, University of Macau, Macau 999078, China.
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China.
| | - Zhen Zhang
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212000, China.
| | - Fu Zhang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoqing Pan
- Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Xiaodong Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China.
| | - Zining Dong
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212000, China.
| |
Collapse
|
2
|
Ling SD, Liu Z, Ma W, Chen Z, Du Y, Xu J. A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. BIOSENSORS 2022; 12:bios12080659. [PMID: 36005055 PMCID: PMC9406195 DOI: 10.3390/bios12080659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Cell encapsulation has been widely employed in cell therapy, characterization, and analysis, as well as many other biomedical applications. While droplet-based microfluidic technology is advantageous in cell microencapsulation because of its modularity, controllability, mild conditions, and easy operation when compared to other state-of-art methods, it faces the dilemma between high throughput and monodispersity of generated cell-laden microdroplets. In addition, the lack of a biocompatible method of de-emulsification transferring cell-laden hydrogel from cytotoxic oil phase into cell culture medium also hurtles the practical application of microfluidic technology. Here, a novel step-T-junction microchannel was employed to encapsulate cells into monodisperse microspheres at the high-throughput jetting regime. An alginate–gelatin co-polymer system was employed to enable the microfluidic-based fabrication of cell-laden microgels with mild cross-linking conditions and great biocompatibility, notably for the process of de-emulsification. The mechanical properties of alginate-gelatin hydrogel, e.g., stiffness, stress–relaxation, and viscoelasticity, are fully adjustable in offering a 3D biomechanical microenvironment that is optimal for the specific encapsulated cell type. Finally, the encapsulation of HepG2 cells into monodisperse alginate–gelatin microgels with the novel microfluidic system and the subsequent cultivation proved the maintenance of the long-term viability, proliferation, and functionalities of encapsulated cells, indicating the promising potential of the as-designed system in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences Tsinghua University, Beijing 100084, China
| | - Wenjun Ma
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| |
Collapse
|
3
|
Zhang H, Zhang L, An C, Zhang Y, Shao F, Gao Y, Zhang Y, Li H, Zhang Y, Ren C, Sun K, He W, Cheng F, Wang H, Weitz DA. Large-scale single-cell encapsulation in microgels through metastable droplet-templating combined with microfluidic-integration. Biofabrication 2022; 14. [PMID: 35593920 DOI: 10.1088/1758-5090/ac7168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Current techniques for the generation of cell-laden microgels are limited by numerous challenges, including poorly uncontrolled batch-to-batch variations, processes that are both labor- and time-consuming, the high expense of devices and reagents, and low production rates; this hampers the translation of laboratory findings to clinical applications. To address these challenges, we develop a droplet-based microfluidic strategy based on metastable droplet-templating and microchannel integration for the substantial large-scale production of single cell-laden alginate microgels. Specifically, we present a continuous processing method for microgel generation by introducing amphiphilic perfluoronated alcohols to obtain metastable emulsion droplets as sacrificial templates. In addition, to adapt to the metastable emulsion system, integrated microfluidic chips containing 80 drop-maker units are designed and optimized based on the computational fluid dynamics simulation. This strategy allows single cell encapsulation in microgels at a maximum production rate of 10 ml hr-1 of cell suspension while retaining cell viability and functionality. These results represent a significant advance toward using cell-laden microgels for clinical-relevant applications, including cell therapy, tissue regeneration and 3D bioprinting.
Collapse
Affiliation(s)
- Haoyue Zhang
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Liyuan Zhang
- Harvard School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, Cambridge, Massachusetts, MA 02138, UNITED STATES
| | - Chuanfeng An
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Yang Zhang
- Shenzhen University, Laboratory of Regenerative Biomaterials, Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, P.R. China, Shenzhen, Guangdong, 518037, CHINA
| | - Fei Shao
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Yijie Gao
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 42 Xuegong Street, Shahekou district, Dalian, Liaoning province, Dalian, Liaoning, 116033, CHINA
| | - Yonghao Zhang
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Hanting Li
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Yujie Zhang
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Changle Ren
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, 42 Xuegong Street, Shahekou district, Dalian, Liaoning province, Dalian, Liaoning, 116033, CHINA
| | - Kai Sun
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Wei He
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Fang Cheng
- Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, Liaoning, 116024, CHINA
| | - Huanan Wang
- dalian university of technology, Dalian University of Technology, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P.R.China, Dalian, 116024, CHINA
| | - David A Weitz
- Harvard School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, Cambridge, Massachusetts, MA 02138, UNITED STATES
| |
Collapse
|
4
|
Fan Q, Wang G, Tian D, Ma A, Wang W, Bai L, Chen H, Yang L, Yang H, Wei D, Yang Z. Self-healing nanocomposite hydrogels via Janus nanosheets: Multiple effects of metal–coordination and host–guest interactions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Oevreeide IH, Szydlak R, Luty M, Ahmed H, Prot V, Skallerud BH, Zemła J, Lekka M, Stokke BT. On the Determination of Mechanical Properties of Aqueous Microgels-Towards High-Throughput Characterization. Gels 2021; 7:64. [PMID: 34072792 PMCID: PMC8261632 DOI: 10.3390/gels7020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Aqueous microgels are distinct entities of soft matter with mechanical signatures that can be different from their macroscopic counterparts due to confinement effects in the preparation, inherently made to consist of more than one domain (Janus particles) or further processing by coating and change in the extent of crosslinking of the core. Motivated by the importance of the mechanical properties of such microgels from a fundamental point, but also related to numerous applications, we provide a perspective on the experimental strategies currently available and emerging tools being explored. Albeit all techniques in principle exploit enforcing stress and observing strain, the realization differs from directly, as, e.g., by atomic force microscope, to less evident in a fluid field combined with imaging by a high-speed camera in high-throughput strategies. Moreover, the accompanying analysis strategies also reflect such differences, and the level of detail that would be preferred for a comprehensive understanding of the microgel mechanical properties are not always implemented. Overall, the perspective is that current technologies have the capacity to provide detailed, nanoscopic mechanical characterization of microgels over an extended size range, to the high-throughput approaches providing distributions over the mechanical signatures, a feature not readily accessible by atomic force microscopy and micropipette aspiration.
