1
|
Gruzdev DA, Telegina AA, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP. Synthesis of Novel Planar-Chiral Charge-Compensated nido-Carborane-Based Amino Acid. Molecules 2024; 29:4487. [PMID: 39339482 PMCID: PMC11434195 DOI: 10.3390/molecules29184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Amino acids with unusual types of chirality and their derivatives have recently attracted attention as precursors in the synthesis of chiral catalysts and peptide analogues with unique properties. In this study, we have synthesized a new nido-carborane-based planar-chiral amino acid, in the molecule of which the amino group is directly bonded to the B(3) atom, and the carboxyl group is attached to the B(9) atom through the CH2S+(Me) fragment. 3-Amino-9-dimethylsulfonio-nido-carborane, prepared in three steps from 3-amino-closo-carborane in a high yield, was a key intermediate in the synthesis of the target planar-chiral amino acid. The carboxymethyl group at the sulfur atom was introduced by the demethylation reaction of the dimethylsulfonio derivative, followed by S-alkylation. The structure of new 3,9-disubstituted nido-carboranes was studied for the first time using NMR spectroscopy. The resonances of all boron atoms in the 11B NMR spectrum of 3-amino-9-dimethylsulfonio-nido-carborane were assigned based on the 2D NMR correlation experiments. The nido-carborane-based planar-chiral amino acid and related compounds are of interest as a basis for peptide-like compounds and chiral ligands.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| |
Collapse
|
2
|
Faikhruea K, Supabowornsathit K, Angsujinda K, Aonbangkhen C, Chaikeeratisak V, Palaga T, Assavalapsakul W, Wagenknecht HA, Vilaivan T. Nucleic Acid-Templated Synthesis of Cationic Styryl Dyes in Vitro and in Living Cells. Chemistry 2024; 30:e202400913. [PMID: 38563862 DOI: 10.1002/chem.202400913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
A novel method for synthesizing cationic styryl dyes through a nucleic acid-templated reaction has been developed. This approach overcomes issues associated with traditional synthesis methods, such as harsh conditions, low throughput, and wasteful chemicals. The presence of a nucleic acid template accelerated the styryl dye formation from quaternized heteroaromatic and cationic aldehyde substrates. These styryl dyes show remarkable optical properties change when bound to nucleic acids, hence the success of the synthesis could be readily monitored in situ by UV-Vis and fluorescence spectroscopy and the optical properties data were also observable at the same time. This method provides the desired products from a broad range of coupling partners. By employing different substrates and templates, it is possible to identify new dyes that can bind to a specific type of nucleic acid such as a G-quadruplex. The templated dye synthesis is also successfully demonstrated in live HeLa cells. This approach is a powerful tool for the rapid synthesis and screening of dyes specific for diverse types of nucleic acids or cellular organelles, facilitating new biological discoveries.
Collapse
Affiliation(s)
- Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Kitipong Angsujinda
- Aquatic Resources Research Institute, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Neitz H, Höbartner C. A tolane-modified 5-ethynyluridine as a universal and fluorogenic photochemical DNA crosslinker. Chem Commun (Camb) 2023; 59:12003-12006. [PMID: 37727895 DOI: 10.1039/d3cc03796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We report the fluorescent nucleoside ToldU and its application as a photoresponsive crosslinker in three different DNA architectures with enhanced fluorescence emission of the crosslinked products. The fluorogenic ToldU crosslinking reaction enables the assembly of DNA polymers in a hybridization chain reaction for the concentration-dependent detection of a specific DNA sequence.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), University of Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Ma X, Shi L, Fu Y, Zhang B, Zhang X. Construction of Different Cyanine Dye Supramolecular Aggregates Induced by Rare Earth Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Lei Shi
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Yao Fu
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Buyue Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Xiufeng Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine North China University of Science and Technology Tangshan 063210 China
| |
Collapse
|
5
|
Dai Y, Teng X, Li J. Single‐Cell Visualization of Monogenic RNA G‐quadruplex and Occupied G‐quadruplex Ratio through a Module‐Assembled Multifunctional Probes Assay (MAMPA). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yicong Dai
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Xucong Teng
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jinghong Li
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Chen X, Huang Z, Huang L, Shen Q, Yang ND, Pu C, Shao J, Li L, Yu C, Huang W. Small-molecule fluorescent probes based on covalent assembly strategy for chemoselective bioimaging. RSC Adv 2022; 12:1393-1415. [PMID: 35425188 PMCID: PMC8979026 DOI: 10.1039/d1ra08037g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we comprehensively summarize the recent progress in the development of small molecular fluorescent probes based on the covalent assembly principle. The challenges and perspective in this field are also presented.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nai-Di Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chibin Pu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, P. R. China
