1
|
Arakawa M, Kono S, Sekine Y, Terasaki A. Reaction of size-selected iron-oxide cluster cations with methane: a model study of rapid methane loss in Mars' atmosphere. Phys Chem Chem Phys 2024; 26:14684-14690. [PMID: 38716515 DOI: 10.1039/d4cp01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
We report gas-phase reactions of free iron-oxide clusters, FenOm+, and their Ar adducts with methane in the context of chemical processes in Mars' atmosphere. Methane activation was observed to produce FenOmCH2+/FenOmCD2+ and FenOmC+, where the reactivity exhibited size and composition dependence. For example, the rate coefficients of methane activation for Fe3O+ and Fe4O+ were estimated to be 1 × 10-13 and 3 × 10-13 cm3 s-1, respectively. Based on these reaction rate coefficients, the presence of iron-oxide clusters/particles with a density as low as 107 cm-3 in Mars' atmosphere would explain the rapid loss of methane observed recently by the Curiosity rover.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Satoshi Kono
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yasuhito Sekine
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Akira Terasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Guo M, Wu X, Wu H, Sun X. Ligand effect on Ru-centered species toward methane activation. Phys Chem Chem Phys 2024; 26:14329-14335. [PMID: 38695750 DOI: 10.1039/d4cp01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ligands have been known to profoundly affect the chemical transformations of methane, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we demonstrate that the conversion of methane can be regulated by Ru centered cations with a series of ligands (C, CH, CNH, CHCNH). Gas-phase experiments complemented by theoretical dynamic analysis were performed to explore the essences and principles governing the ligand effect. In contrast to the inert Ru+, [RuC]+, and [RuCNH]+ toward CH4, the dehydrogenation dominates the reaction of ligand-regulated systems [RuCH]+/CH4 and [RuCHCNH]+/CH4. In active cases, CH acts as active sites, and regulates the activation of CH4 assisted by the "seemingly inert" CNH ligand.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaonan Wu
- East China Normal University, Shanghai 200241, P. R. China.
| | - Hechen Wu
- Fudan University, Shanghai 200240, P. R. China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
4
|
Ethanol Conversion to Butanol over Small Coinage Metal Clusters: An Experimental and Computational Study. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Yang Y, Zhao Y, He S. Conversion of CH
4
Catalyzed by Gas Phase Ions Containing Metals. Chemistry 2022; 28:e202200062. [DOI: 10.1002/chem.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
6
|
Navarro M, Alférez MG, de Sousa M, Miranda-Pizarro J, Campos J. Dicoordinate Au(I)-Ethylene Complexes as Hydroamination Catalysts. ACS Catal 2022; 12:4227-4241. [PMID: 35391904 PMCID: PMC8981211 DOI: 10.1021/acscatal.1c05823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Indexed: 01/22/2023]
Abstract
A series of gold(I)-ethylene π-complexes containing a family of bulky phosphine ligands has been prepared. The use of these sterically congested ligands is crucial to stabilize the gold(I)-ethylene bond and prevent decomposition, boosting up their catalytic performance in the highly underexplored hydroamination of ethylene. The precatalysts bearing the most sterically demanding phosphines showed the best results reaching full conversion to the hydroaminated products under notably mild conditions (1 bar of ethylene pressure at 60 °C). Kinetic analysis together with density functional theory calculations revealed that the assistance of a second molecule of the nucleophile as a proton shuttle is preferred even when using an extremely congested cavity-shaped Au(I) complex. In addition, we have measured a strong primary kinetic isotopic effect that is consistent with the involvement of X-H bond-breaking events in the protodeauration turnover-limiting step.
Collapse
Affiliation(s)
- Miquel Navarro
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Macarena G. Alférez
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Morgane de Sousa
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Juan Miranda-Pizarro
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Jesús Campos
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| |
Collapse
|
7
|
Guo M, Yi Q, Cui C, Gan W, Luo Z. Gas-Phase Synthesis of Metal Olefins: Plasma-Assisted Methane Dehydrogenation and C═C Bond Formation. J Phys Chem A 2022; 126:1123-1131. [PMID: 35166550 DOI: 10.1021/acs.jpca.1c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methane dehydrogenation and C-C coupling under mild conditions are very important but challenging in chemistry. Utilizing a customized time of flight mass spectrometer combined with a magnetron sputtering (MagS) cluster source, here, we have conducted a study on the reactions of methane with small silver and copper clusters simply by introducing methane in argon as the working gas for sputtering. Interestingly, a series of [M(CnH2n)]+ (M = Cu and Ag; n = 2-12) clusters were observed, indicating high-efficiency methane dehydrogenation in such a plasma-assisted chamber system. Density functional theory calculations find the lowest energy structures of the [M(CnH2n)]+ series pertaining to olefins indicative of both C-H bond activation of methane and C-C bond coupling. We analyzed the interactions involved in the [Cu(CnH2n)]+ and [Ag(CnH2n)]+ (n = 1-6) clusters and demonstrated the reaction coordinates for the "Cu+ + CH4" and "Ag+ + CH4." It is illustrated that the presence of a second methane molecule enables us to reduce the necessary energy of dehydrogenation, which concurs with the experimental observation of an absence of the metal carbine products Cu+CH2 and Ag+CH2, which are short-lived. Also, it is elucidated that the higher-lying excitation states of Cu+ and Ag+ ions enable more favorable dehydrogenation process and C═C bond formation, shedding light on the plasma assistance of the essence.