Collapse
Affiliation(s)
- Ingrid Haga Oevreeide
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Marcin Luty
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Victorien Prot
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Bjørn Helge Skallerud
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| |
Collapse
|
6
|
Liu EY, Choi Y, Yi H, Choi CH. Triple Emulsion-Based Rapid Microfluidic Production of Core-Shell Hydrogel Microspheres for Programmable Biomolecular Conjugation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11579-11587. [PMID: 33651584 DOI: 10.1021/acsami.0c20081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a simple and rapid microfluidic approach to produce core-shell hydrogel microspheres in a single step. We exploit triple emulsion drops with sacrificial oil layers that separate two prepolymer phases, forming poly(ethylene glycol)-based core-shell microspheres via photopolymerization followed by spontaneous removal of the oil layer. Our technique enables the production of monodisperse core-shell microspheres with varying dimensions of each compartment by independently and precisely controlled flow rates. This leads to stable and uniform incorporation of functional moieties in the core compartment with negligible cross-contamination into the shell layer. Selective conjugation of biomolecules is enabled through a rapid bioorthogonal reaction with functional groups in the core compartment with minimal non-specific adsorption. Finally, in-depth protein conjugation kinetics studies using microspheres with varying shell porosities highlight the capability to provide tunable size-selective diffusion barriers by simple tuning of prepolymer compositions for the shell layer. Combined, these results illustrate a significant step forward for programmable high-throughput fabrication of multifunctional hydrogel microspheres, which possess substantial potential in a large array of biomedical and biochemical applications.
Collapse
Affiliation(s)
- Eric Y Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yoon Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
7
|
|
8
|
Yang CG, Cheng L, Ye WQ, Zheng DH, Xu ZR. Preparation of encoded bar-like core-shell microparticles on a microfluidic chip. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Wu Z, Zheng Y, Lin L, Mao S, Li Z, Lin J. Controllable Synthesis of Multicompartmental Particles Using 3D Microfluidics. Angew Chem Int Ed Engl 2020; 59:2225-2229. [DOI: 10.1002/anie.201911252] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/27/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Zengnan Wu
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 China
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Yajing Zheng
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Ling Lin
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Sifeng Mao
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
| | - Zenghe Li
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Jin‐Ming Lin
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
| |
Collapse
|
10
|
Wolff HJM, Linkhorst J, Göttlich T, Savinsky J, Krüger AJD, de Laporte L, Wessling M. Soft temperature-responsive microgels of complex shape in stop-flow lithography. LAB ON A CHIP 2020; 20:285-295. [PMID: 31802080 DOI: 10.1039/c9lc00749k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stop-flow lithography (SFL) has emerged as a facile high-throughput fabrication method for μm-sized anisometric particles; yet, the fabrication of soft, anisometric microgels has not frequently been addressed in the literature. Furthermore, and to the best of the authors' knowledge, no soft, complex-shaped microgels with temperature-responsive behavior have been fabricated with this technology before. However, such microgels have tremendous potential as building blocks and actuating elements in rapidly developing fields, such as tissue engineering and additive manufacturing of soft polymeric building blocks, bio-hybrid materials, or soft micro-robotics. Given their great potential, we prove in this work that SFL is a viable method for the fabrication of soft, temperature-responsive, and complex-shaped microgels. The microgels, fabricated in this work, consist of poly(N-isopropylacrylamide) (pNIPAm), which is crosslinked with N,N'-methylenebis(acrylamide). The results confirm that the shape of the pNIPAm microgels is determined by the transparency mask, used in SFL. Furthermore, it is shown that, in order to realize stable microgels, a minimum threshold of crosslinker concentration of 2 wt% is required. Above this threshold, the stiffness of pNIPAm microgels can be deliberately altered by adjusting the concentration of the crosslinker. The fabricated pNIPAm microgels show the targeted temperature-responsive behavior. Within this context, temperature-dependent reversible swelling is confirmed, even for fractal-like geometries, such as micro snowflakes. Thus, these microgels provide the targeted unique combination of softness, shape complexity, and temperature responsiveness and increase the freedom of design for actuated building blocks.
Collapse
Affiliation(s)
- Hanna J M Wolff
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - John Linkhorst
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Tim Göttlich
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Johann Savinsky
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Andreas J D Krüger
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura de Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany and RWTH Aachen University, ITMC - Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074 Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany. and DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
11
|
Wu Z, Zheng Y, Lin L, Mao S, Li Z, Lin J. Controllable Synthesis of Multicompartmental Particles Using 3D Microfluidics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zengnan Wu
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 China
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Yajing Zheng
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Ling Lin
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Sifeng Mao
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
| | - Zenghe Li
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Jin‐Ming Lin
- Department of ChemistryBeijing Key Laboratory of Microanalytical Methods and InstrumentationMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Han D, Crouch GM, Chao Z, Fullerton-Shirey SK, Go DB, Bohn PW. Nanopore-Templated Silver Nanoparticle Arrays Photopolymerized in Zero-Mode Waveguides. Front Chem 2019; 7:216. [PMID: 31024900 PMCID: PMC6467962 DOI: 10.3389/fchem.2019.00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/19/2019] [Indexed: 12/27/2022] Open
Abstract
In situ fabrication of nanostructures within a solid-polymer electrolyte confined to subwavelength-diameter nanoapertures is a promising approach for producing nanomaterials for nanophotonic and chemical sensing applications. The solid-polymer electrolyte can be patterned by lithographic photopolymerization of poly(ethylene glycol) diacrylate (PEGDA)-based silver cation (Ag+)-containing polyelectrolyte. Here, we present a new method for fabricating nanopore-templated Ag nanoparticle (AgNP) arrays by in situ photopolymerization using a zero-mode waveguide (ZMW) array to simultaneously template embedded AgNPs and control the spatial distribution of the optical field used for photopolymerization. The approach starts with an array of nanopores fabricated by sequential layer-by-layer deposition and focused ion beam milling. These structures have an optically transparent bottom, allowing access of the optical radiation to the attoliter-volume ZMW region to photopolymerize a PEGDA monomer solution containing AgNPs and Ag+. The electric field intensity distribution is calculated for various ZMW optical cladding layer thicknesses using finite-element simulations, closely following the light-blocking efficiency of the optical cladding layer. The fidelity of the polyelectrolyte nanopillar pattern was optimized with respect to experimental conditions, including the presence or absence of Ag+ and AgNPs and the concentrations of PEGDA and Ag+. The self-templated approach for photopatterning high-resolution photolabile polyelectrolyte nanostructures directly within a ZMW array could lead to a new class of metamaterials formed by embedding metal nanoparticles within a dielectric in a well-defined spatial array.
