1
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
2
|
Runser JY, More SH, Fneich F, Boutfol T, Weiss P, Schmutz M, Senger B, Jierry L, Schaaf P. Model to rationalize and predict the formation of organic patterns originating from an enzyme-assisted self-assembly Liesegang-like process of peptides in a host hydrogel. SOFT MATTER 2024; 20:7723-7734. [PMID: 39308326 DOI: 10.1039/d4sm00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Recently, we have investigated the enzyme-assisted self-assembly of precursor peptides diffusing in an enzyme-containing host gel, leading to various self-assembly profiles within the gel. At high enzyme concentrations, the reaction-diffusion self-assembly processes result in the formation of a continuous non-monotonous peptide self-assembly profile. At low enzyme concentrations, they result in the formation of individual self-assembled peptide microglobules and at intermediate enzyme concentrations both kinds of self-assembled structures coexist. Herein, we develop a Liesegang-type model that considers four major points: (i) the diffusion of the precursor peptides within the host gel, (ii) the diffusion of the enzymes in the gel, (iii) the enzymatic transformation of the precursor peptides into the self-assembling ones and (iv) the nucleation of these building blocks as the starting point of the self-assembly process. This process is treated stochastically. Our model predicts most of the experimentally observed features and in particular (i) the transition from a continuous to a microglobular pattern of self-assembled peptides through five types of patterns by decreasing the enzyme concentration in the host hydrogel. (ii) It also predicts that when the precursor peptide concentration decreases, the enzyme concentration at which the continuous/microglobules transition appears increases. (iii) Finally, it predicts that for peptides whose critical self-assembly concentration in solution decreases, the peptide concentration at which the continuous-to-microglobular transition decreases too. All these predictions are observed experimentally.
Collapse
Affiliation(s)
- Jean-Yves Runser
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Shahaji H More
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Fatima Fneich
- Université de Nantes, ONIRIS, INSERM UMR 1229, 1 place Ricordeau, Nantes, 44042, France
- UFR Odontologie, Université de Nantes, 44042, France
- CHU Nantes, PHU4 OTONN, Nantes, 44042, France
| | - Timothée Boutfol
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Pierre Weiss
- Université de Nantes, ONIRIS, INSERM UMR 1229, 1 place Ricordeau, Nantes, 44042, France
- UFR Odontologie, Université de Nantes, 44042, France
- CHU Nantes, PHU4 OTONN, Nantes, 44042, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Pierre Schaaf
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| |
Collapse
|
3
|
Dimble AK, Bagul ND, Walimbe PC, Kulkarni PS, Kulkarni SD. Hydroxide-Source-Dependent Polymorphism and Phase Stability of Cobalt(II) Hydroxides in Diffusion-Driven Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18631-18641. [PMID: 39162248 DOI: 10.1021/acs.langmuir.4c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Hydroxides of cobalt(II) exist predominantly in two polymorphic forms, namely, the blue-green α-form [α-Co(OH)2] and reddish β-form [β-Co(OH)2]. These hydroxides have a layered structure with interlayer galleries of around 7 and 4 Å, respectively, for α- and β-Co(OH)2. In most of the previous studies, both the polymorphs were synthesized separately, and a few of them showed that the α-form gets converted to a thermodynamically more stable β-form via physical processes. In the present work, we have optimized the conditions for the simultaneous synthesis of both polymorphs under identical conditions in the same reactor using the 1D reaction-diffusion framework by employing different outer electrolytes. We found that the polymorph chemistry of Co(OH)2 depends on the source and concentration of OH- rather than other reaction conditions or later physical transformation. The products are characterized to confirm their morphology, structure, and chemical environment. We observed that the use of NaOH and NH4OH as the OH- precursor leads to α-Co(OH)2 only; however, with NaOH, a continuous precipitate is formed, and with NH4OH, periodic precipitation is formed. On the other hand, with hydrazine (HYZ) as the OH- source, Liesegang bands of α-Co(OH)2 and β-Co(OH)2 as granules are formed throughout the diffusion reactor. Another intriguing observation on the HYZ system is that at its high concentration, the bands of α-Co(OH)2 get converted to β-Co(OH)2. We articulate the reasons and mechanism of those observations.
Collapse
Affiliation(s)
- Akshay K Dimble
- Post Graduate and Research Center, Department of Chemistry, S. P. Mandali's, Sir Parashurambhau College, Tilak Road, Pune, Maharashtra 411 030, India
| | - Nikhil D Bagul
- Post Graduate and Research Center, Department of Chemistry, S. P. Mandali's, Sir Parashurambhau College, Tilak Road, Pune, Maharashtra 411 030, India
| | - Prasad C Walimbe
- Post Graduate and Research Center, Department of Chemistry, S. P. Mandali's, Sir Parashurambhau College, Tilak Road, Pune, Maharashtra 411 030, India
| | - Preeti S Kulkarni
- Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune 411 004, India
| | - Sunil D Kulkarni
- Post Graduate and Research Center, Department of Chemistry, S. P. Mandali's, Sir Parashurambhau College, Tilak Road, Pune, Maharashtra 411 030, India
| |
Collapse
|
4
|
Kwapiszewska K. Physicochemical Perspective of Biological Heterogeneity. ACS PHYSICAL CHEMISTRY AU 2024; 4:314-321. [PMID: 39069985 PMCID: PMC11274282 DOI: 10.1021/acsphyschemau.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 07/30/2024]
Abstract
The vast majority of chemical processes that govern our lives occur within living cells. At the core of every life process, such as gene expression or metabolism, are chemical reactions that follow the fundamental laws of chemical kinetics and thermodynamics. Understanding these reactions and the factors that govern them is particularly important for the life sciences. The physicochemical environment inside cells, which can vary between cells and organisms, significantly impacts various biochemical reactions and increases the extent of population heterogeneity. This paper discusses using physical chemistry approaches for biological studies, including methods for studying reactions inside cells and monitoring their conditions. The potential for development in this field and possible new research areas are highlighted. By applying physical chemistry methodology to biochemistry in vivo, we may gain new insights into biology, potentially leading to new ways of controlling biochemical reactions.
Collapse
Affiliation(s)
- Karina Kwapiszewska
- Institute of Physical Chemistry, Polish
Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
5
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Pekar K, Young RT, Sensale S. Optimizing Binding among Bimolecular Tethered Complexes. J Phys Chem B 2024; 128:5506-5512. [PMID: 38786364 DOI: 10.1021/acs.jpcb.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tethered motion is ubiquitous in nature, offering controlled movement and spatial constraints to otherwise chaotic systems. The enhanced functionality and practical utility of tethers has been exploited in biotechnology, catalyzing the design of novel biosensors and molecular assembly techniques. While notable technological advances incorporating tethered motifs have been made, a theoretical gap persists within the paradigm, hindering a comprehensive understanding of tethered-based technologies. In this work, we focus on the characterization of the binding kinetics of two tethered molecules functionalized to a hard surface. Using a mean-field approximation, the binding time of such bimolecular system is determined analytically. Furthermore, estimates of the grafting site separation and polymer lengths which expedite binding are provided. These estimates, along with the analytical theories and frameworks established here, have the potential to improve efficacy in self-assembly methods in DNA nanotechnology and can be extended to more biologically specific endeavors including targeted drug-delivery and molecular sensing.