Collapse
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qiuhao Yi
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Wen Gan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
8
|
Niedner‐Schatteburg G, Kappes MM. Advancing Inorganic Coordination Chemistry by Spectroscopy of Isolated Molecules: Methods and Applications. Chemistry 2021; 27:15027-15042. [PMID: 34636096 PMCID: PMC8596414 DOI: 10.1002/chem.202102815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/14/2022]
Abstract
A unique feature of the work carried out in the Collaborative Research Center 3MET continues to be its emphasis on innovative, advanced experimental methods which hyphenate mass-selection with further analytical tools such as laser spectroscopy for the study of isolated molecular ions. This allows to probe the intrinsic properties of the species of interest free of perturbing solvent or matrix effects. This review explains these methods and uses examples from past and ongoing 3MET studies of specific classes of multicenter metal complexes to illustrate how coordination chemistry can be advanced by applying them. As a corollary, we will show how the challenges involved in providing well-defined, for example monoisomeric, samples of the molecular ions have helped to further improve the methods themselves thus also making them applicable to many other areas of chemistry.
Collapse
Affiliation(s)
| | - Manfred M. Kappes
- Institute of Physical Chemistry and Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76128KarlsruheGermany
| |
Collapse
|
9
|
Navarro M, Miranda-Pizarro J, Moreno JJ, Navarro-Gilabert C, Fernández I, Campos J. A dicoordinate gold(I)-ethylene complex. Chem Commun (Camb) 2021; 57:9280-9283. [PMID: 34519292 PMCID: PMC8438763 DOI: 10.1039/d1cc02769g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of the exceptionally bulky tris-2-(4,4′-di-tert-butylbiphenylyl)phosphine ligand allows the isolation and complete characterization of the first dicoordinate gold(i)–ethylene adduct, filling a missing fundamental piece on the organometallic chemistry of gold. Besides, the bonding situation of this species has been investigated by means of state-of-the-art Density Functional Theory (DFT) calculations indicating that π-backdonation plays a minor role compared with tricoordinate analogues. The use of the exceptionally bulky tris-2-(4,4′-di-tert-butylbiphenylyl)phosphine ligand allows the isolation and complete characterization of the first dicoordinate gold(i)–ethylene adduct, filling a missing fundamental piece on the organometallic chemistry of gold.![]()
Collapse
Affiliation(s)
- Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Juan Miranda-Pizarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Juan J Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Carlos Navarro-Gilabert
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| |
Collapse
|
10
|
Eckhard JF, Masubuchi T, Tschurl M, Barnett RN, Landman U, Heiz U. Room-Temperature Methane Activation Mediated by Free Tantalum Cluster Cations: Size-by-Size Reactivity. J Phys Chem A 2021; 125:5289-5302. [PMID: 34128681 DOI: 10.1021/acs.jpca.1c02384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The energetics of small cationic tantalum clusters and their gas-phase adsorption and dehydrogenation reaction pathways with methane are investigated with ion-trap experiments and spin-density-functional-theory calculations. Tan+ clusters are exposed to methane under multicollision conditions in a cryogenic ring electrode ion-trap. The cluster size affects the reaction efficiency and the number of consecutively dehydrogenated methane molecules. Small clusters (n = 1-4) dehydrogenate CH4 and concurrently eliminate H2, while larger clusters (n > 4) demonstrate only molecular adsorption of methane. Unique behavior is found for the Ta+ cation, which dehydrogenates consecutively up to four CH4 molecules and is predicted theoretically to promote formation of a [Ta(CH2-CH2-CH2)(CH2)]+ product, exhibiting C-C coupled groups. Underlying mechanisms, including reaction-enhancing couplings between potential energy surfaces of different spin-multiplicities, are uncovered.
Collapse
Affiliation(s)
- Jan F Eckhard
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Tsugunosuke Masubuchi
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Robert N Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Ueli Heiz
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
11
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
12
|
Wu J, Noonikara-Poyil A, Muñoz-Castro A, Dias HVR. Gold(I) ethylene complexes supported by electron-rich scorpionates. Chem Commun (Camb) 2021; 57:978-981. [PMID: 33433552 DOI: 10.1039/d0cc07717h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethylene complexes of gold(i) have been stabilized by electron-rich, κ2-bound tris(pyrazolyl)borate ligands. Large up-field shifts of olefinic carbon NMR resonances and relatively long C[double bond, length as m-dash]C distances of gold bound ethylene are indicative of significant Au(i) → ethylene π-backbonding relative to the analog supported by a weakly donating ligand, consistent with the computational data.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
13
|
Zhu X, Xu F, He Q, Xing Z, Zhang S, Zhang X. Detection of intermediates for diatomic [TaO]+ catalyzed gas-phase reaction of methane coupling to ethane and ethylene by ICP-MS/MS. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Li Y, Wang M, Ding YQ, Zhao CY, Ma JB. Consecutive methane activation mediated by single metal boride cluster anions NbB 4. Phys Chem Chem Phys 2021; 23:12592-12599. [PMID: 34047332 DOI: 10.1039/d1cp01418h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cleavage of all C-H bonds in two methane molecules by gas-phase cluster ions at room temperature is a challenging task. Herein, mass spectrometry and quantum chemical calculations have been used to identify one single metal boride cluster anions NbB4- that can activate eight C-H bonds in two methane molecules and release one H2 molecule each time under thermal collision conditions. In these consecutive reactions, the loaded Nb atoms and the support B4 units play different roles but act synergistically to activate CH4, which is responsible for the interesting reactivity of NbB4-. Moreover, there are some mechanistic differences in these two reactions, including the mechanisms for the first C-H bond activation steps, dihydrogen desorption sites, and major electron donors. This study shows that non-noble metal boride species are reactive enough to facilitate thermal C-H bond cleavages, and boron-based materials may be one kind of potential support material facilitating surface hydrogen transport.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Chong-Yang Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
15
|
Förstel M, Pollow KM, Saroukh K, Najib EA, Mitric R, Dopfer O. The Optical Spectrum of Au 2. Angew Chem Int Ed Engl 2020; 59:21403-21408. [PMID: 32888257 PMCID: PMC7756737 DOI: 10.1002/anie.202011337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/08/2022]
Abstract
The electronic structure of the Au2 + cation is essential for understanding its catalytic activity. We present the optical spectrum of mass-selected Au2 + measured via photodissociation spectroscopy. Two vibrationally resolved band systems are observed in the 290-450 nm range (at ca. 440 and ca. 325 nm), which both exhibit rather irregular structure indicative of strong vibronic and spin-orbit coupling. The experimental spectra are compared to high-level quantum-chemical calculations at the CASSCF-MRCI level including spin-orbit coupling. The results demonstrate that the understanding of the electronic structure of this simple, seemingly H2 + -like diatomic molecular ion strictly requires multireference and relativistic treatment including spin-orbit effects. The calculations reveal that multiple electronic states contribute to each respective band system. It is shown that popular DFT methods completely fail to describe the complex vibronic pattern of this fundamental diatomic cation.