Collapse
Affiliation(s)
- Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon, South Korea
| | - Garrison M. Crouch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Zhongmou Chao
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan K. Fullerton-Shirey
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - David B. Go
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
13
|
Jung CW, Lee JS, Jalani G, Hwang EY, Lim DW. Thermally-Induced Actuations of Stimuli-Responsive, Bicompartmental Nanofibers for Decoupled Drug Release. Front Chem 2019; 7:73. [PMID: 30838199 PMCID: PMC6390475 DOI: 10.3389/fchem.2019.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Stimuli-responsive anisotropic microstructures and nanostructures with different physicochemical properties in discrete compartments, have been developed as advanced materials for drug delivery systems, tissue engineering, regenerative medicine, and biosensing applications. Moreover, their stimuli-triggered actuations would be of great interest for the introduction of the functionality of drug delivery reservoirs and tissue engineering scaffolds. In this study, stimuli-responsive bicompartmental nanofibers (BCNFs), with completely different polymer compositions, were prepared through electrohydrodynamic co-jetting with side-by-side needle geometry. One compartment with thermo-responsiveness was composed of methacrylated poly(N-isopropylacrylamide-co-allylamine hydrochloride) (poly(NIPAM-co-AAh)), while the counter compartment was made of poly(ethylene glycol) dimethacrylates (PEGDMA). Both methacrylated poly(NIPAM-co-AAh) and PEGDMA in distinct compartments were chemically crosslinked in a solid phase by UV irradiation and swelled under aqueous conditions, because of the hydrophilicity of both poly(NIPAM-co-AAh) and PEGDMA. As the temperature increased, BCNFs maintained a clear interface between compartments and showed thermally-induced actuation at the nanoscale due to the collapsed poly(NIPAM-co-AAh) compartment under the PEGDMA compartment of identical dimensions. Different model drugs, bovine serum albumin, and dexamethasone phosphate were alternately loaded into each compartment and released at different rates depending on the temperature and molecular weight of the drugs. These BCNFs, as intelligent nanomaterials, have great potential as tissue engineering scaffolds and multi-modal drug delivery reservoirs with stimuli-triggered actuation and decoupled drug release.
Collapse
Affiliation(s)
| | | | | | | | - Dong Woo Lim
- Department of Bionano Engineering and Bionanotechnology, College of Engineering Sciences, Hanyang University, Ansan, South Korea
| |
Collapse
|
14
|
Camposeo A, Persano L, Farsari M, Pisignano D. Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. ADVANCED OPTICAL MATERIALS 2019; 7:1800419. [PMID: 30775219 PMCID: PMC6358045 DOI: 10.1002/adom.201800419] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/04/2018] [Indexed: 05/22/2023]
Abstract
The combination of materials with targeted optical properties and of complex, 3D architectures, which can be nowadays obtained by additive manufacturing, opens unprecedented opportunities for developing new integrated systems in photonics and optoelectronics. The recent progress in additive technologies for processing optical materials is here presented, with emphasis on accessible geometries, achievable spatial resolution, and requirements for printable optical materials. Relevant examples of photonic and optoelectronic devices fabricated by 3D printing are shown, which include light-emitting diodes, lasers, waveguides, optical sensors, photonic crystals and metamaterials, and micro-optical components. The potential of additive manufacturing applied to photonics and optoelectronics is enormous, and the field is still in its infancy. Future directions for research include the development of fully printable optical and architected materials, of effective and versatile platforms for multimaterial processing, and of high-throughput 3D printing technologies that can concomitantly reach high resolution and large working volumes.
Collapse
Affiliation(s)
- Andrea Camposeo
- NESTIstituto Nanoscienze‐CNRPiazza San Silvestro 12I‐56127PisaItaly
| | - Luana Persano
- NESTIstituto Nanoscienze‐CNRPiazza San Silvestro 12I‐56127PisaItaly
| | | | - Dario Pisignano
- NESTIstituto Nanoscienze‐CNRPiazza San Silvestro 12I‐56127PisaItaly
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3I‐56127PisaItaly
| |
Collapse
|
15
|
Gupta A, Lee H, Doyle PS. Oil Recovery from Micropatterned Triangular Troughs during a Surfactant Flood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10644-10649. [PMID: 30124298 DOI: 10.1021/acs.langmuir.8b02150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study the recovery of oil trapped inside micropatterned triangular troughs after injecting a surfactant solution. In our experiments, we track the trapped oil volume with duration of surfactant flood for different capillary numbers. We observe that the capillary number affects the amount of oil recovered as the well as the rate of oil recovery. We employ multiphase flow simulations to analyze our system and show a qualitative agreement between the simulations and experimental results. We also discover that beyond a capillary number, the volume of oil recovered plateaus, and no additional oil is released with an increase in capillary number. We develop a theoretical model to predict the dependence of maximum oil recovery on geometrical features and find that the theoretical predictions compare favorably with the trends obtained from our simulations. Though approximate, theoretical relation provides insights into the efficiency of oil recovery and can be utilized to understand the effect of sharp bends and dead ends in enhanced oil recovery and soil remediation.
Collapse
Affiliation(s)
- Ankur Gupta
- Princeton University , 1 Olden Street , Princeton , New Jersey 08544 , United States
| | - Hyundo Lee
- Massachusetts Institute of Technology , E17-504F, 77 Mass Avenue , Cambridge , Massachusetts 02139 , United States
| | - Patrick S Doyle
- Massachusetts Institute of Technology , E17-504F, 77 Mass Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
16
|
LeValley PJ, Noren B, Kharkar PM, Kloxin AM, Gatlin JC, Oakey JS. Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation. ACS Biomater Sci Eng 2018; 4:3078-3087. [PMID: 31984222 DOI: 10.1021/acsbiomaterials.8b00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The in situ fabrication of poly(ethylene glycol) diacrylate (PEGDA) hydrogel microstructures within poly(dimethylsiloxane) (PDMS)-based microfluidic networks is a versatile technique that has enabled unique applications in biosensing, medical diagnostics, and the fundamental life sciences. Hydrogel structures have previously been patterned by the lithographic photopolymerization of PEGDA hydrogel forming solutions, a process that is confounded by oxygen-permeable PDMS. Here, we introduce an alternate PEG patterning technique that relies upon the optical sculpting of features by patterned light-induced erosion of photodegradable PEGDA deemed negative projection lithography. We quantitatively compared the hydrogel micropatterning fidelity of negative projection lithography to positive projection lithography, using traditional PEGDA photopolymerization, within PDMS devices. We found that the channel depth, the local oxygen atmosphere, and the UV exposure time dictated the size and resolution of hydrogel features formed using positive projection lithography. In contrast, negative projection lithography was observed to deliver high-resolution functional features with dimensions on the order of single micrometers enabled by its facilely controlled mechanism of feature formation that is insensitive to oxygen. Next, the utility of photodegradable PEGDA was further assessed by encapsulating or conjugating bioactive molecules within photodegradable PEG matrixes to provide a route to the formation of complex and dynamically reconfigurable chemical microenvironments. Finally, we demonstrated that negative projection lithography enabled photopatterning of multilayered microscale objects without the need for precise mask alignment. The described approach for photopatterning high-resolution photolabile hydrogel microstructures directly within PDMS microchannels could enable novel microsystems of increasing complexity and sophistication for a variety of clinical and biological applications.