Collapse
Affiliation(s)
- Kyle Pekar
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Robert T Young
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| |
Collapse
|
7
|
Itatani M, Onishi Y, Suematsu NJ, Lagzi I. Periodic Precipitation in a Confined Liquid Layer. J Phys Chem Lett 2024; 15:4948-4957. [PMID: 38687169 PMCID: PMC11089569 DOI: 10.1021/acs.jpclett.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Pattern formation is a ubiquitous phenomenon in animate and inanimate systems generated by mass transport and reaction of chemical species. The Liesegang phenomenon is a self-organized periodic precipitation pattern always studied in porous media such as hydrogels and aerogels for over a century. The primary consideration of applying the porous media is to prevent the disintegration of the precipitation structures due to the sedimentation of the precipitate and induced fluid flow. Here, we show that the periodic precipitation patterns can be engineered using a Hele-Shaw cell in a confined liquid phase, restricting hydrodynamic instability. The patterns generated in several precipitation reaction systems exhibit spatiotemporal properties consistent with patterns obtained in solid hydrogels. Furthermore, analysis considering the Rayleigh-Darcy number emphasizes the crucial role of fluidity in generating periodic precipitation structures in a thin liquid film. This exploration promises breakthroughs at the intersection of fundamental understanding and practical applications.
Collapse
Affiliation(s)
- Masaki Itatani
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Yuhei Onishi
- Graduate
School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan
| | - Nobuhiko J. Suematsu
- Graduate
School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan
- Meiji
Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1
Nakano, Tokyo 164-8525, Japan
| | - István Lagzi
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- HU-REN-BME
Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
8
|
Raczyłło E, Gołowicz D, Skóra T, Kazimierczuk K, Kondrat S. Size Sensitivity of Metabolite Diffusion in Macromolecular Crowds. NANO LETTERS 2024; 24. [PMID: 38607288 PMCID: PMC11057039 DOI: 10.1021/acs.nanolett.3c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Metabolites play crucial roles in cellular processes, yet their diffusion in the densely packed interiors of cells remains poorly understood, compounded by conflicting reports in existing studies. Here, we employ pulsed-gradient stimulated-echo NMR and Brownian/Stokesian dynamics simulations to elucidate the behavior of nano- and subnanometer-sized tracers in crowded environments. Using Ficoll as a crowder, we observe a linear decrease in tracer diffusivity with increasing occupied volume fraction, persisting─somewhat surprisingly─up to volume fractions of 30-40%. While simulations suggest a linear correlation between diffusivity slowdown and particle size, experimental findings hint at a more intricate relationship, possibly influenced by Ficoll's porosity. Simulations and numerical calculations of tracer diffusivity in the E. coli cytoplasm show a nonlinear yet monotonic diffusion slowdown with particle size. We discuss our results in the context of nanoviscosity and discrepancies with existing studies.
Collapse
Affiliation(s)
- Edyta Raczyłło
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University in Lublin, 20-031 Lublin, Poland
| | - Dariusz Gołowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tomasz Skóra
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Scientific
Computing and Imaging Institute, University
of Utah, Salt Lake City, Utah 84112, United States
| | | | - Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Chae SJ, Kim DW, Igoshin OA, Lee S, Kim JK. Beyond microtubules: The cellular environment at the endoplasmic reticulum attracts proteins to the nucleus, enabling nuclear transport. iScience 2024; 27:109235. [PMID: 38439967 PMCID: PMC10909898 DOI: 10.1016/j.isci.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
All proteins are translated in the cytoplasm, yet many, including transcription factors, play vital roles in the nucleus. While previous research has concentrated on molecular motors for the transport of these proteins to the nucleus, recent observations reveal perinuclear accumulation even in the absence of an energy source, hinting at alternative mechanisms. Here, we propose that structural properties of the cellular environment, specifically the endoplasmic reticulum (ER), can promote molecular transport to the perinucleus without requiring additional energy expenditure. Specifically, physical interaction between proteins and the ER impedes their diffusion and leads to their accumulation near the nucleus. This result explains why larger proteins, more frequently interacting with the ER membrane, tend to accumulate at the perinucleus. Interestingly, such diffusion in a heterogeneous environment follows Chapman's law rather than the popular Fick's law. Our findings suggest a novel protein transport mechanism arising solely from characteristics of the intracellular environment.
Collapse
Affiliation(s)
- Seok Joo Chae
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Seunggyu Lee
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Division of Applied Mathematical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
10
|
Alshareedah I, Singh A, Yang S, Ramachandran V, Quinn A, Potoyan DA, Banerjee PR. Determinants of viscoelasticity and flow activation energy in biomolecular condensates. SCIENCE ADVANCES 2024; 10:eadi6539. [PMID: 38363841 PMCID: PMC10871536 DOI: 10.1126/sciadv.adi6539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
The form and function of biomolecular condensates are intimately linked to their material properties. Here, we integrate microrheology with molecular simulations to dissect the physical determinants of condensate fluid phase dynamics. By quantifying the timescales and energetics of network relaxation in a series of heterotypic viscoelastic condensates, we uncover distinctive roles of sticker motifs, binding energy, and chain length in dictating condensate dynamical properties. We find that the mechanical relaxation times of condensate-spanning networks are determined by both intermolecular interactions and chain length. We demonstrate, however, that the energy barrier for network reconfiguration, termed flow activation energy, is independent of chain length and only varies with the strengths of intermolecular interactions. Biomolecular diffusion in the dense phase depends on a complex interplay between viscoelasticity and flow activation energy. Our results illuminate distinctive roles of chain length and sequence-specific multivalent interactions underlying the complex material and transport properties of biomolecular condensates.
Collapse
Affiliation(s)
| | - Anurag Singh
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Sean Yang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Alexander Quinn
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
11
|
Yu S, Chu R, Wu G, Meng X. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution. Polymers (Basel) 2024; 16:524. [PMID: 38399901 PMCID: PMC10891538 DOI: 10.3390/polym16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In crowded fluids, polymer segments can exhibit anomalous subdiffusion due to the viscoelasticity of the surrounding environment. Previous single-particle tracking experiments revealed that such anomalous diffusion in complex fluids (e.g., in bacterial cytoplasm) can be described by fractional Brownian motion (fBm). To investigate how the viscoelastic media affects the diffusive behaviors of polymer segments without resolving single crowders, we developed a novel fractional Brownian dynamics method to simulate the dynamics of polymers under confinement. In this work, instead of using Gaussian random numbers ("white Gaussian noise") to model the Brownian force as in the standard Brownian dynamics simulations, we introduce fractional Gaussian noise (fGn) in our homemade fractional Brownian dynamics simulation code to investigate the anomalous diffusion of polymer segments by using a simple "bottle-brush"-type polymer model. The experimental results of the velocity autocorrelation function and the exponent that characterizes the subdiffusion of the confined polymer segments can be reproduced by this simple polymer model in combination with fractional Gaussian noise (fGn), which mimics the viscoelastic media.
Collapse
Affiliation(s)
- Shi Yu
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
| | - Ruizhi Chu
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage, China University of Mining & Technology, Xuzhou 221116, China
| | - Guoguang Wu
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage, China University of Mining & Technology, Xuzhou 221116, China
| | - Xianliang Meng
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage, China University of Mining & Technology, Xuzhou 221116, China
| |
Collapse
|
12
|
Fu H, Cao N, Zeng W, Liao M, Yao S, Zhou J, Zhang W. Pumping Small Molecules Selectively through an Energy-Assisted Assembling Process at Nonequilibrium States. J Am Chem Soc 2024; 146:3323-3330. [PMID: 38273768 DOI: 10.1021/jacs.3c12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In living organisms, precise control over the spatial and temporal distribution of molecules, including pheromones, is crucial. This level of control is equally important for the development of artificial active materials. In this study, we successfully controlled the distribution of small molecules in the system at nonequilibrium states by actively transporting them, even against the apparent concentration gradient, with high selectivity. As a demonstration, in the aqueous solution of acid orange (AO7) and TMC10COOH, we found that AO7 molecules can coassemble with transient anhydride (TMC10CO)2O to form larger assemblies in the presence of chemical fuel 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC). This led to a decrease in local free AO7 concentration and caused AO7 molecules from other locations in the solution to move toward the assemblies. Consequently, AO7 accumulates at the location where EDC was injected. By continuously injecting EDC, we could maintain a stable high value of the apparent AO7 concentration at the injection point. We also observed that this process which operated at nonequilibrium states exhibited high selectivity.