Collapse
Affiliation(s)
- Marko Förstel
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Kai Mario Pollow
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Karim Saroukh
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Este Ainun Najib
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Roland Mitric
- Julius-Maximilians-Universität WürzburgInstitut für Physikalische und Theoretische ChemieEmil-Fischer-Str. 4297074WürzburgGermany
| | - Otto Dopfer
- Technische Universität BerlinHardenbergstr. 3610623BerlinGermany
| |
Collapse
|
16
|
Förstel M, Pollow KM, Saroukh K, Najib EA, Mitric R, Dopfer O. The Optical Spectrum of Au
2
+. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marko Förstel
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Kai Mario Pollow
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Karim Saroukh
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Este Ainun Najib
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Roland Mitric
- Julius-Maximilians-Universität Würzburg Institut für Physikalische und Theoretische Chemie Emil-Fischer-Str. 42 97074 Würzburg Germany
| | - Otto Dopfer
- Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
17
|
Zhao YX, Yang B, Li HF, Zhang Y, Yang Y, Liu QY, Xu HG, Zheng WJ, He SG. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium-Vanadium Bimetallic Oxide Cluster Anions at Room Temperature. Angew Chem Int Ed Engl 2020; 59:21216-21223. [PMID: 32767516 DOI: 10.1002/anie.202010026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 01/12/2023]
Abstract
Photoassisted steam reforming and dry (CO2 ) reforming of methane (SRM and DRM) at room temperature with high syngas selectivity have been achieved in the gas-phase catalysis for the first time. The catalysts used are bimetallic rhodium-vanadium oxide cluster anions of Rh2 VO1-3 - . Both the oxidation of methane and reduction of H2 O/CO2 can take place efficiently in the dark while the pivotal step to govern syngas selectivity is photo-excitation of the reaction intermediates Rh2 VO2,3 CH2 - to specific electronically excited states that can selectively produce CO and H2 . Electronic excitation over Rh2 VO2,3 CH2 - to control the syngas selectivity is further confirmed from the comparison with the thermal excitation of Rh2 VO2,3 CH2 - , which leads to diversity of products. The atomic-level mechanism obtained from the well-controlled cluster reactions provides insight into the process of selective syngas production from the photocatalytic SRM and DRM reactions over supported metal oxide catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hai-Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Zhao Y, Yang B, Li H, Zhang Y, Yang Y, Liu Q, Xu H, Zheng W, He S. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium–Vanadium Bimetallic Oxide Cluster Anions at Room Temperature. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hai‐Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hong‐Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Wei‐Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
19
|
Van Daele M, Griffiths MBE, Minjauw MM, Barry ST, Detavernier C, Dendooven J. Reaction mechanism of the Me 3AuPMe 3-H 2 plasma-enhanced ALD process. Phys Chem Chem Phys 2020; 22:11903-11914. [PMID: 32436930 DOI: 10.1039/c9cp06855d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reaction mechanism of the recently reported Me3AuPMe3-H2 plasma gold ALD process was investigated using in situ characterization techniques in a pump-type ALD system. In situ RAIRS and in vacuo XPS measurements confirm that the CH3 and PMe3 ligands remain on the gold surface after chemisorption of the precursor, causing self-limiting adsorption. Remaining surface groups are removed by the H2 plasma in the form of CH4 and likely as PHxMey groups, allowing chemisorption of new precursor molecules during the next exposure. The decomposition behaviour of the Me3AuPMe3 precursor on a Au surface is also presented and linked to the stability of the precursor ligands that govern the self-limiting growth during ALD. Desorption of the CH3 ligands occurs at all substrate temperatures during evacuation to high vacuum, occurring faster at higher temperatures. The PMe3 ligand is found to be less stable on a gold surface at higher substrate temperatures and is accompanied by an increase in precusor decomposition on a gold surface, indicating that the temperature dependent stability of the precursor ligands is an important factor to ensure self-limiting precursor adsorption during ALD. Remarkably, precursor decomposition does not occur on a SiO2 surface, in situ transmission absorption infrared experiments indicate that nucleation on a SiO2 surface occurs on Si-OH groups. Finally, we comment on the use of different co-reactants during PE-ALD of Au and we report on different PE-ALD growth with the reported O2 plasma and H2O process in pump-type versus flow-type ALD systems.