Collapse
Affiliation(s)
- Paige J LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Ben Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Prathamesh M Kharkar
- Department of Biomolecular and Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - April M Kloxin
- Department of Biomolecular and Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John S Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
17
|
Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 132:169-187. [PMID: 30009884 DOI: 10.1016/j.addr.2018.07.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Nanoparticles for biomedical applications are generally formed by bottom-up approaches such as self-assembly, emulsification and precipitation. But these methods usually have critical limitations in fabrication of nanoparticles with controllable morphologies and monodispersed size. Compared with bottom-up methods, top-down nanofabrication techniques offer advantages of high fidelity and high controllability. This review focuses on top-down nanofabrication techniques for engineering particles along with their biomedical applications. We present several commonly used top-down nanofabrication techniques that have the potential to fabricate nanoparticles, including photolithography, interference lithography, electron beam lithography, mold-based lithography (nanoimprint lithography and soft lithography), nanostencil lithography, and nanosphere lithography. Varieties of current and emerging applications are also covered: (i) targeting, (ii) drug and gene delivery, (iii) imaging, and (iv) therapy. Finally, a future perspective of the nanoparticles fabricated by the top-down techniques in biomedicine is also addressed.
Collapse
|
18
|
Gil M, Moon S, Yoon J, Rhamani S, Shin J, Lee KJ, Lahann J. Compartmentalized Microhelices Prepared via Electrohydrodynamic Cojetting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800024. [PMID: 29938185 PMCID: PMC6009775 DOI: 10.1002/advs.201800024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Anisotropically compartmentalized microparticles have attracted increasing interest in areas ranging from sensing, drug delivery, and catalysis to microactuators. Herein, a facile method is reported for the preparation of helically decorated microbuilding blocks, using a modified electrohydrodynamic cojetting method. Bicompartmental microfibers are twisted in situ, during electrojetting, resulting in helical microfibers. Subsequent cryosectioning of aligned fiber bundles provides access to helically decorated microcylinders. The unique helical structure endows the microfibers/microcylinders with several novel functions such as translational motion in response to rotating magnetic fields. Finally, microspheres with helically patterned compartments are obtained after interfacially driven shape shifting of helically decorated microcylinders.
Collapse
Affiliation(s)
- Manjae Gil
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Seongjun Moon
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Jaewon Yoon
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Sahar Rhamani
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Institute of Functional InterfacesKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| | - Jae‐Won Shin
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Kyung Jin Lee
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
- Institute of Functional InterfacesKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
19
|
Fan JB, Liu H, Song Y, Luo Z, Lu Z, Wang S. Janus Particles Synthesis by Emulsion Interfacial Polymerization: Polystyrene as Seed or Beyond? Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02304] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen Luo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Wu CY, Stoecklein D, Kommajosula A, Lin J, Owsley K, Ganapathysubramanian B, Di Carlo D. Shaped 3D microcarriers for adherent cell culture and analysis. MICROSYSTEMS & NANOENGINEERING 2018; 4:21. [PMID: 31057909 PMCID: PMC6220171 DOI: 10.1038/s41378-018-0020-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 05/19/2023]
Abstract
Standard tissue culture of adherent cells is known to poorly replicate physiology and often entails suspending cells in solution for analysis and sorting, which modulates protein expression and eliminates intercellular connections. To allow adherent culture and processing in flow, we present 3D-shaped hydrogel cell microcarriers, which are designed with a recessed nook in a first dimension to provide a tunable shear-stress shelter for cell growth, and a dumbbell shape in an orthogonal direction to allow for self-alignment in a confined flow, important for processing in flow and imaging flow cytometry. We designed a method to rapidly design, using the genetic algorithm, and manufacture the microcarriers at scale using a transient liquid molding optofluidic approach. The ability to precisely engineer the microcarriers solves fundamental challenges with shear-stress-induced cell damage during liquid-handling, and is poised to enable adherent cell culture, in-flow analysis, and sorting in a single format.