Collapse
Affiliation(s)
- Huimin Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nengjie Cao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wang Zeng
- National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Min Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shenglin Yao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Kubota R, Hamachi I. Cell-Like Synthetic Supramolecular Soft Materials Realized in Multicomponent, Non-/Out-of-Equilibrium Dynamic Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306830. [PMID: 38018341 PMCID: PMC10885657 DOI: 10.1002/advs.202306830] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Living cells are complex, nonequilibrium supramolecular systems capable of independently and/or cooperatively integrating multiple bio-supramolecules to execute intricate physiological functions that cannot be accomplished by individual biomolecules. These biological design strategies offer valuable insights for the development of synthetic supramolecular systems with spatially controlled hierarchical structures, which, importantly, exhibit cell-like responses and functions. The next grand challenge in supramolecular chemistry is to control the organization of multiple types of supramolecules in a single system, thus integrating the functions of these supramolecules in an orthogonal and/or cooperative manner. In this perspective, the recent progress in constructing multicomponent supramolecular soft materials through the hybridization of supramolecules, such as self-assembled nanofibers/gels and coacervates, with other functional molecules, including polymer gels and enzymes is highlighted. Moreover, results show that these materials exhibit bioinspired responses to stimuli, such as bidirectional rheological responses of supramolecular double-network hydrogels, temporal stimulus pattern-dependent responses of synthetic coacervates, and 3D hydrogel patterning in response to reaction-diffusion processes are presented. Autonomous active soft materials with cell-like responses and spatially controlled structures hold promise for diverse applications, including soft robotics with directional motion, point-of-care disease diagnosis, and tissue regeneration.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Nishikyo-ku, Katsura, 615-8530, Japan
| |
Collapse
|
14
|
Mierke CT. Magnetic tweezers in cell mechanics. Methods Enzymol 2024; 694:321-354. [PMID: 38492957 DOI: 10.1016/bs.mie.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
15
|
Kahramanoğulları O. Chemical Reaction Models in Synthetic Promoter Design in Bacteria. Methods Mol Biol 2024; 2844:3-31. [PMID: 39068329 DOI: 10.1007/978-1-0716-4063-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We discuss the formalism of chemical reaction networks (CRNs) as a computer-aided design interface for using formal methods in engineering living technologies. We set out by reviewing formal methods within a broader view of synthetic biology. Based on published results, we illustrate, step by step, how mathematical and computational techniques on CRNs can be used to study the structural and dynamic properties of the designed systems. As a case study, we use an E. coli two-component system that relays the external inorganic phosphate concentration signal to genetic components. We show how CRN models can scan and explore phenotypic regimes of synthetic promoters with varying detection thresholds, thereby providing a means for fine-tuning the promoter strength to match the specification.
Collapse
|
16
|
Kim H, Choi Y, Kim SY, Pahk KJ. Increased intracellular diffusivity of macromolecules within a mammalian cell by low-intensity pulsed ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106644. [PMID: 37844347 PMCID: PMC10587770 DOI: 10.1016/j.ultsonch.2023.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Whilst a number of studies have demonstrated that low-intensity pulsed ultrasound (LIPUS) is a promising therapeutic ultrasound technique that can be used for delivering mild mechanical stimuli to target tissue non-invasively, the underlying biophysical mechanisms still remain unclear. Most mechanism studies have focused explicitly on the effects of LIPUS on the cell membrane and mechanosensitive receptors. In the present study, we propose an additional mechanism by which LIPUS propagation through living cells may directly impact intracellular dynamics, particularly the diffusion transport of biomolecules. To support our hypothesis, human epithelial-like cells (SaOS-2 and HeLa) seeded on a confocal dish placed on a microscope stage were exposed to LIPUS with various exposure conditions (ultrasound frequencies of 0.5, 1 and 3 MHz, peak acoustic pressure of 200 and 400 kPa, a pulse repetition frequency of 1 kHz and a 20 % duty cycle), and the diffusivities of various sizes of biomolecules in the cytoplasm area were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, giant unilamellar vesicles (GUVs) filled with macromolecules were used to examine the physical causal relationship between LIPUS and molecular diffusion changes. Nucleocytoplasmic transport coefficients were also measured by modified FRAP that bleaches the whole cell nuclear region. Extracellular signal-regulated kinases (ERK) activity (the phosphorylation dynamics) was monitored using fluorescence resonance energy transfer (FRET) microscopy. All the measurements were taken during, before and after the LIPUS exposure. Our experimental results clearly showed that the diffusion coefficients of macromolecules within the cell increased with acoustic pressure by 12.1 to 33.5 % during the sonication, and the increments were proportional to their molecular sizes regardless of the ultrasound frequency used. This observation in living cells was consistent with the GUVs exposed to the LIPUS, which indicated that the diffusivity increase was a passive physical response to the acoustic energy of LIPUS. Under the 1 MHz LIPUS exposure with 400 kPa, the passive nucleocytoplasmic transport of enhanced green fluorescent protein (EGFP) was accelerated by 21.4 %. With the same LIPUS exposure condition, both the diffusivity and phosphorylation of ERK induced by EGF treatment were significantly elevated simultaneously, which implied that LIPUS could also modify the kinase kinetics in the signal transduction process. Taken together, this study is the first attempt to uncover the physical link between LIPUS and the dynamics of intracellular macromolecules and related biological processes that LIPUS can possibly increase the diffusivity of intracellular macromolecules, leading to the changes in the basic cellular processes: passive nucleocytoplasmic transport and ERK. Our findings can provide a novel perspective that the mechanotransduction process that the intracellular region, in addition to the cell membrane, can convert the acoustic stimuli of LIPUS to biochemical signals.
Collapse
Affiliation(s)
- Hyojun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Yeonho Choi
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
| | - So Yeon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
17
|
Choi AA, Xiang L, Li W, Xu K. Single-Molecule Displacement Mapping Indicates Unhindered Intracellular Diffusion of Small (≲1 kDa) Solutes. J Am Chem Soc 2023; 145:10.1021/jacs.3c00597. [PMID: 37027457 PMCID: PMC10558625 DOI: 10.1021/jacs.3c00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
While fundamentally important, the intracellular diffusion of small (≲1 kDa) solutes has been difficult to elucidate due to challenges in both labeling and measurement. Here we quantify and spatially map the translational diffusion patterns of small solutes in mammalian cells by integrating several recent advances. In particular, by executing tandem stroboscopic illumination pulses down to 400 μs separation, we extend single-molecule displacement/diffusivity mapping (SMdM), a super-resolution diffusion quantification tool, to small solutes with high diffusion coefficients D of >300 μm2/s. We thus show that for multiple water-soluble dyes and dye-tagged nucleotides, intracellular diffusion is dominated by vast regions of high diffusivity ∼60-70% of that in vitro, up to ∼250 μm2/s in the fastest cases. Meanwhile, we also visualize sub-micrometer foci of substantial slowdowns in diffusion, thus underscoring the importance of spatially resolving the local diffusion behavior. Together, these results suggest that the intracellular diffusion of small solutes is only modestly scaled down by the slightly higher viscosity of the cytosol over water but otherwise not further hindered by macromolecular crowding. We thus lift a paradoxically low speed limit for intracellular diffusion suggested by previous experiments.