Collapse
Affiliation(s)
- Michiel Van Daele
- Ghent University, Department of Solid State Sciences, CoCooN Research Group, Krijgslaan 281/S1, Ghent 9000, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Wang MM, Zhao YX, Ding XL, Li W, He SG. Methane activation by heteronuclear diatomic AuRh + cation: comparison with homonuclear Au 2+ and Rh 2. Phys Chem Chem Phys 2020; 22:6231-6238. [PMID: 32129335 DOI: 10.1039/c9cp05699h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ability to activate methane differs appreciably for different transition metals, and it is attractive to find the most suitable metal for the direct conversion of methane to value-added chemicals. Herein, we performed a comparative study on the reactions of CH4 with Au2+, AuRh+ and Rh2+ cations by mass-spectrometry based experiments and DFT-based theoretical analysis. Different reactivity has been found for these cations: Au2+ has the lowest reactivity, and it can activate methane but only produce H-Au2-CH3+ without H2 release; Rh2+ has the highest reactivity, and it can produce both carbene-type Rh2-CH2+ and carbyne-type H-Rh2-CH+ with H2 release; AuRh+ also has high reactivity to produce only AuRh-CH2+ with H2, avoiding the excessive dehydrogenation of CH4. Our theoretical results demonstrate that Rh is responsible for the high reactivity, while Au leads to selectivity, which may be caused by the unique intrinsic bonding properties of the metals.
Collapse
Affiliation(s)
- Meng-Meng Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Levin N, Lengyel J, Eckhard JF, Tschurl M, Heiz U. Catalytic Non-Oxidative Coupling of Methane on Ta 8O 2.. J Am Chem Soc 2020; 142:5862-5869. [PMID: 32125833 DOI: 10.1021/jacs.0c01306] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass-selected Ta8O2+ cluster ions catalyze the transformation of methane in a gas-phase ion trap experiment via nonoxidative coupling into ethane and H2, which is a prospective reaction for the generation of valuable chemicals on an industrial scale. Systematic variation of the reaction conditions and the isotopic labeling of methane by deuterium allow for an unambiguous identification of a catalytic cycle. Comparison with the proposed catalytic cycle for tantalum-doped silica catalysts reveals surprising similarities as the mechanism of the C-C coupling step, but also peculiar differences like the mechanism of the eventual formation of molecular hydrogen and ethane. Therefore, this work not only supplies insights into the mechanisms of methane coupling reactions but also illustrates how the study of trapped ionic catalysts can contribute to the understanding of reactions, which are otherwise difficult to study.
Collapse
Affiliation(s)
- Nikita Levin
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jozef Lengyel
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jan F Eckhard
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Martin Tschurl
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Ueli Heiz
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
22
|
Ketrat S, Maihom T, Treesukul P, Boekfa B, Limtrakul J. Theoretical study of methane adsorption and C─H bond activation over Fe-embedded graphene: Effect of external electric field. J Comput Chem 2019; 40:2819-2826. [PMID: 31471930 DOI: 10.1002/jcc.26058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 11/07/2022]
Abstract
The effect of an external electric field (EF) on the methane adsorption and its activation on iron-embedded graphene (Fe-GPs) are investigated by using the M06-L density functional method. The EF is applied in the perpendicular direction to the graphene in the range of -0.015 to +0.015 a.u. with the interval of 0.005 a.u. The effects of EF on the adsorption, transition state and product complexes of the methane activation reaction are revealed. The binding energies of methane on Fe site in Fe-GPs are increased from -12.9 to -15.3, -18.1 and -21.5 kcal/mol for the negative EF of -0.005, -0.010 and -0.015, respectively. By applying positive EF, the activation barriers for methane activation are reduced in range of 3-8 kcal/mol (around 12-31%) and the reaction energies are more exothermic. The positive EF kinetically favors the reaction compared to the system without EF. The adsorption and activation of methane on Fe-GPs can be easily tuned by adjusting the external electric field for various applications. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sombat Ketrat
- School of Information Science and Technology (IST), Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Thana Maihom
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21201, Thailand
| | - Piti Treesukul
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Bundet Boekfa
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21201, Thailand
| |
Collapse
|
23
|
Armentrout PB, Stevenson BC, Yang F, Wensink FJ, Lushchikova OV, Bakker JM. Infrared Spectroscopy of Gold Carbene Cation (AuCH 2+): Covalent or Dative Bonding? J Phys Chem A 2019; 123:8932-8941. [PMID: 31542925 DOI: 10.1021/acs.jpca.9b08049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present work explores the structure of the gold carbene cation, AuCH2+, using infrared multiple photon dissociation action spectroscopy and density functional theory (DFT). Unlike several other 5d transition-metal cations (M+ = Ta+, W+, Os+, Ir+, and Pt+) that react with methane by dehydrogenation to form MCH2+ species, gold cations are unreactive with methane at thermal energies. Instead, the metal carbene is formed by reacting atomic gold cations formed in a laser ablation source with ethylene oxide (cC2H4O) pulsed into a reaction channel downstream. The resulting [Au,C,2H]+ product photofragmented by loss of H2 as induced by radiation provided by the free-electron laser for intracavity experiments in the 300-1800 cm-1 range. Comparison of the experimental spectrum, obtained by monitoring the appearance of AuC+, and DFT calculated spectra leads to the identification of the ground-state carbene, AuCH2+ (1A1), as the species formed, as previously postulated theoretically. Unlike the covalent double bonds formed by the lighter, open-shell 5d transition metals, the closed-shell Au+ (1S, 5d10) atom binds to methylene by donation of a pair of electrons from CH2(1A1) into the empty 6s orbital of gold coupled with π back-bonding, i.e., dative bonding, as explored computationally. Contributions to the AuC+ appearance spectrum from larger complexes are also considered, and H2CAu+(c-C2H4O) seems likely to contribute one band observed.