Collapse
Affiliation(s)
- Chueh-Yu Wu
- Department of Bioengineering, University of California, Los Angeles, CA USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA USA
- California NanoSystems Institute, University of California, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA USA
| | - Daniel Stoecklein
- Department of Mechanical Engineering, Iowa State University, Ames, IA USA
| | - Aditya Kommajosula
- Department of Mechanical Engineering, Iowa State University, Ames, IA USA
| | - Jonathan Lin
- Department of Bioengineering, University of California, Los Angeles, CA USA
- California NanoSystems Institute, University of California, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA USA
| | - Keegan Owsley
- Department of Bioengineering, University of California, Los Angeles, CA USA
- California NanoSystems Institute, University of California, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA USA
| | | | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA USA
- California NanoSystems Institute, University of California, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA USA
| |
Collapse
|
21
|
|
22
|
Kim J, An H, Seo Y, Jung Y, Lee JS, Choi N, Bong KW. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips. BIOMICROFLUIDICS 2017; 11:024120. [PMID: 28469763 PMCID: PMC5407903 DOI: 10.1063/1.4982698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/17/2017] [Indexed: 05/07/2023]
Abstract
Flow Lithography (FL) is the technique used for the synthesis of hydrogel microparticles with various complex shapes and distinct chemical compositions by combining microfluidics with photolithography. Although polydimethylsiloxane (PDMS) has been used most widely as almost the sole material for FL, PDMS microfluidic chips have limitations: (1) undesired shrinkage due to the thermal expansion of masters used for replica molding and (2) interfacial delamination between two thermally cured PDMS layers. Here, we propose the utilization of ultraviolet (UV)-curable PDMS (X-34-4184) for FL as an excellent alternative material of the conventional PDMS. Our proposed utilization of the UV-curable PDMS offers three key advantages, observed in our study: (1) UV-curable PDMS exhibited almost the same oxygen permeability as the conventional PDMS. (2) The almost complete absence of shrinkage facilitated the fabrication of more precise reverse duplication of microstructures. (3) UV-cured PDMS microfluidic chips were capable of much stronger interfacial bonding so that the burst pressure increased to ∼0.9 MPa. Owing to these benefits, we demonstrated a substantial improvement of productivity in synthesizing polyethylene glycol diacrylate microparticles via stop flow lithography, by applying a flow time (40 ms) an order of magnitude shorter. Our results suggest that UV-cured PDMS chips can be used as a general platform for various types of flow lithography and also be employed readily in other applications where very precise replication of structures on micro- or sub-micrometer scales and/or strong interfacial bonding are desirable.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
23
|
Li M, Joung D, Kozinski JA, Hwang DK. Fabrication of Highly Porous Nonspherical Particles Using Stop-Flow Lithography and the Study of Their Optical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:184-190. [PMID: 27933811 DOI: 10.1021/acs.langmuir.6b03358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A microfluidic flow lithography approach was investigated to synthesize highly porous nonspherical particles and Janus particles in a one-step and high-throughput fashion. In this study, using common solvents as porogens, we were able to synthesize highly porous particles with different shapes using ultraviolet (UV) polymerization-induced phase separation in a microfluidic channel. We also studied the pore-forming process using operating parameters such as porogen type, porogen concentration, and UV intensity to tune the pore size and increase the pore size to submicron levels. By simply coflowing multiple streams in the microfluidic channel, we were able to create porous Janus particles; we showed that their anisotropic swelling/deswelling exhibit a unique optical shifting. The distinctive optical properties and the enlarged surface area of the highly porous particles can improve their performance in various applications such as optical sensors and drug loading.
Collapse
Affiliation(s)
- Minggan Li
- Department of Chemical Engineering, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) , A partnership between Ryerson University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Dehi Joung
- Department of Chemical Engineering, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) , A partnership between Ryerson University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Janusz A Kozinski
- Lassonde School of Engineering, York University , 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) , A partnership between Ryerson University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
24
|
Wang B, Prinsen P, Wang H, Bai Z, Wang H, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chem Soc Rev 2017; 46:855-914. [DOI: 10.1039/c5cs00065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.
Collapse
Affiliation(s)
- Bingjie Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pepijn Prinsen
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Huizhi Wang
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Jin Xuan
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|
25
|
Malo de Molina P, Zhang M, Bayles AV, Helgeson ME. Oil-in-Water-in-Oil Multinanoemulsions for Templating Complex Nanoparticles. NANO LETTERS 2016; 16:7325-7332. [PMID: 27455402 DOI: 10.1021/acs.nanolett.6b02073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Complex nanoemulsions involving nanodroplets with a defined inner structure have great potential for encapsulation and templating applications. We report a method to form novel complex oil-in-water-in-oil nanoemulsions using a combination of high-energy processing with mixed nonionic surfactants that simultaneously achieve ultralow interfacial tension and frustrated curvature of the water-oil interface. The method produces multinanoemulsions possessing morphologies resembling water-swollen reverse vesicles with core-shell and multicore-shell morphologies of water in cyclohexane. A combination of macroscopic and microscopic characterization conclusively verifies and quantifies the complex morphologies, which vary systematically and reproducibly with water content for water volume fractions between 0.01 and 0.10. The complex morphologies are stable tens of hours, providing a route for their use as liquid templates for internally structured nanoparticles. As a demonstration, we test the complex nanoemulsions' ability to template complex polymer nanogels.
Collapse
Affiliation(s)
- Paula Malo de Molina
- Department of Chemical Engineering, University of California Santa Barbara , 3357 Engineering II, Santa Barbara, California 93106, United States
| | - Mengwen Zhang
- Department of Chemical Engineering, University of California Santa Barbara , 3357 Engineering II, Santa Barbara, California 93106, United States
| | - Alexandra V Bayles
- Department of Chemical Engineering, University of California Santa Barbara , 3357 Engineering II, Santa Barbara, California 93106, United States
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara , 3357 Engineering II, Santa Barbara, California 93106, United States
| |
Collapse
|
26
|
Roh YH, Sim SJ, Cho IJ, Choi N, Bong KW. Vertically encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs associated with Alzheimer's disease. Analyst 2016; 141:4578-86. [PMID: 27226082 DOI: 10.1039/c6an00188b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Encoded hydrogel particles have attracted attention in diagnostics as these particles can be used for high-performance multiplexed assays. Here, we present encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs that are strongly related to Alzheimer's disease (AD). The particles are comprised of vertically distinct code and probe regions, and incorporated with quantum dots (QDs) in the code regions. By virtue of the particle geometry, the particles can be synthesized at a high production rate in vertically stacked micro-flows using hydrodynamic focusing lithography. To detect multiple AD-miRNAs, various code labels to identify the loaded probes are designed by changing wavelengths of QDs, increasing the number of code layers and adjusting the thickness of code layers. The probe regions are incorporated with complementary sequences of target miRNAs, and optimized for accurate and timely detection of AD-miRNAs. For proof of concept, we demonstrate the multiplexed capability of the particles by performing a 3-plexed assay of AD-miRNAs.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea.
| | | | | | | | | |
Collapse
|
27
|
Wu CY, Owsley K, Di Carlo D. Rapid Software-Based Design and Optical Transient Liquid Molding of Microparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7970-7978. [PMID: 26509252 DOI: 10.1002/adma.201503308] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Microparticles with complex 3D shape and composition are produced using a novel fabrication method, optical transient liquid molding, in which a 2D light pattern exposes a photopolymer precursor stream shaped along the flow axis by software-aided inertial flow engineering.
Collapse
Affiliation(s)
- Chueh-Yu Wu
- Department of Bioengineering, California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keegan Owsley
- Department of Bioengineering, California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
28
|
Bong KW, Kim JJ, Cho H, Lim E, Doyle PS, Irimia D. Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13165-71. [PMID: 26545155 PMCID: PMC4820324 DOI: 10.1021/acs.langmuir.5b03501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin-biotin chemistry to adjust the localization of conjugated collagen and poly-L-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates.
Collapse
Affiliation(s)
- Ki Wan Bong
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
| | - Jae Jung Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hansang Cho
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Eugene Lim
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Corresponding Authors: .,
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Corresponding Authors: .,
| |
Collapse
|
29
|
Abstract
Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field.