Collapse
Affiliation(s)
- Alexander A. Choi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Limin Xiang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Park HH, Choi AA, Xu K. Size-Dependent Suppression of Molecular Diffusivity in Expandable Hydrogels: A Single-Molecule Study. J Phys Chem B 2023; 127:3333-3339. [PMID: 37011131 DOI: 10.1021/acs.jpcb.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
By repurposing the recently popularized expansion microscopy to control the meshwork size of hydrogels, we examine the size-dependent suppression of molecular diffusivity in the resultant tuned hydrogel nanomatrices over a wide range of polymer fractions of ∼0.14-7 wt %. With our recently developed single-molecule displacement/diffusivity mapping (SMdM) microscopy methods, we thus show that with a fixed meshwork size, larger molecules exhibit more impeded diffusion and that, for the same molecule, diffusion is progressively more suppressed as the meshwork size is reduced; this effect is more prominent for the larger molecules. Moreover, we show that the meshwork-induced obstruction of diffusion is uncoupled from the suppression of diffusion due to increased solution viscosities. Thus, the two mechanisms, respectively, being diffuser-size-dependent and independent, may separately scale down molecular diffusivity to produce the final diffusion slowdown in complex systems like the cell.
Collapse
Affiliation(s)
- Ha H Park
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexander A Choi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Moon HR, Saha S, Mugler A, Han B. Cells function as a ternary logic gate to decide migration direction under integrated chemical and fluidic cues. LAB ON A CHIP 2023; 23:631-644. [PMID: 36524874 PMCID: PMC9926949 DOI: 10.1039/d2lc00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Cells sense various environmental cues and subsequently process intracellular signals to decide their migration direction in many physiological and pathological processes. Although several signaling molecules and networks have been identified in these directed migrations, it still remains ambiguous to predict the migration direction under multiple and integrated cues, specifically chemical and fluidic cues. Here, we investigated the cellular signal processing machinery by reverse-engineering directed cell migration under integrated chemical and fluidic cues. We imposed controlled chemical and fluidic cues to cells using a microfluidic platform and analyzed the extracellular coupling of the cues with respect to the cellular detection limit. Then, the cell's migratory behavior was reverse-engineered to build a cellular signal processing system as a logic gate, which is based on a "selection" gate. This framework is further discussed with a minimal intracellular signaling network of a shared pathway model. The proposed framework of the ternary logic gate suggests a systematic view to understand how cells decode multiple cues and make decisions about the migration direction.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
20
|
Choi AA, Xiang L, Li W, Xu K. Single-molecule displacement mapping indicates unhindered intracellular diffusion of small (<~1 kDa) solutes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525579. [PMID: 36747694 PMCID: PMC9900885 DOI: 10.1101/2023.01.26.525579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While fundamentally important, the intracellular diffusion of small (<~1 kDa) solutes has been difficult to elucidate due to challenges in both labeling and measurement. Here we quantify and spatially map the translational diffusion patterns of small solutes in mammalian cells by integrating several recent advances. In particular, by executing tandem stroboscopic illumination pulses down to 400-μs separation, we extend single-molecule displacement/diffusivity mapping (SM d M), a super-resolution diffusion quantification tool, to small solutes with high diffusion coefficients D of >300 μm 2 /s. We thus show that for multiple water-soluble dyes and dye-tagged nucleotides, intracellular diffusion is dominated by vast regions of high diffusivity ~60-70% of that in vitro , up to ~250 μm 2 /s in the fastest cases. Meanwhile, we also visualize sub-micrometer foci of substantial slowdowns in diffusion, thus underscoring the importance of spatially resolving the local diffusion behavior. Together, these results suggest that the intracellular diffusion of small solutes is only modestly scaled down by the slightly higher viscosity of the cytosol over water, but otherwise not further hindered by macromolecular crowding. We thus lift a paradoxically low speed limit for intracellular diffusion suggested by previous experiments. Abstract Graphic
Collapse
|
21
|
Manna RK, Shklyaev OE, Balazs AC. Chemically Driven Multimodal Locomotion of Active, Flexible Sheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:780-789. [PMID: 36602946 DOI: 10.1021/acs.langmuir.2c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The inhibitor-promoter feedback loop is a vital component in regulatory pathways that controls functionality in living systems. In this loop, the production of chemical A at one site promotes the production of chemical B at another site, but B inhibits the production of A. In solution, differences in the volumes of the reactants and products of this reaction can generate buoyancy-driven fluid flows, which will deform neighboring soft material. To probe the intrinsic interrelationship among chemistry, hydrodynamics, and fluid-structure interactions, we model a bio-inspired system where a flexible sheet immersed in solution encompasses two spatially separated catalytic patches, which drive the A-B inhibitor-promotor reaction. The convective rolls of fluid generated above the patches can circulate inward or outward depending on the chemical environment. Within the regime displaying chemical oscillations, the dynamic fluid-structure interactions morph the shape of the sheet to periodically "fly", "crawl", or "swim" along the bottom of the confining chamber, revealing an intimate coupling between form and function in this system. The oscillations in the sheet's motion in turn affect the chemical oscillations in the solution. In the regime with non-oscillatory chemistry, the induced flow still morphs the shape of the sheet, but now, the fluid simply translates the sheet along the length of the chamber. The findings reveal the potential for enzymatic reactions in the body to generate hydrodynamic behavior that modifies the shape of neighboring soft tissue, which in turn modifies both the fluid dynamics and the enzymatic reaction. The findings indicate that this non-linear dynamic behavior can be playing a critical role in the functioning of regulatory pathways in living systems.
Collapse
Affiliation(s)
- Raj Kumar Manna
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
22
|
Takada S, Yoshinaga N, Doi N, Fujiwara K. Controlling the Periodicity of a Reaction-Diffusion Wave in Artificial Cells by a Two-Way Energy Supplier. ACS NANO 2022; 16:16853-16861. [PMID: 36214379 DOI: 10.1021/acsnano.2c06756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reaction-diffusion (RD) waves, which are dynamic self-organization structures generated by nanosize molecules, are a fundamental mechanism from patterning in nano- and micromaterials to spatiotemporal regulations in living cells, such as cell division and motility. Although the periods of RD waves are the critical element for these functions, the development of a system to control their period is challenging because RD waves result from nonlinear physical dynamics under far-from-equilibrium conditions. Here, we developed an artificial cell system with tunable period of an RD-driven wave (Min protein wave), which determines a cell division site plane in living bacterial cells. The developed system is based on our finding that Min waves are generated by energy consumption of either ATP or dATP, and the period of the wave is different between these two energy suppliers. We showed that the Min-wave period was modulated linearly by the mixing ratio of ATP and dATP and that it was also possible to estimate the mixing ratio of ATP and dATP from the period. Our findings illuminated a previously unidentified principle to control the dissipative dynamics of biomolecules and, simultaneously, built an important framework to construct molecular robots with spatiotemporal units.
Collapse
Affiliation(s)
- Sakura Takada
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan
- MathAM-OIL, AIST, Sendai 980-8577, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
23
|
Wentz J, Cameron JC, Bortz DM. ANALYTICAL SINGULAR VALUE DECOMPOSITION FOR A CLASS OF STOICHIOMETRY MATRICES. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS : A PUBLICATION OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS 2022; 43:1109-1147. [PMID: 38239302 PMCID: PMC10795850 DOI: 10.1137/21m1418927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
We present the analytical singular value decomposition of the stoichiometry matrix for a spatially discrete reaction-diffusion system. The motivation for this work is to develop a matrix decomposition that can reveal hidden spatial flux patterns of chemical reactions. We consider a 1D domain with two subregions sharing a single common boundary. Each of the subregions is further partitioned into a finite number of compartments. Chemical reactions can occur within a compartment, whereas diffusion is represented as movement between adjacent compartments. Inspired by biology, we study both (1) the case where the reactions on each side of the boundary are different and only certain species diffuse across the boundary and (2) the case where reactions and diffusion are spatially homogeneous. We write the stoichiometry matrix for these two classes of systems using a Kronecker product formulation. For the first scenario, we apply linear perturbation theory to derive an approximate singular value decomposition in the limit as diffusion becomes much faster than reactions. For the second scenario, we derive an exact analytical singular value decomposition for all relative diffusion and reaction time scales. By writing the stoichiometry matrix using Kronecker products, we show that the singular vectors and values can also be written concisely using Kronecker products. Ultimately, we find that the singular value decomposition of the reaction-diffusion stoichiometry matrix depends on the singular value decompositions of smaller matrices. These smaller matrices represent modified versions of the reaction-only stoichiometry matrices and the analytically known diffusion-only stoichiometry matrix. Lastly, we present the singular value decomposition of the model for the Calvin cycle in cyanobacteria and demonstrate the accuracy of our formulation. The MATLAB code, available at www.github.com/MathBioCU/ReacDiffStoicSVD, provides routines for efficiently calculating the SVD for a given reaction network on a 1D spatial domain.