Collapse
Affiliation(s)
- P B Armentrout
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Brandon C Stevenson
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Fan Yang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Frank J Wensink
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Olga V Lushchikova
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Joost M Bakker
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| |
Collapse
|
24
|
Hirabayashi S, Ichihashi M. Dehydrogenation of Methane by Partially Oxidized Tungsten Cluster Cations: High Reactivity Comparable to That of Platinum Cluster Cations. J Phys Chem A 2019; 123:6840-6847. [DOI: 10.1021/acs.jpca.9b04606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Masahiko Ichihashi
- Cluster Research Laboratory, Toyota Technological Institute: in East Tokyo Laboratory, Genesis Research Institute, Inc., 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| |
Collapse
|
25
|
Owen CJ, Keyes NR, Xie C, Guo H, Armentrout PB. Bond dissociation energy of Au2+: A guided ion beam and theoretical investigation. J Chem Phys 2019; 150:174305. [DOI: 10.1063/1.5092957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cameron J. Owen
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, USA
| | - Nicholas R. Keyes
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - P. B. Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
26
|
Pembere AM, Cui C, Wu H, Luo Z. Small gold clusters catalyzing oxidant-free dehydrogenation of glycerol initiated by methene hydrogen atom transfer. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Selective Activation of the C−H Bond in Methane by Single Platinum Atomic Anions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Liu G, Zhu Z, Ciborowski SM, Ariyarathna IR, Miliordos E, Bowen KH. Selective Activation of the C-H Bond in Methane by Single Platinum Atomic Anions. Angew Chem Int Ed Engl 2019; 58:7773-7777. [PMID: 30968506 DOI: 10.1002/anie.201903252] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/21/2023]
Abstract
Mass spectrometric analysis of the anionic products of interaction between platinum atomic anions, Pt- , and methane, CH4 and CD4 , in a collision cell shows the preferred generation of [PtCH4 ]- and [PtCD4 ]- complexes and a low tendency toward dehydrogenation. [PtCH4 ]- is shown to be H-Pt-CH3 - by a synergy between anion photoelectron spectroscopy and quantum chemical calculations, implying the rupture of a single C-H bond. The calculated reaction pathway accounts for the observed selective activation of methane by Pt- . This study presents the first example of methane activation by a single atomic anion.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
29
|
Relative Stability of Small Silver, Platinum, and Palladium Doped Gold Cluster Cations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stability patterns of single silver, platinum, and palladium atom doped gold cluster cations, MAuN−1+ (M = Ag, Pt, Pd; N = 3–6), are investigated by a combination of photofragmentation experiments and density functional theory calculations. The mass spectra of the photofragmented clusters reveal an odd-even pattern in the abundances of AgAuN−1+, with local maxima for clusters containing an even number of valence electrons, similarly to pure AuN+. The odd-even pattern, however, disappears upon Pt and Pd doping. Computed dissociation energies agree well with the experimental findings for the different doped clusters. The effect of Ag, Pt, and Pd doping is discussed on the basis of an analysis of the density of states of the N = 3–5 clusters. Whereas Ag delocalizes its 5s valence electron in all sizes, this process is size-specific for Pt and Pd.
Collapse
|
30
|
Selective Generation of Free Hydrogen Atoms in the Reaction of Methane with Diatomic Gold Boride Cations. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2018-1334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
The thermal reaction of diatomic gold boride cation AuB+ with methane has been studied by using state-of-the-art mass spectrometry in conjunction with density functional theory calculations. The AuB+ ion can activate a methane molecule to produce exclusively the free hydrogen atom, an important intermediate in hydrocarbon transformation. This result is different from the reactivity of AuC+ and CuB+ counterparts with methane in previous studies. The AuC+ cation mainly transforms methane into ethylene. The CuB+ reaction system principally generates the free hydrogen atoms, but it also gives rise a portion of ethylene-like product H2B−CH2. The B atom of AuB+ is the active site to activate methane. The strong relativistic effect on gold plays an important role for the product selectivity. The mechanistic insights obtained from this study provide guidance for rational design of active sites with high product selectivity toward methane activation.
Collapse
|
31
|
Förstel M, Schewe W, Dopfer O. Optical Spectroscopy of the Au 4
+
Cluster: The Resolved Vibronic Structure Indicates an Unexpected Isomer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marko Förstel
- Institut für Optik und Atomare Physik; Technische Universität Berlin; Hardenbergstr. 36 10623 Berlin Germany
| | - Wolfgang Schewe
- Institut für Optik und Atomare Physik; Technische Universität Berlin; Hardenbergstr. 36 10623 Berlin Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik; Technische Universität Berlin; Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
32
|
Förstel M, Schewe W, Dopfer O. Optical Spectroscopy of the Au4
+
Cluster: The Resolved Vibronic Structure Indicates an Unexpected Isomer. Angew Chem Int Ed Engl 2019; 58:3356-3360. [DOI: 10.1002/anie.201813094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Marko Förstel
- Institut für Optik und Atomare Physik; Technische Universität Berlin; Hardenbergstr. 36 10623 Berlin Germany
| | - Wolfgang Schewe
- Institut für Optik und Atomare Physik; Technische Universität Berlin; Hardenbergstr. 36 10623 Berlin Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik; Technische Universität Berlin; Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
33
|
Shuman NS, Ard SG, Sweeny BC, Pan H, Viggiano AA, Keyes NR, Guo H, Owen CJ, Armentrout PB. Au2+ cannot catalyze conversion of methane to ethene at low temperature. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00523d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The previously reported conversion of methane to ethene catalyzed by Au2+ at thermal energies is investigated through a combination of experiment and theory. The conversion is found not to occur, in-line with well-established thermodynamics.