Collapse
Affiliation(s)
- Gaelle C. Le Goff
- Novartis Institutes for Biomedical Research, 250 Massachusetts
Avenue, Cambridge 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rathi L. Srinivas
- Department of Chemical Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - W. Adam Hill
- Novartis Institutes for Biomedical Research, 250 Massachusetts
Avenue, Cambridge 02139, USA
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Persano L, Camposeo A, Pisignano D. Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2014.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Choi CH, Kang SM, Jin SH, Yi H, Lee CS. Controlled fabrication of multicompartmental polymeric microparticles by sequential micromolding via surface-tension-induced droplet formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1328-35. [PMID: 25551788 DOI: 10.1021/la504404y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polymeric multicompartmental microparticles have significant potential in many applications due to the capability to hold various functions in discrete domains within a single particle. Despite recent progress in microfluidic techniques, simple and scalable fabrication methods for multicompartmental particles remain challenging. This study reports a simple sequential micromolding method to produce monodisperse multicompartmental particles with precisely controllable size, shape, and compartmentalization. Specifically, our fabrication procedure involves sequential formation of primary and secondary compartments in micromolds via surface-tension-induced droplet formation coupled with simple photopolymerization. Results show that monodisperse bicompartmental particles with precisely controllable size, shape, and chemistry can be readily fabricated without sophisticated control or equipment. This technique is then extended to produce multicompartmental particles with controllable number of compartments and their size ratios through simple design of mold geometry. Also, core-shell particles with controlled number of cores for primary compartments can be readily produced by simple tuning of wettability. Finally, we demonstrate that the as-prepared multicompartmental particles can exhibit controlled release of multiple payloads based on design of particle compositions. Combined, these results illustrate a simple, robust, and scalable fabrication of highly monodisperse and complex multicompartmental particles in a controlled manner based on sequential micromolding.
Collapse
Affiliation(s)
- Chang-Hyung Choi
- Department of Chemical Engineering, Chungnam National University , Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Kojima T, Moraes C, Cavnar SP, Luker GD, Takayama S. Surface-templated hydrogel patterns prompt matrix-dependent migration of breast cancer cells towards chemokine-secreting cells. Acta Biomater 2015; 13:68-77. [PMID: 25463502 PMCID: PMC4293228 DOI: 10.1016/j.actbio.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
This paper describes a novel technique for fabricating spatially defined cell-laden collagen hydrogels, using patterned, non-adhesive polyacrylamide-coated polydimethylsiloxane (PDMS) surfaces as a template. Precisely patterned embedded co-cultures of breast cancer cells and chemokine-producing cells generated with this technique revealed matrix-dependent and chemokine isoform-dependent migration of cancer cells. CXCL12 chemokine-secreting cells induce significantly more chemotaxis of cancer cells when the 3-D extracellular matrix (ECM) includes components that bind the secreted CXCL12 chemokines. Experimental observations using cells that secrete CXCL12 isoforms with different matrix affinities together with computational simulations show that stronger ligand-matrix interactions sharpen chemoattractant gradients, leading to increased chemotaxis of the CXCL12 gradient-sensing CXCR4 receptor-expressing (CXCR4+) cells patterned in the hydrogel. These results extend our recent report on CXCL12 isoform-dependent chemotaxis studies from 2-D to 3-D environments and additionally reveal the important role of ECM composition. The developed technology is simple, versatile and robust; and as chemoattractant-matrix interactions are common, the methods described here should be broadly applicable for study of physiological migration of many different cell types in response to a variety of chemoattractants.
Collapse
Affiliation(s)
- Taisuke Kojima
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen P Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Shuichi Takayama
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Zhao Y, Cheng Y, Shang L, Wang J, Xie Z, Gu Z. Microfluidic synthesis of barcode particles for multiplex assays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:151-174. [PMID: 25331055 DOI: 10.1002/smll.201401600] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Indexed: 06/04/2023]
Abstract
The increasing use of high-throughput assays in biomedical applications, including drug discovery and clinical diagnostics, demands effective strategies for multiplexing. One promising strategy is the use of barcode particles that encode information about their specific compositions and enable simple identification. Various encoding mechanisms, including spectroscopic, graphical, electronic, and physical encoding, have been proposed for the provision of sufficient identification codes for the barcode particles. These particles are synthesized in various ways. Microfluidics is an effective approach that has created exciting avenues of scientific research in barcode particle synthesis. The resultant particles have found important application in the detection of multiple biological species as they have properties of high flexibility, fast reaction times, less reagent consumption, and good repeatability. In this paper, research progress in the microfluidic synthesis of barcode particles for multiplex assays is discussed. After introducing the general developing strategies of the barcode particles, the focus is on studies of microfluidics, including their design, fabrication, and application in the generation of barcode particles. Applications of the achieved barcode particles in multiplex assays will be described and emphasized. The prospects for future development of these barcode particles are also presented.
Collapse
Affiliation(s)
- Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China; Laboratory of Environment and Biosafety Research, Institute of Southeast University in Suzhou, Suzhou, 215123, China
| | | | | | | | | | | |
Collapse
|
34
|
Bong KW, Lee J, Doyle PS. Stop flow lithography in perfluoropolyether (PFPE) microfluidic channels. LAB ON A CHIP 2014; 14:4680-7. [PMID: 25316504 DOI: 10.1039/c4lc00877d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stop Flow Lithography (SFL) is a microfluidic-based particle synthesis method for creating anisotropic multifunctional particles with applications that range from MEMS to biomedical engineering. Polydimethylsiloxane (PDMS) has been typically used to construct SFL devices as the material enables rapid prototyping of channels with complex geometries, optical transparency, and oxygen permeability. However, PDMS is not compatible with most organic solvents which limit the current range of materials that can be synthesized with SFL. Here, we demonstrate that a fluorinated elastomer, called perfluoropolyether (PFPE), can be an alternative oxygen permeable elastomer for SFL microfluidic flow channels. We fabricate PFPE microfluidic devices with soft lithography and synthesize anisotropic multifunctional particles in the devices via the SFL process--this is the first demonstration of SFL with oxygen lubrication layers in a non-PDMS channel. We benchmark the SFL performance of the PFPE devices by comparing them to PDMS devices. We synthesized particles in both PFPE and PDMS devices under the same SFL conditions and found the difference of particle dimensions was less than a micron. PFPE devices can greatly expand the range of precursor materials that can be processed in SFL because the fluorinated devices are chemically resistant to most organic solvents, an inaccessible class of reagents in PDMS-based devices due to swelling.