Collapse
Affiliation(s)
- Jacqueline Wentz
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Jeffrey C Cameron
- Department of Biochemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309-0526 USA
| | - David M Bortz
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
24
|
Słyk E, Skóra T, Kondrat S. How macromolecules softness affects diffusion under crowding. SOFT MATTER 2022; 18:5366-5370. [PMID: 35833511 DOI: 10.1039/d2sm00357k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diffusion in a macromolecularly crowded environment is essential for many intracellular processes, from metabolism and catalysis to gene transcription and translation. So far, theoretical and experimental work has focused on anomalous subdiffusion, and the effects of interactions, shapes, and composition, while the compactness or softness of macromolecules has received less attention. Herein, we use Brownian dynamics simulations to study how the softness of crowders affects macromolecular diffusion. We find that in most cases, soft crowders slow down the diffusion less effectively than hard crowders like Ficoll. For instance, at a 30% occupied volume fraction, the diffusion in Ficoll70 is about 20% slower than in soft crowders of the same size. However, our simulations indicate that elongated macromolecules, such as double-stranded DNA pieces, can diffuse comparably or even faster in hard crowders. We relate these effects to the volume excluded by soft and hard crowders to different tracers. Our results show that the softness and shape of macromolecules are crucial factors determining diffusion under crowding, relevant to diverse intracellular environments.
Collapse
Affiliation(s)
- Edyta Słyk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Skóra
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Duan L, Zaepfel BL, Aksenova V, Dasso M, Rothstein JD, Kalab P, Hayes LR. Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Cell Rep 2022; 40:111106. [PMID: 35858577 PMCID: PMC9345261 DOI: 10.1016/j.celrep.2022.111106] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear clearance of the RNA-binding protein TDP-43 is a hallmark of neurodegeneration and an important therapeutic target. Our current understanding of TDP-43 nucleocytoplasmic transport does not fully explain its predominantly nuclear localization or mislocalization in disease. Here, we show that TDP-43 exits nuclei by passive diffusion, independent of facilitated mRNA export. RNA polymerase II blockade and RNase treatment induce TDP-43 nuclear efflux, suggesting that nuclear RNAs sequester TDP-43 in nuclei and limit its availability for passive export. Induction of TDP-43 nuclear efflux by short, GU-rich oligomers (presumably by outcompeting TDP-43 binding to endogenous nuclear RNAs), and nuclear retention conferred by splicing inhibition, demonstrate that nuclear TDP-43 localization depends on binding to GU-rich nuclear RNAs. Indeed, RNA-binding domain mutations markedly reduce TDP-43 nuclear localization and abolish transcription blockade-induced nuclear efflux. Thus, the nuclear abundance of GU-RNAs, dictated by the balance of transcription, pre-mRNA processing, and RNA export, regulates TDP-43 nuclear localization.
Collapse
Affiliation(s)
- Lauren Duan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin L Zaepfel
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Lindsey R Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Orozco GA, Eskelinen AS, Kosonen JP, Tanaka MS, Yang M, Link TM, Ma B, Li X, Grodzinsky AJ, Korhonen RK, Tanska P. Shear strain and inflammation-induced fixed charge density loss in the knee joint cartilage following ACL injury and reconstruction: A computational study. J Orthop Res 2022; 40:1505-1522. [PMID: 34533840 PMCID: PMC8926939 DOI: 10.1002/jor.25177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/13/2021] [Accepted: 09/01/2021] [Indexed: 02/04/2023]
Abstract
Excessive tissue deformation near cartilage lesions and acute inflammation within the knee joint after anterior cruciate ligament (ACL) rupture and reconstruction surgery accelerate the loss of fixed charge density (FCD) and subsequent cartilage tissue degeneration. Here, we show how biomechanical and biochemical degradation pathways can predict FCD loss using a patient-specific finite element model of an ACL reconstructed knee joint exhibiting a chondral lesion. Biomechanical degradation was based on the excessive maximum shear strains that may result in cell apoptosis, while biochemical degradation was driven by the diffusion of pro-inflammatory cytokines. We found that the biomechanical model was able to predict substantial localized FCD loss near the lesion and on the medial areas of the lateral tibial cartilage. In turn, the biochemical model predicted FCD loss all around the lesion and at intact areas; the highest FCD loss was at the cartilage-synovial fluid-interface and decreased toward the deeper zones. Interestingly, simulating a downturn of an acute inflammatory response by reducing the cytokine concentration exponentially over time in synovial fluid led to a partial recovery of FCD content in the cartilage. Our novel numerical approach suggests that in vivo FCD loss can be estimated in injured cartilage following ACL injury and reconstruction. Our novel modeling platform can benefit the prediction of PTOA progression and the development of treatment interventions such as disease-modifying drug testing and rehabilitation strategies.
Collapse
Affiliation(s)
- Gustavo A. Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland,Department of Biomedical Engineering, Lund University, Box 188, 221 00, Lund, Sweden
| | - Atte S.A. Eskelinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Joonas P. Kosonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Matthew S. Tanaka
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Mingrui Yang
- Department of Biomedical Engineering, Lerner Research Institute, Program of Advanced Musculoskeletal Imaging (PAMI), 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Benjamin Ma
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Lerner Research Institute, Program of Advanced Musculoskeletal Imaging (PAMI), 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alan J. Grodzinsky
- Departments of Biological Engineering, Electrical Engineering and Computer Science and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| |
Collapse
|
27
|
Lin X, Su J, Zhou S. Microfluidic chip of concentration gradient and fluid shear stress on a single cell level. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Chen R, Das K, Cardona MA, Gabrielli L, Prins LJ. Progressive Local Accumulation of Self-Assembled Nanoreactors in a Hydrogel Matrix through Repetitive Injections of ATP. J Am Chem Soc 2022; 144:2010-2018. [PMID: 35061942 PMCID: PMC8815075 DOI: 10.1021/jacs.1c13504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cellular functions
are regulated with high spatial control through
the local activation of chemical processes in a complex inhomogeneous
matrix. The development of synthetic macroscopic systems with a similar
capacity allows fundamental studies aimed at understanding the relationship
between local molecular events and the emergence of functional properties
at the macroscopic level. Here, we show that a kinetically stable
inhomogeneous hydrogel matrix is spontaneously formed upon the local
injection of ATP. Locally, ATP templates the self-assembly of amphiphiles
into large nanoreactors with a much lower diffusion rate compared
to unassembled amphiphiles. The local depletion of unassembled amphiphiles
near the injection point installs a concentration gradient along which
unassembled amphiphiles diffuse from the surroundings to the center.