Collapse
Affiliation(s)
- Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland AFB
- 87117 USA
| | - Shaun G. Ard
- Institute for Scientific Research
- Boston College
- Boston
- 02467 USA
| | - Brendan C. Sweeny
- National Research Council Research Associateship Program at Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland AFB
- 87117 USA
| | - Hanqing Pan
- USRA Space Scholar at Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland AFB
- 87117 USA
| | - Nicholas R. Keyes
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- 87131 USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- 87131 USA
| | | | | |
Collapse
|
34
|
Ferrari P, Vanbuel J, Janssens E, Lievens P. Tuning the Reactivity of Small Metal Clusters by Heteroatom Doping. Acc Chem Res 2018; 51:3174-3182. [PMID: 30475581 DOI: 10.1021/acs.accounts.8b00437] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The reactivity of small metallic clusters, nanoparticles composed of a countable number of atoms (typically up to ∼100 atoms), has attracted much attention due to the fascinating properties these objects possess toward a variety of molecules. Cluster reactivity often is significantly different from the homologous bulk, with gold as prototypical example. Bulk gold is the noblest of all metals, whereas small gold clusters react with carbon monoxide, molecular oxygen, and hydrocarbons, among others. Furthermore, cluster reactivity is strongly size and composition dependent, allowing a wide range of tuning possibilities. The study of cluster reactivity usually follows two routes of investigation. In the first, research aims for fundamental understanding of mechanisms, mainly driven by curiosity. One consequence of the inherent small size of a cluster is that atoms can arrange themselves very differently from the crystallographic structure of the homologous bulk. In addition, quantum confinement effects dominate the electronic structure of a cluster with atom-like electronic shells instead of the electronic bands in bulk. These features result in a very rich and size-dependent interaction of a cluster with small molecules, governed by a fine interplay between the geometry and the electronic structure of the system. An alternative research approach uses the investigation of chemical reactions of isolated small clusters in the gas phase as model systems for the reactions taking place in more complex systems. This offers several advantages compared to more conventional methods and techniques used to study such complex systems. First, clusters can be produced under well-defined conditions, with control over size, composition, and charge state. Second, clusters in the gas phase solely interact with the molecule(s) chosen by the researcher, since contaminations are limited by the high vacuum conditions of the experiments. Third, due to the small number of atoms involved, detailed quantum chemical calculations can be performed on the systems under investigation. Thus, even though gas phase clusters differ significantly in size and in environmental conditions from those encountered, for example, in industrial catalysis, they can be used to unravel the complicated nature of a metal-molecule chemical bonding process. In this Account, both routes of investigation are discussed. The nature of the interaction between small gas phase clusters with diverse molecules is described, stressing the broader relevance of these studies. Particular emphasis is given to the effect of heteroatom doping. By adding a different element to a cluster, its geometric and electronic structure is modified, thereby altering its reactivity. Specifically, the effect of varying size and composition of doped gold, platinum, and aluminum clusters on their reactivity toward diverse molecules, relevant for catalytic applications, is discussed. Most studies presented here combine experiments based on mass spectrometric techniques with density functional theory calculations, allowing a deep understanding of the reaction mechanisms at a molecular level.
Collapse
Affiliation(s)
- Piero Ferrari
- Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, Box 2414, 3001 Leuven, Belgium
| | - Jan Vanbuel
- Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, Box 2414, 3001 Leuven, Belgium
| | - Ewald Janssens
- Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, Box 2414, 3001 Leuven, Belgium
| | - Peter Lievens
- Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, Box 2414, 3001 Leuven, Belgium
| |
Collapse
|
35
|
Abstract
The increasing supply of natural gas has created a strong demand for developing efficient catalytic processes to upgrade methane, the most stable alkane molecule, into value-added chemicals. Currently, methane conversion in laboratory and industry is mostly performed under high-temperature conditions. A lot of effort has been devoted to exploring chemical entities that are able to activate the C-H bond of methane at lower temperatures, preferably room temperature. Gas phase atomic clusters with limited numbers of atoms are ideal models of active sites on heterogeneous catalysts. The cluster systems are being actively studied to activate methane under room-temperature conditions. State-of-the-art mass spectrometry, photoelectron imaging spectroscopy, and quantum chemistry calculations have been combined in our laboratory to reveal the molecular-level mechanisms of methane activation by atomic clusters. In this Account, we summarize our recent progress on thermal methane activation by metal oxide clusters doped with noble-metal atoms (Au, Pt, and Rh) as well as by oxygen-free species including carbides and borides of base metals (V, Ta, Mo, and Fe). In contrast to the generations