| |
Collapse
|
7
|
Dai Y, Teng X, Li J. Single-cell Visualization of Monogenic RNA G-quadruplex and Occupied G-quadruplex Ratio through Module Assembled Multifunctional Probes Assay (MAMPA). Angew Chem Int Ed Engl 2021; 61:e202111132. [PMID: 34773681 DOI: 10.1002/anie.202111132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Indexed: 11/12/2022]
Abstract
G-quadruplexes (G4s), non-canonical nucleic acid secondary structure, regulate many biological functions and are considered as potential molecular targets for therapeutics of cancers. However, due to the lack of analytical methods, the regulating mechanism of monogenic G4s is still unclear. Here, we developed a Module Assembled Multifunctional Probes Assay (MAMPA) for visualizing endogenous G4s in individual genes in single cells. Two modular probes separately recognize G4 structures and the adjacent RNA sequences, and the module assembly enables imaging of G4s in an individual RNA with high specificity. Through imaging G4s in several individual genes, we found that G4s were steadily occupied by G4 Binding Proteins (G4BPs) in various mRNAs in every cell line and defined "Occupied G4 Ratio". In all, we demonstrated MAMPA was suitable for most experiment situations and found that Occupied G4 Ratios had the potential to become a new parameter for the study of G4s in living cells.
Collapse
Affiliation(s)
- Yicong Dai
- Tsinghua University, Department of Chemistry, 100084, CHINA
| | - Xucong Teng
- Tsinghua University, Department of Chemistry, CHINA
| | - Jinghong Li
- Tsinghua University, Department of Chemistry, Haidian Street, Beijing, CHINA
| |
Collapse
|
8
|
Cadoni E, De Paepe L, Manicardi A, Madder A. Beyond small molecules: targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res 2021; 49:6638-6659. [PMID: 33978760 PMCID: PMC8266634 DOI: 10.1093/nar/gkab334] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
9
|
Sheet SK, Rabha M, Sen B, Patra SK, Aguan K, Khatua S. Ruthenium(II) Complex-Based G-quadruplex DNA Selective Luminescent 'Light-up' Probe for RNase H Activity Detection. Chembiochem 2021; 22:2880-2887. [PMID: 34314094 DOI: 10.1002/cbic.202100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Indexed: 12/14/2022]
Abstract
A bis-heteroleptic ruthenium(II) complex, 1[PF6 ]2 of benzothiazole amide substituted 2,2'-bipyridine ligand (bmbbipy) has been synthesized for the selective detection of G-quadruplex (GQ) DNA and luminescence-assay-based RNase H activity monitoring. Compound 1[PF6 ]2 exhibited aggregation-caused quenching (ACQ) in water. Aggregate formation was supported by DLS, UV-vis, and 1 H NMR spectroscopy results, and the morphology of aggregated particles was witnessed by SEM and TEM. 1[PF6 ]2 acted as an efficient GQ DNA-selective luminescent light-up probe over single-stranded and double-stranded DNA. The competency of 1[PF6 ]2 for selective GQ structure detection was established by PL and CD spectroscopy. For 1[PF6 ]2 , the PL light-up is exclusively due to the rigidification of the benzothiazole amide side arm in the presence of GQ-DNA. The interaction between the probe and GQ-DNA was analyzed by molecular docking analysis. The GQ structure detection capability of 1[PF6 ]2 was further applied in the luminescent 'off-on' RNase H activity detection. The assay utilized an RNA:DNA hybrid, obtained from 22AG2-RNA and 22AG2-DNA sequences. RNase H solely hydrolyzed the RNA of the RNA:DNA duplex and released G-rich 22AG2-DNA, which was detected via the PL enhancement of 1[PF6 ]2 . The selectivity of RNase H activity detection over various other restriction enzymes was also demonstrated.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| |
Collapse
|
10
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
11
|
Watson EE, Angerani S, Sabale PM, Winssinger N. Biosupramolecular Systems: Integrating Cues into Responses. J Am Chem Soc 2021; 143:4467-4482. [DOI: 10.1021/jacs.0c12970] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emma E. Watson
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Simona Angerani
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Pramod M. Sabale
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| |
Collapse
|
12
|
Janett E, Diep KL, Fromm KM, Bochet CG. A Simple Reaction for DNA Sensing and Chemical Delivery. ACS Sens 2020; 5:2338-2343. [PMID: 32804492 DOI: 10.1021/acssensors.0c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions templated by nucleic acids are currently at the heart of applications in biosensing and drug release. The number of chemical reactions selectively occurring only in the presence of the template, in aqueous solutions, and at room temperature and able to release a chemical moiety is still very limited. Here, we report the use of the p-nitrophenyl carbonate (NPC) as a new reactive moiety for DNA templated reactions releasing a colored reporter by reaction with a simple amine. The easily synthesized p-nitrophenyl carbonate was integrated in an oligonucleotide and showed a very good stability as well as a high reactivity toward amines, without the need for any supplementary reagent, quantitatively releasing the red p-nitrophenolate with a half-life of about 1 h.