This allows for a progressive local accumulation of self-assembled
nanoreactors in the matrix upon repetitive cycles of ATP injection
separated by time intervals during which diffusion of unassembled
amphiphiles takes place. Contrary to the homogeneous matrix containing
the same components, in the inhomogeneous matrix the local upregulation
of a chemical reaction occurs. Depending on the way the same amount
of injected ATP is administered to the hydrogel matrix different macroscopic
distributions of nanoreactors are obtained, which affect the location
in the matrix where the chemical reaction is upregulated.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Krishnendu Das
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Maria A. Cardona
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Leonard J. Prins
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| |
Collapse
|
29
|
Nakamura K, Tanaka W, Sada K, Kubota R, Aoyama T, Urayama K, Hamachi I. Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. J Am Chem Soc 2021; 143:19532-19541. [PMID: 34767720 DOI: 10.1021/jacs.1c09172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Out-of-equilibrium patterns arising from diffusion processes are ubiquitous in nature, although they have not been fully exploited for the design of artificial materials. Here, we describe the formation of phototriggered out-of-equilibrium patterns using photoresponsive peptide-based nanofibers in a self-sorting double network hydrogel. Light irradiation using a photomask followed by thermal incubation induced the spatially controlled condensation of peptide nanofibers. According to confocal images and spectroscopic analyses, metastable nanofibers photodecomposed in the irradiated areas, where thermodynamically stable nanofibers reconstituted and condensed with a supply of monomers from the nonirradiated areas. These supramolecular events were regulated by light and diffusion to facilitate the creation of unique out-of-equilibrium patterns, including two lines from a one-line photomask and a line pattern of a protein immobilized in the hydrogel.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Sada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
30
|
Moon HR, Saha S, Mugler A, Han B. Signal processing capacity of the cellular sensory machinery regulates the accuracy of chemotaxis under complex cues. iScience 2021; 24:103242. [PMID: 34746705 PMCID: PMC8554535 DOI: 10.1016/j.isci.2021.103242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 10/29/2022] Open
Abstract
Chemotaxis is ubiquitous in many biological processes, but it still remains elusive how cells sense and decipher multiple chemical cues. In this study, we postulate a hypothesis that the chemotactic performance of cells under complex cues is regulated by the signal processing capacity of the cellular sensory machinery. The underlying rationale is that cells in vivo should be able to sense and process multiple chemical cues, whose magnitude and compositions are entangled, to determine their migration direction. We experimentally show that the combination of transforming growth factor-β and epidermal growth factor suppresses the chemotactic performance of cancer cells using independent receptors to sense the two cues. Based on this observation, we develop a biophysical framework suggesting that the antagonism is caused by the saturation of the signal processing capacity but not by the mutual repression. Our framework suggests the significance of the signal processing capacity in the cellular sensory machinery.
Collapse
Affiliation(s)
- Hye-ran Moon
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara St, Pittsburgh, PA 15260, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture. Nat Commun 2021; 12:6180. [PMID: 34702818 PMCID: PMC8548535 DOI: 10.1038/s41467-021-26329-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~104 compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly. The centriole exhibits an evolutionarily conserved 9-fold radial symmetry that stems from a cartwheel containing vertically stacked ring polymers that harbor 9 homodimers of the protein SAS-6. Here the authors show how dual properties inherent to surface-guided SAS-6 self-assembly possess spatial information that dictates correct scaffolding of centriole architecture.
Collapse
|
32
|
Eroumé KS, Cavill R, Staňková K, de Boer J, Carlier A. Exploring the influence of cytosolic and membrane FAK activation on YAP/TAZ nuclear translocation. Biophys J 2021; 120:4360-4377. [PMID: 34509508 PMCID: PMC8553670 DOI: 10.1016/j.bpj.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Membrane binding and unbinding dynamics play a crucial role in the biological activity of several nonintegral membrane proteins, which have to be recruited to the membrane to perform their functions. By localizing to the membrane, these proteins are able to induce downstream signal amplification in their respective signaling pathways. Here, we present a 3D computational approach using reaction-diffusion equations to investigate the relation between membrane localization of focal adhesion kinase (FAK), Ras homolog family member A (RhoA), and signal amplification of the YAP/TAZ signaling pathway. Our results show that the theoretical scenarios in which FAK is membrane bound yield robust and amplified YAP/TAZ nuclear translocation signals. Moreover, we predict that the amount of YAP/TAZ nuclear translocation increases with cell spreading, confirming the experimental findings in the literature. In summary, our in silico predictions show that when the cell membrane interaction area with the underlying substrate increases, for example, through cell spreading, this leads to more encounters between membrane-bound signaling partners and downstream signal amplification. Because membrane activation is a motif common to many signaling pathways, this study has important implications for understanding the design principles of signaling networks.
Collapse
Affiliation(s)
- Kerbaï Saïd Eroumé
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Katerina Staňková
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
33
|
Niehues M, Engel S, Ravoo BJ. Photo-Responsive Self-Assembly of Plasmonic Magnetic Janus Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11123-11130. [PMID: 34499520 DOI: 10.1021/acs.langmuir.1c01979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive self-assembly of nanoparticles is a versatile approach for the bottom-up fabrication of adaptive and functional nanomaterials. For this purpose, anisotropic building blocks are of particular importance due to the unique shapes and structures that can be obtained upon self-assembly. Here, we demonstrate the photo-responsive self-assembly of plasmonic magnetic "dumbbell" Janus nanoparticles (Au-Fe3O4) via the host-guest interaction of the supramolecular host cyclodextrin and the molecular photoswitch arylazopyrazole. We developed efficient ligand exchange procedures that enable the introduction of functional ligands, respectively, to the surface of the gold or magnetite core of the dumbbell. Our results indicate that distinct nanoparticle superstructures arise in aqueous solutions if nanoparticle aggregation is crosslinker-induced or self-induced and that the reversible formation and fragmentation of the superstructures can be modulated with light.
Collapse
Affiliation(s)
- Maximilian Niehues
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Sabrina Engel
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| |
Collapse
|
34
|
Pasitsuparoad P, Angulo G. How relevant is anisotropy in bimolecular electron transfer reactions in liquid crystals? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Barajas C, Del Vecchio D. Effects of spatial heterogeneity on bacterial genetic circuits. PLoS Comput Biol 2020; 16:e1008159. [PMID: 32925923 PMCID: PMC7515207 DOI: 10.1371/journal.pcbi.1008159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/24/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Intracellular spatial heterogeneity is frequently observed in bacteria, where the chromosome occupies part of the cell's volume and a circuit's DNA often localizes within the cell. How this heterogeneity affects core processes and genetic circuits is still poorly understood. In fact, commonly used ordinary differential equation (ODE) models of genetic circuits assume a well-mixed ensemble of molecules and, as such, do not capture spatial aspects. Reaction-diffusion partial differential equation (PDE) models have been only occasionally used since they are difficult to integrate and do not provide mechanistic understanding of the effects of spatial heterogeneity. In this paper, we derive a reduced ODE model that captures spatial effects, yet has the same dimension as commonly used well-mixed models. In particular, the only difference with respect to a well-mixed ODE model is that the association rate constant of binding reactions is multiplied by a coefficient, which we refer to as the binding correction factor (BCF). The BCF depends on the size of interacting molecules and on their location when fixed in space and it is equal to unity in a well-mixed ODE model. The BCF can be used to investigate how spatial heterogeneity affects the behavior of core processes and genetic circuits. Specifically, our reduced model indicates that transcription and its regulation are more effective for genes located at the cell poles than for genes located on the chromosome. The extent of these effects depends on the value of the BCF, which we found to be close to unity. For translation, the value of the BCF is always greater than unity, it increases with mRNA size, and, with biologically relevant parameters, is substantially larger than unity. Our model has broad validity, has the same dimension as a well-mixed model, yet it incorporates spatial heterogeneity. This simple-to-use model can be used to both analyze and design genetic circuits while accounting for spatial intracellular effects.