of CH3• free radicals in many of the previously reported cluster reactions with methane, the generations of stable products such as formaldehyde, acetylene, and syngas as well as closed-shell species AuCH3 and B3CH3 have been identified for the cluster reaction systems herein. Besides the well recognized mechanisms of methane activation by the O-• radicals through hydrogen atom abstraction and by metal atoms through oxidative addition, the new mechanisms of synergistic methane activation by Lewis acid-base pairs (such as Auδ+-Oδ- and Bδ+-Bδ-) and by dinuclear metal centers (such as Ta-Ta) have been recently revealed. In the reactions between methane and oxide clusters doped with noble-metal atoms, the oxide cluster "supports" can accept the H atoms and the CH x species delivered through the noble-metal atoms and then transform methane into stable oxygenated compounds. The product selectivity (such as formaldehyde versus syngas) can be controlled by different noble-metal atoms (such as Pt versus Rh). The electronic structures of base metal centers can be engineered through carburization so that the low-spin states can be accessible to reduce the C-H bond of methane. Such active base metal centers in low-spin states resemble related noble-metal atoms in methane activation. The boron clusters (such as B3 in VB3+) can be polarized by the metal cations to form the Lewis acid-base pair Bδ+-Bδ- to cleave the C-H bond of methane very easily. These molecular-level mechanisms may well be operative in related heterogeneous catalysis and can be a fundamental basis to design efficient catalysts for activation and conversion of methane under mild conditions.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National
Laboratory for Molecular Sciences, CAS Research/Education Center of
Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National
Laboratory for Molecular Sciences, CAS Research/Education Center of
Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National
Laboratory for Molecular Sciences, CAS Research/Education Center of
Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National
Laboratory for Molecular Sciences, CAS Research/Education Center of
Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
36
|
Chen Q, Zhao YX, Jiang LX, Chen JJ, He SG. Coupling of Methane and Carbon Dioxide Mediated by Diatomic Copper Boride Cations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
37
|
Chen Q, Zhao YX, Jiang LX, Chen JJ, He SG. Coupling of Methane and Carbon Dioxide Mediated by Diatomic Copper Boride Cations. Angew Chem Int Ed Engl 2018; 57:14134-14138. [PMID: 30203446 DOI: 10.1002/anie.201808780] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 11/11/2022]
Abstract
The use of CH4 and CO2 to produce value-added chemicals via direct C-C coupling is a challenging chemistry problem because of the inertness of these two molecules. Herein, mass spectrometric experiments and high-level quantum-chemical calculations have identified the first diatomic species (CuB+ ) that can couple CH4 with CO2 under thermal collision conditions to produce ketene (H2 C=C=O), an important intermediate in synthetic chemistry. The order to feed the reactants (CH4 and CO2 ) is important and CH4 should be firstly fed to produce the C2 product. Molecular-level mechanisms including control of product selectivity have been revealed for coupling of CH4 with CO2 under mild conditions.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
38
|
Lang SM, Bernhardt TM, Chernyy V, Bakker JM, Barnett RN, Landman U. Selective C−H Bond Cleavage in Methane by Small Gold Clusters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sandra M. Lang
- Institute of Surface Chemistry and Catalysis University of Ulm Albert-Einstein-Allee 47 89069 Ulm Germany
| | - Thorsten M. Bernhardt
- Institute of Surface Chemistry and Catalysis University of Ulm Albert-Einstein-Allee 47 89069 Ulm Germany
| | - Valeriy Chernyy
- Institute for Molecules and Materials FELIX Laboratory Radboud University 6525 ED Nijmegen The Netherlands
| | - Joost M. Bakker
- Institute for Molecules and Materials FELIX Laboratory Radboud University 6525 ED Nijmegen The Netherlands
| | - Robert N. Barnett
- School of Physics Georgia Institute of Technology Atlanta GA 30332-0430 USA
| | - Uzi Landman
- School of Physics Georgia Institute of Technology Atlanta GA 30332-0430 USA
| |
Collapse
|
39
|
Lang SM, Bernhardt TM, Chernyy V, Bakker JM, Barnett RN, Landman U. Selective C-H Bond Cleavage in Methane by Small Gold Clusters. Angew Chem Int Ed Engl 2017; 56:13406-13410. [PMID: 28869784 DOI: 10.1002/anie.201706009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/21/2017] [Indexed: 11/06/2022]
Abstract
Methane represents the major constituent of natural gas. It is primarily used only as a source of energy by means of combustion, but could also serve as an abundant hydrocarbon feedstock for high quality chemicals. One of the major challenges in catalysis research nowadays is therefore the development of materials that selectively cleave one of the four C-H bonds of methane and thus make it amenable for further chemical conversion into valuable compounds. By employing infrared spectroscopy and first-principles calculations it is uncovered herein that the interaction of methane with small gold cluster cations leads to selective C-H bond dissociation and the formation of hydrido methyl complexes, H-Aux+ -CH3 . The distinctive selectivity offered by these gold clusters originates from a fine interplay between the closed-shell nature of the d states and relativistic effects in gold. Such fine balance in fundamental interactions could prove to be a tunable feature in the rational design of a catalyst.