Collapse
Affiliation(s)
- Ki Wan Bong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
35
|
Muñoz HE, Che J, Kong JE, Di Carlo D. Advances in the production and handling of encoded microparticles. LAB ON A CHIP 2014; 14:2212-2216. [PMID: 24852415 DOI: 10.1039/c4lc90042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we highlight emerging technologies in the synthesis, handling, and application of encoded microparticles for multiplexed assays. Traditionally, in drug discovery and life sciences research, multiple reactions will be conducted in parallel using microwell plate formats or microfluidic implementations, in which volumes are confined and reactions annotated by knowledge of what reagents were added to each volume. Microparticle-based information carriers provide an alternative approach to performing such multiplexed reactions, in which reactions and events are instead annotated with unique codes associated with the solid-phase particle. One challenge has been in creating a unique and large enough code set that is also easily readout, and we highlight two approaches that have brought orthogonal optical tagging techniques to bear. Another challenge has been that in such approaches, reactions have usually been confined to the surface of, or within the bulk of the specifically-tagged particle. We also highlight a creative approach and strategy for multiplexing - called "partipetting"- in which the coded particle can be a carrier of a unique fluid reagent.
Collapse
Affiliation(s)
- Hector Enrique Muñoz
- Department of Bioengineering, California NanoSystems Institute, Jonsson Comprehensive Cancer Center, University of California Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Box 951600, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
36
|
Lee J, Bisso PW, Srinivas RL, Kim JJ, Swiston AJ, Doyle PS. Universal process-inert encoding architecture for polymer microparticles. NATURE MATERIALS 2014; 13:524-9. [PMID: 24728464 DOI: 10.1038/nmat3938] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/04/2014] [Indexed: 05/20/2023]
Abstract
Polymer microparticles with unique, decodable identities are versatile information carriers with a small footprint. Widespread incorporation into industrial processes, however, is limited by a trade-off between encoding density, scalability and decoding robustness in diverse physicochemical environments. Here, we report an encoding strategy that combines spatial patterning with rare-earth upconversion nanocrystals, single-wavelength near-infrared excitation and portable CCD (charge-coupled device)-based decoding to distinguish particles synthesized by means of flow lithography. This architecture exhibits large, exponentially scalable encoding capacities (>10(6) particles), an ultralow decoding false-alarm rate (<10(-9)), the ability to manipulate particles by applying magnetic fields, and pronounced insensitivity to both particle chemistry and harsh processing conditions. We demonstrate quantitative agreement between observed and predicted decoding for a range of practical applications with orthogonal requirements, including covert multiparticle barcoding of pharmaceutical packaging (refractive-index matching), multiplexed microRNA detection (biocompatibility) and embedded labelling of high-temperature-cast objects (temperature resistance).
Collapse
Affiliation(s)
- Jiseok Lee
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2]
| | - Paul W Bisso
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts 02420, USA [3]
| | - Rathi L Srinivas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jae Jung Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Albert J Swiston
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts 02420, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
37
|
Sun XT, Liu M, Xu ZR. Microfluidic fabrication of multifunctional particles and their analytical applications. Talanta 2014; 121:163-77. [DOI: 10.1016/j.talanta.2013.12.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/20/2013] [Accepted: 12/25/2013] [Indexed: 12/21/2022]
|
38
|
Jung CW, Jalani G, Ko J, Choo J, Lim DW. Synthesis, characterization, and directional binding of anisotropic biohybrid microparticles for multiplexed biosensing. Macromol Rapid Commun 2013; 35:56-65. [PMID: 24395747 DOI: 10.1002/marc.201300652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/13/2013] [Indexed: 12/31/2022]
Abstract
Anisotropic microarchitectures with different physicochemical properties have been developed as advanced materials for challenging industrial and biomedical applications including switchable displays, multiplexed biosensors and bioassays, spatially-controlled drug delivery systems, and tissue engineering scaffolds. In this study, anisotropic biohybrid microparticles (MPs) spatio-selectively conjugated with two different antibodies (Abs) are first developed for fluorescence-based, multiplexed sensing of biological molecules. Poly(acrylamide-co-acrylic acid) is chemically modified with maleimide- or acetylene groups to introduce different targeting biological moieties into each compartment of anisotropic MPs. Modified polymer solutions containing two different fluorescent dyes are separately used for electrohydrodynamic co-jetting with side-by-side needle geometry. The anisotropic MPs are chemically stabilized by thermal imidization, followed by bioconjugation of two different sets of polyclonal Abs with two individual compartments via maleimide-thiol coupling reaction and Huisgen 1,3-dipolar cycloaddition. Finally, two compartments of the anisotropic biohybrid MPs are spatio-selectively associated with the respective monoclonal Ab-immobilized substrate in the presence of the antigen by sandwich-type immunocomplex formation, resulting in their ordered orientation due to the spatio-specific molecular interaction, as confirmed by confocal laser scanning microscopy. In conclusion, anisotropic biohybrid MPs capable of directional binding have great potential as a new fluorescence-based multiplexing biosensing system.
Collapse
Affiliation(s)
- Chan Woo Jung
- Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, ERICA Campus, Ansan, 426-791, Korea
| | | | | | | | | |
Collapse
|
39
|
Li Y, Zhu YL, Li YC, Qian HJ, Sun CC. Self-assembly of two-patch particles in solution: a Brownian dynamics simulation study. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.819430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Walther A, Müller AHE. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem Rev 2013; 113:5194-261. [DOI: 10.1021/cr300089t] [Citation(s) in RCA: 1328] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andreas Walther
- DWI at RWTH Aachen University − Institute for Interactive Materials Research, D-52056 Aachen, Germany
| | - Axel H. E. Müller
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, D-55099 Mainz,
Germany
| |
Collapse
|
41
|
Park TH, Lahann* J. Janus Particles with Distinct Compartments via Electrohydrodynamic Co-jetting. JANUS PARTICLE SYNTHESIS, SELF-ASSEMBLY AND APPLICATIONS 2012. [DOI: 10.1039/9781849735100-00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Cho S, Shim TS, Yang SM. High-throughput optofluidic platforms for mosaicked microfibers toward multiplex analysis of biomolecules. LAB ON A CHIP 2012; 12:3676-3679. [PMID: 22890815 DOI: 10.1039/c2lc40439g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe high-throughput optofluidic platforms for mosaic-patterned microfibers by generating stratified laminar flows. An inert carrier liquid flow near PDMS channel walls conveyed a photopolymerizable liquid which permitted stable production of microfibers with particular morphologies and compositional patterns. Finally, mosaicked microfibers were prepared with desired configurations toward multiplex biomolecular analysis.