Collapse
Affiliation(s)
- Carlos Barajas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
36
|
Skóra T, Vaghefikia F, Fitter J, Kondrat S. Macromolecular Crowding: How Shape and Interactions Affect Diffusion. J Phys Chem B 2020; 124:7537-7543. [PMID: 32790396 DOI: 10.1021/acs.jpcb.0c04846] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A significant fraction of the cell volume is occupied by various proteins, polysaccharides, nucleic acids, etc., which considerably reduces the mobility of macromolecules. Theoretical and experimental work so far have mainly focused on the dependence of the mobility on the occupied volume, while the effect of a macromolecular shape received less attention. Herein, using fluorescence correlation spectroscopy (FCS) and Brownian dynamics (BD) simulations, we report on a dramatic slowdown of tracer diffusion by cylindrically shaped double-stranded (ds) DNAs (16 nm in length). We find, for instance, that the translational diffusion coefficient of a streptavidin tracer is reduced by about 60% for a volume fraction of dsDNA as low as just 5%. For comparison, for a spherical crowder (Ficoll70) the slowdown is only 10% at the same volume fraction and 60% reduction occurs at a volume fraction as high as 35%. BD simulations reveal that this reduction can be attributed to a larger volume excluded to a tracer by dsDNA particles, as compared with spherical Ficoll70 at the same volume fraction, and to the differences in the tracer-crowder attractive interactions. In addition, we find using BD simulations that rotational diffusion of dsDNA is less affected by the crowder shape than its translational motion. Our results show that diffusion in crowded systems is determined not merely by the occupied volume fraction, but that the shape and interactions can determine diffusion, which is relevant to the diverse intracellular environments inside living cells.
Collapse
Affiliation(s)
- Tomasz Skóra
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Farzaneh Vaghefikia
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany.,Institut für Biologische Informationsprozesse (IBI-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Svyatoslav Kondrat
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany.,Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
37
|
Heida T, Otto O, Biedenweg D, Hauck N, Thiele J. Microfluidic Fabrication of Click Chemistry-Mediated Hyaluronic Acid Microgels: A Bottom-Up Material Guide to Tailor a Microgel's Physicochemical and Mechanical Properties. Polymers (Basel) 2020; 12:E1760. [PMID: 32781609 PMCID: PMC7464250 DOI: 10.3390/polym12081760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for tailored, micrometer-scaled biomaterials in cell biology and (cell-free) biotechnology has led to the development of tunable microgel systems based on natural polymers, such as hyaluronic acid (HA). To precisely tailor their physicochemical and mechanical properties and thus to address the need for well-defined microgel systems, in this study, a bottom-up material guide is presented that highlights the synergy between highly selective bio-orthogonal click chemistry strategies and the versatility of a droplet microfluidics (MF)-assisted microgel design. By employing MF, microgels based on modified HA-derivates and homobifunctional poly(ethylene glycol) (PEG)-crosslinkers are prepared via three different types of click reaction: Diels-Alder [4 + 2] cycloaddition, strain-promoted azide-alkyne cycloaddition (SPAAC), and UV-initiated thiol-ene reaction. First, chemical modification strategies of HA are screened in-depth. Beyond the microfluidic processing of HA-derivates yielding monodisperse microgels, in an analytical study, we show that their physicochemical and mechanical properties-e.g., permeability, (thermo)stability, and elasticity-can be systematically adapted with respect to the type of click reaction and PEG-crosslinker concentration. In addition, we highlight the versatility of our HA-microgel design by preparing non-spherical microgels and introduce, for the first time, a selective, hetero-trifunctional HA-based microgel system with multiple binding sites. As a result, a holistic material guide is provided to tailor fundamental properties of HA-microgels for their potential application in cell biology and (cell-free) biotechnology.
Collapse
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Oliver Otto
- Center for Innovation Competence: Humoral Immune Reactions in Cardiovascular Disorders, University of Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany;
- German Center for Cardiovascular Research e. V., University Medicine Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany
| | - Doreen Biedenweg
- Clinic for Internal Medicine B, University Medicine Greifswald, Fleischmannstr. 8, 17475 Greifswald, Germany;
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| |
Collapse
|
38
|
Kubota R, Makuta M, Suzuki R, Ichikawa M, Tanaka M, Hamachi I. Force generation by a propagating wave of supramolecular nanofibers. Nat Commun 2020; 11:3541. [PMID: 32669562 PMCID: PMC7363860 DOI: 10.1038/s41467-020-17394-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023] Open
Abstract
Dynamic spatiotemporal patterns that arise from out-of-equilibrium biochemical reactions generate forces in living cells. Despite considerable recent efforts, rational design of spatiotemporal patterns in artificial molecular systems remains at an early stage of development. Here, we describe force generation by a propagating wave of supramolecular nanofibers. Inspired by actin dynamics, a reaction network is designed to control the formation and degradation of nanofibers by two chemically orthogonal stimuli. Real-time fluorescent imaging successfully visualizes the propagating wave based on spatiotemporally coupled generation and collapse of nanofibers. Numerical simulation indicates that the concentration gradient of degradation stimulus and the smaller diffusion coefficient of the nanofiber are critical for wave emergence. Moreover, the force (0.005 pN) generated by chemophoresis and/or depletion force of this propagating wave can move nanobeads along the wave direction.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masahiro Makuta
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masatoshi Ichikawa
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. .,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8530, Japan.
| |
Collapse
|
39
|
Eskelinen ASA, Tanska P, Florea C, Orozco GA, Julkunen P, Grodzinsky AJ, Korhonen RK. Mechanobiological model for simulation of injured cartilage degradation via pro-inflammatory cytokines and mechanical stimulus. PLoS Comput Biol 2020; 16:e1007998. [PMID: 32584809 PMCID: PMC7343184 DOI: 10.1371/journal.pcbi.1007998] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/08/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is associated with cartilage degradation, ultimately leading to disability and decrease of quality of life. Two key mechanisms have been suggested to occur in PTOA: tissue inflammation and abnormal biomechanical loading. Both mechanisms have been suggested to result in loss of cartilage proteoglycans, the source of tissue fixed charge density (FCD). In order to predict the simultaneous effect of these degrading mechanisms on FCD content, a computational model has been developed. We simulated spatial and temporal changes of FCD content in injured cartilage using a novel finite element model that incorporates (1) diffusion of the pro-inflammatory cytokine interleukin-1 into tissue, and (2) the effect of excessive levels of shear strain near chondral defects during physiologically relevant loading. Cytokine-induced biochemical cartilage explant degradation occurs near the sides, top, and lesion, consistent with the literature. In turn, biomechanically-driven FCD loss is predicted near the lesion, in accordance with experimental findings: regions near lesions showed significantly more FCD depletion compared to regions away from lesions (p<0.01). Combined biochemical and biomechanical degradation is found near the free surfaces and especially near the lesion, and the corresponding bulk FCD loss agrees with experiments. We suggest that the presence of lesions plays a role in cytokine diffusion-driven degradation, and also predisposes cartilage for further biomechanical degradation. Models considering both these cartilage degradation pathways concomitantly are promising in silico tools for predicting disease progression, recognizing lesions at high risk, simulating treatments, and ultimately optimizing treatments to postpone the development of PTOA.
Collapse
Affiliation(s)
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Finland
| | - Cristina Florea
- Department of Applied Physics, University of Eastern Finland, Finland
- Departments of Biological Engineering, Electrical Engineering and Computer Science and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Gustavo A. Orozco
- Department of Applied Physics, University of Eastern Finland, Finland
| | - Petro Julkunen
- Department of Applied Physics, University of Eastern Finland, Finland
- Department of Clinical Neurophysiology, Kuopio University Hospital, Finland
| | - Alan J. Grodzinsky
- Departments of Biological Engineering, Electrical Engineering and Computer Science and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Finland
| |
Collapse
|
40
|
Cintas P. Chasing Synthetic Life: A Tale of Forms, Chemical Fossils, and Biomorphs. Angew Chem Int Ed Engl 2020; 59:7296-7304. [PMID: 32049403 DOI: 10.1002/anie.201915853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/07/2022]
Abstract
This Essay focuses briefly on early studies elaborated by natural and chemical philosophers, and the once-called synthetic biologists, who postulated the transition from inanimate to animate matter and even foresaw the possibility of creating artificial life on the basis of physical and chemical principles only. Such ideas and speculations, ranging from soundness to weirdness, paved however the way to current developments in areas like abiotic pattern formation, cell compartmentalization, biomineralization, or the origin of life itself. In particular, the generation of biomorphs and their relationship to microfossils represents an active research domain and seems to be the logical way to bring the historical work up to the future, as some scientists are trying to make artificial cells. The last sections of this essay will also highlight modern science aimed at understanding what life is and, whether or not, it can be redefined in chemical terms.