Collapse
Affiliation(s)
- Sandra M Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069, Ulm, Germany
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069, Ulm, Germany
| | - Valeriy Chernyy
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525, ED, Nijmegen, The Netherlands
| | - Joost M Bakker
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525, ED, Nijmegen, The Netherlands
| | - Robert N Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332-0430, USA
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332-0430, USA
| |
Collapse
|
40
|
Li XN, Zou XP, He SG. Metal-mediated catalysis in the gas phase: A review. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62782-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Copeland CW, Ashraf MA, Boyle EM, Metz RB. Vibrational Spectroscopy of Fe3+(CH4)n (n = 1–3) and Fe4+(CH4)4. J Phys Chem A 2017; 121:2132-2137. [DOI: 10.1021/acs.jpca.6b13074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher W. Copeland
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 United States
| | - Muhammad Affawn Ashraf
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 United States
| | - Emily M. Boyle
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 United States
| | - Ricardo B. Metz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 United States
| |
Collapse
|
42
|
Li HF, Zhao YX, Yuan Z, Liu QY, Li ZY, Li XN, Ning CG, He SG. Methane Activation by Tantalum Carbide Cluster Anions Ta 2C 4. J Phys Chem Lett 2017; 8:605-610. [PMID: 28088857 DOI: 10.1021/acs.jpclett.6b02568] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Methane activation by transition metals is of fundamental interest and practical importance, as this process is extensively involved in the natural gas conversion to fuels and value-added chemicals. While single-metal centers have been well recognized as active sites for methane activation, the active center composed of two or more metal atoms is rarely addressed and the detailed reaction mechanism remains unclear. Here, by using state-of-the-art time-of-flight mass spectrometry, cryogenic anion photoelectron imaging spectroscopy, and quantum-chemical calculations, the cooperation of the two Ta atoms in a dinuclear carbide cluster Ta2C4- for methane activation has been identified. The C-H bond activation takes place predominantly around one Ta atom in the initial stage of the reaction and the second Ta atom accepts the delivered H atom from the C-H bond cleavage. The well-resolved vibrational spectra of the cryogenically cooled anions agree well with theoretical simulations, allowing the clear characterization of the structure of Ta2C4- cluster. The reactivity comparison between Ta2C4- cluster and the carbon-less analogues (Ta2C3- and Ta2C2-) demonstrated that the cooperative effect of the two metal atoms can be well tuned by the carbon ligands in terms of methane activation and transformation.
Collapse
Affiliation(s)
- Hai-Fang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Zhen Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zi-Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Xiao-Na Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Chuan-Gang Ning
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University , Beijing 100084, P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
43
|
Zhou XH, Li ZY, Jiang LX, He SG, Ma TM. Methane Activation Mediated by Dual Gold Atoms Doped in Aluminium Oxide Cluster Cations Au2Al2O3+. ChemistrySelect 2017. [DOI: 10.1002/slct.201601868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Hong Zhou
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 (P. R. China)
- School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road, Tianhe District Guangzhou 510641 P. R. China
| | - Zi-Yu Li
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 (P. R. China)
| | - Li-Xue Jiang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 (P. R. China)
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 (P. R. China)
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road, Tianhe District Guangzhou 510641 P. R. China
| |
Collapse
|
44
|
Pembere AM, Yang M, Luo Z. Small gold clusters catalyzing the conversion of glycerol to epichlorohydrin. Phys Chem Chem Phys 2017; 19:25840-25845. [DOI: 10.1039/c7cp05324j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The conversion of glycerol to epichlorohydrin (GTE) is of great interest because the product is widely used in plastics, rubbers and adhesives, and also contributes to the disposal of the reactant glycerol, a major by-product in biodiesel production.
Collapse
Affiliation(s)
- Anthony M. Pembere
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Mengzhou Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
45
|
Pembere AM, Luo Z. Jones oxidation of glycerol catalysed by small gold clusters. Phys Chem Chem Phys 2017; 19:6620-6625. [DOI: 10.1039/c6cp07941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here a joint theoretical and experimental study on the oxidation reactivity of glycerol catalysed by chemically pure small Au clusters in the absence and presence of H2O2.
Collapse
Affiliation(s)
- Anthony M. Pembere
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
46
|
Schwarz H. Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02658c] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genuine, single-atom catalysis can be realized in the gas phase and probed by mass spectrometry combined with computational chemistry.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
47
|
Affiliation(s)
- Zhixun Luo
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - A. W. Castleman
- Departments
of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shiv N. Khanna
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
48
|
Cooperative Effects in Clusters and Oligonuclear Complexes of Transition Metals in Isolation. STRUCTURE AND BONDING 2016. [DOI: 10.1007/430_2016_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
49
|
Li YK, Yuan Z, Zhao YX, Zhao C, Liu QY, Chen H, He SG. Thermal Methane Conversion to Syngas Mediated by Rh 1-Doped Aluminum Oxide Cluster Cations RhAl 3O 4<sup/>. J Am Chem Soc 2016; 138:12854-12860. [PMID: 27604817 DOI: 10.1021/jacs.6b05454] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser ablation generated RhAl3O4+ heteronuclear metal oxide cluster cations have been mass-selected using a quadrupole mass filter and reacted with CH4 or CD4 in a linear ion trap reactor under thermal collision conditions. The reactions have been characterized by state-of-the-art mass spectrometry and quantum chemistry calculations. The RhAl3O4+ cluster can activate four C-H bonds of a methane molecule and convert methane to syngas, an important intermediate product in methane conversion to value-added chemicals. The Rh atom is the active site for activation of the C-H bonds of methane. The high electron-withdrawing capability of Rh atom is the driving force to promote the conversion of methane to syngas. The polarity of Rh oxidation state is changed from positive to negative after the reaction. This study has provided the first example of methane conversion to syngas by heteronuclear metal oxide clusters under thermal collision conditions. Furthermore, the molecular level origin has been revealed for the condensed-phase experimental observation that trace amounts of Rh can promote the participation of lattice oxygen of chemically very inert support (Al2O3) to oxidize methane to carbon monoxide.
Collapse
Affiliation(s)
- Ya-Ke Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zhen Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Chongyang Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
50
|
|