Collapse
Affiliation(s)
- Soojeong Cho
- Department of Chemical and Biomolecular Engineering, KAIST, National Creative Research Initiative Center for Integrated Optofluidic Systems, Daejeon, 305-701, Korea
| | | | | |
Collapse
|
43
|
An HZ, Helgeson ME, Doyle PS. Nanoemulsion composite microgels for orthogonal encapsulation and release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3838-3895. [PMID: 22451097 DOI: 10.1002/adma.201200214] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Indexed: 05/31/2023]
Affiliation(s)
- Harry Z An
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-270, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
44
|
Leng L, McAllister A, Zhang B, Radisic M, Günther A. Mosaic hydrogels: one-step formation of multiscale soft materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3650-8. [PMID: 22714644 DOI: 10.1002/adma.201201442] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/10/2012] [Indexed: 06/01/2023]
Abstract
The one-step, continuous formation of mosaic hydrogel sheets is presented. A microfluidic device allows controllable incorporation of secondary biopolymers within a flowing biopolymer sheet followed by a cross-linking step that retains the microscale composition. Information is encoded; mosaic stiffness and diffusivity patterns are created; tessellations are populated with biomolecules, microparticles and viable primary cells; and 3D soft material assemblies are demonstrated.
Collapse
Affiliation(s)
- Lian Leng
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S3G8, Canada
| | | | | | | | | |
Collapse
|
45
|
Non-polydimethylsiloxane devices for oxygen-free flow lithography. Nat Commun 2012; 3:805. [PMID: 22549834 DOI: 10.1038/ncomms1800] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/22/2012] [Indexed: 01/20/2023] Open
Abstract
Flow lithography has become a powerful particle synthesis technique. Currently, flow lithography relies on the use of polydimethylsiloxane microchannels, because the process requires local inhibition of polymerization, near channel interfaces, via oxygen permeation. The dependence on polydimethylsiloxane devices greatly limits the range of precursor materials that can be processed in flow lithography. Here we present oxygen-free flow lithography via inert fluid-lubrication layers for the synthesis of new classes of complex microparticles. We use an initiated chemical vapour deposition nano-adhesive bonding technique to create non-polydimethylsiloxane-based devices. We successfully synthesize microparticles with a sub-second residence time and demonstrate on-the-fly alteration of particle height. This technique greatly expands the synthesis capabilities of flow lithography, enabling particle synthesis, using water-insoluble monomers, organic solvents, and hydrophobic functional entities such as quantum dots and single-walled carbon nanotubes. As one demonstrative application, we created near-infrared barcoded particles for real-time, label-free detection of target analytes.
Collapse
|
46
|
Maeda K, Onoe H, Takinoue M, Takeuchi S. Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1340-6. [PMID: 22311473 DOI: 10.1002/adma.201102560] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/07/2011] [Indexed: 05/25/2023]
Abstract
Controlled synthesis of micro multi-compartmental particles using a centrifuge droplet shooting device (CDSD) is reported. Sodium alginate solutions introduced in a multi-barreled capillary form droplets at the capillary orifice under ultrahigh gravity and gelify in a CaCl(2) solution. The size, shape, and compartmentalization of the particles are controlled. Co-encapsulation of Jurkat cells and magnetic colloids into Janus particles is demonstrated. The Janus particles present sensitive reaction toward magnetic fields, while the viability of the encapsulated cells is 91%.
Collapse
Affiliation(s)
- Kazuki Maeda
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Laza SC, Polo M, Neves AAR, Cingolani R, Camposeo A, Pisignano D. Two-photon continuous flow lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1304-8. [PMID: 22302705 DOI: 10.1002/adma.201103357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Indexed: 05/08/2023]
Abstract
A new approach for microfluidics-based production of polymeric particles, namely two-photon continuous flow lithography, is reported. This technique takes advantage of two-photon lithography to create objects with sub-micrometer and 3D features, and overcomes the traditional process limitations of two-photon lithography by using multiple beam production under continuous flow. Polymeric fibers, helical and bow-tie particles with sub-diffraction resolution and surface roughness as low as 10 nm are demonstrated.
Collapse
Affiliation(s)
- Simona C Laza
- National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Università del Salento, via Arnesano, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.07.006] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Suh SK, Bong KW, Hatton TA, Doyle PS. Using stop-flow lithography to produce opaque microparticles: synthesis and modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13813-9. [PMID: 21942375 DOI: 10.1021/la202796b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report on modeling and experimental studies of the synthesis of opaque microparticles made via stop-flow lithography. Opaque magnetic beads and UV-absorbing dyes incorporated into hydrogel microparticles during synthesis changed the height and the degree of cross-linking of the polymer matrices formed. The effect of the concentration of these opaque materials on the particle height was determined experimentally and agreed well with model predictions based on the photopolymerization process over a wide range of UV absorbance. We also created particles with two independent anisotropies, magnetic and geometric, by applying magnetic fields during particle synthesis. Our work provides a platform for rational design of lithographic patterned opaque particles and also a new class of structured magnetic microparticles.
Collapse
Affiliation(s)
- Su Kyung Suh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
50
|
Pan J, Chan SY, Lee WG, Kang L. Microfabricated particulate drug-delivery systems. Biotechnol J 2011; 6:1477-87. [PMID: 22076813 DOI: 10.1002/biot.201100237] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 11/05/2022]
Abstract
Micro- and nanoparticulate drug-delivery systems (DDSs) play a significant role in formulation sciences. Most particulate DDSs are scaffold-free, although some particles are encapsulated inside other biomaterials for controlled release. Despite rapid progress in recent years, challenges still remain in controlling the homogenicity of micro-/nanoparticles, especially for two crucial factors in particulate DDSs: the size and shape of the particles. Recent approaches make use of microfabrication techniques to generate micro-/nanoparticles with highly controllable architectures free of scaffolds. This review presents an overview of a burgeoning field of DDSs, which can potentially overcome some drawbacks of conventional techniques for particle fabrication and offer better control of particulate DDSs.
Collapse
Affiliation(s)
- Jing Pan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | |
Collapse
|