Collapse
Affiliation(s)
- Pedro Cintas
- Dpto. Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, 06006, Badajoz, Spain
| |
Collapse
|
41
|
Park JH, Paczesny J, Kim N, Grzybowski BA. Shaping Microcrystals of Metal–Organic Frameworks by Reaction–Diffusion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jun Heuk Park
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| | - Jan Paczesny
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| | - Namhun Kim
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| | - Bartosz A. Grzybowski
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| |
Collapse
|
42
|
Park JH, Paczesny J, Kim N, Grzybowski BA. Shaping Microcrystals of Metal–Organic Frameworks by Reaction–Diffusion. Angew Chem Int Ed Engl 2020; 59:10301-10305. [DOI: 10.1002/anie.201910989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Heuk Park
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| | - Jan Paczesny
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| | - Namhun Kim
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| | - Bartosz A. Grzybowski
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| |
Collapse
|
43
|
Cintas P. Chasing Synthetic Life: A Tale of Forms, Chemical Fossils, and Biomorphs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pedro Cintas
- Dpto. Química Orgánica e InorgánicaFacultad de CienciasUniversidad de Extremadura 06006 Badajoz Spain
| |
Collapse
|
44
|
Kim S, Kim J, Jana B, Ryu JH. Intra-mitochondrial reaction for cancer cell imaging and anti-cancer therapy by aggregation-induced emission. RSC Adv 2020; 10:43383-43388. [PMID: 35519677 PMCID: PMC9058253 DOI: 10.1039/d0ra07471c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/22/2020] [Indexed: 01/20/2023] Open
Abstract
Controlled intracellular chemical reactions to regulate cellular functions remain a challenge in biology mimetic systems. Herein, we developed an intra-mitochondrial bio-orthogonal reaction to induce aggregation induced emission. In situ carbonyl ligation inside mitochondria drives the molecules to form nano-aggregates with green fluorescence, which leads to depolarization of the mitochondrial membrane, generation of ROS, and subsequently mitochondrial dysfunction. This intra-mitochondrial carbonyl ligation shows great potential for anticancer treatment in various cancer cell lines. Controlled intracellular chemical reactions to regulate cellular function remain a challenge in biology mimetic systems.![]()
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Juhee Kim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
45
|
Yoshida A, Kohyama S, Fujiwara K, Nishikawa S, Doi N. Regulation of spatiotemporal patterning in artificial cells by a defined protein expression system. Chem Sci 2019; 10:11064-11072. [PMID: 32190256 PMCID: PMC7066863 DOI: 10.1039/c9sc02441g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 02/04/2023] Open
Abstract
Spatiotemporal patterning is a fundamental mechanism for developmental differentiation and homeostasis in living cells. Because spatiotemporal patterns are based on higher-order collective motions of elements synthesized from genes, their behavior dynamically changes according to the element amounts. Thus, to understand life and use this process for material application, creation of artificial cells with time development of spatiotemporal patterning by changes of element levels is necessary. However, realizing coupling between spatiotemporal patterning and synthesis of elements in artificial cells has been particularly challenging. In this study, we established a system that can synthesize a patterning mechanism of the bacterial cell division plane (the so-called Min system) in artificial cells by modifying a defined protein expression system and demonstrated that artificial cells can show time development of spatiotemporal patterning similar to living cells. This system also allows generation and disappearance of spatiotemporal patterning, is controllable by a small molecule in artificial cells, and has the ability for application in cargo transporters. The system developed here provides a new material and a technique for understanding life, development of drug delivery tools, and creation of molecular robots.
Collapse
Affiliation(s)
- Aoi Yoshida
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Shunshi Kohyama
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Kei Fujiwara
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Saki Nishikawa
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| | - Nobuhide Doi
- Department of Biosciences & Informatics , Keio University , 3-14-1 Hiyoshi , Kohoku-ku , Yokohama 223-8522 , Japan .
| |
Collapse
|
46
|
Aufinger L, Simmel FC. Establishing Communication Between Artificial Cells. Chemistry 2019; 25:12659-12670. [DOI: 10.1002/chem.201901726] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/23/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lukas Aufinger
- Physics Department and ZNNTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Friedrich C. Simmel
- Physics Department and ZNNTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| |
Collapse
|
47
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019; 58:8053-8057. [DOI: 10.1002/anie.201902278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
48
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
49
|
Zheng L, Zhao H, Han Y, Qian H, Vukovic L, Mecinović J, Král P, Huck WTS. Catalytic transport of molecular cargo using diffusive binding along a polymer track. Nat Chem 2019; 11:359-366. [PMID: 30664718 DOI: 10.1038/s41557-018-0204-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2018] [Indexed: 01/17/2023]
Abstract
Transport at the molecular scale is a prerequisite for the development of future molecular factories. Here, we have designed oligoanionic molecular sliders on polycationic tracks that exploit Brownian motion and diffusive binding to transport cargo without using a chemical fuel. The presence of the polymer tracks increases the rate of bimolecular reactions between modified sliders by over two orders of magnitude. Molecular dynamics simulations showed that the sliders not only diffuse, but also jump and hop surprisingly efficiently along polymer tracks. Inspired by acetyl-coenzyme A transporting and delivering acetyl groups in many essential biochemical processes, we developed a new and unconventional type of catalytic transport involving sliders (including coenzyme A) picking up, transporting and selectively delivering molecular cargo. Furthermore, we show that the concept of diffusive binding can also be utilized for the spatially controlled transport of chemical groups across gels. This work represents a new concept for designing functional nanosystems based on random Brownian motion.
Collapse
Affiliation(s)
- Lifei Zheng
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands.
| | - Hui Zhao
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Haibin Qian
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Jasmin Mecinović
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Zhang X, Selvaraju K, Saei AA, D'Arcy P, Zubarev RA, Arnér ES, Linder S. Repurposing of auranofin: Thioredoxin reductase remains a primary target of the drug. Biochimie 2019; 162:46-54. [PMID: 30946948 DOI: 10.1016/j.biochi.2019.03.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Auranofin is a gold (I)-containing compound used for the treatment of rheumatic arthritis. Auranofin has anticancer activity in animal models and is approved for clinical trials for lung and ovarian carcinomas. Both the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase (TrxR) are well documented targets of auranofin. Auranofin was recently reported to also inhibit proteasome activity at the level of the proteasome-associated deubiquitinases (DUBs) UCHL5 and USP14. We here set out to re-examine the molecular mechanism underlying auranofin cytotoxicity towards cultured cancer cells. The effects of auranofin on the proteasome were examined in cells and in vitro, effects on DUB activity were assessed using different substrates. The cellular response to auranofin was compared to that of the 20S proteasome inhibitor bortezomib and the 19S DUB inhibitor b-AP15 using proteomics. Auranofin was found to inhibit mitochondrial activity and to an induce oxidative stress response at IC50 doses. At 2-3-fold higher doses, auranofin inhibits proteasome processing in cells. At such supra-pharmacological concentrations USP14 activity was inhibited. Analysis of protein expression profiles in drug-exposed tumor cells showed that auranofin induces a response distinct from that of the 20S proteasome inhibitor bortezomib and the DUB inhibitor b-AP15, both of which induced similar responses. Our results support the notion that the primary mechanism of action of auranofin is TrxR inhibition and suggest that proteasome DUB inhibition is an off-target effect. Whether proteasome inhibition will contribute to the antineoplastic effect of auranofin in treated patients is unclear but remains a possibility.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Karthik Selvaraju
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Padraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Elias Sj Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|