Collapse
Affiliation(s)
- Elia Janett
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Kim-Long Diep
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Christian G. Bochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Rossetti M, Bertucci A, Patiño T, Baranda L, Porchetta A. Programming DNA-Based Systems through Effective Molarity Enforced by Biomolecular Confinement. Chemistry 2020; 26:9826-9834. [PMID: 32428310 DOI: 10.1002/chem.202001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The fundamental concept of effective molarity is observed in a variety of biological processes, such as protein compartmentalization within organelles, membrane localization and signaling paths. To control molecular encountering and promote effective interactions, nature places biomolecules in specific sites inside the cell in order to generate a high, localized concentration different from the bulk concentration. Inspired by this mechanism, scientists have artificially recreated in the lab the same strategy to actuate and control artificial DNA-based functional systems. Here, it is discussed how harnessing effective molarity has led to the development of a number of proximity-induced strategies, with applications ranging from DNA-templated organic chemistry and catalysis, to biosensing and protein-supported DNA assembly.
Collapse
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Tania Patiño
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Lorena Baranda
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
14
|
|
15
|
Newly synthesized indolium-based ionic liquids as unprecedented inhibitors for the corrosion of mild steel in acid medium. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111356] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
|
17
|
Seitz O. Templated chemistry for bioorganic synthesis and chemical biology. J Pept Sci 2019; 25:e3198. [PMID: 31309674 PMCID: PMC6771651 DOI: 10.1002/psc.3198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
In light of the 2018 Max Bergmann Medal, this review discusses advancements on chemical biology-driven templated chemistry developed in the author's laboratories. The focused review introduces the template categories applied to orient functional units such as functional groups, chromophores, biomolecules, or ligands in space. Unimolecular templates applied in protein synthesis facilitate fragment coupling of unprotected peptides. Templating via bimolecular assemblies provides control over proximity relationships between functional units of two molecules. As an instructive example, the coiled coil peptide-templated labelling of receptor proteins on live cells will be shown. Termolecular assemblies provide the opportunity to put the proximity of functional units on two (bio)molecules under the control of a third party molecule. This allows the design of conditional bimolecular reactions. A notable example is DNA/RNA-triggered peptide synthesis. The last section shows how termolecular and multimolecular assemblies can be used to better characterize and understand multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Oliver Seitz
- Department of ChemistryHumboldt University BerlinBerlinGermany
| |
Collapse
|
18
|
RNA imaging by chemical probes. Adv Drug Deliv Rev 2019; 147:44-58. [PMID: 31398387 DOI: 10.1016/j.addr.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Abstract
Sequence-specific detection of intracellular RNA is one of the most important approaches to understand life phenomena. However, it is difficult to detect RNA in living cells because of its variety and scarcity. In the last three decades, several chemical probes have been developed for RNA detection in living cells. These probes are composed of DNA or artificial nucleic acid and hybridize with the target RNA in a sequence-specific manner. This hybridization triggers a change of fluorescence or a chemical reaction. In this review, we classify the probes according to the associated fluorogenic mechanism, that is, interaction between fluorophore and quencher, environmental change of fluorophore, and template reaction with/without ligation. In addition, we introduce examples of RNA imaging in living cells.
Collapse
|
19
|
Wang L, Lin W, Sun W, Yan M, Zhao J, Guan L, Deng W, Zhang Y. Meso-Substituent-Directed Aggregation Behavior and Water Solubility: Direct Functionalization of Methine Chain in Thiazole Orange and Biological Applications in Aqueous Buffer. J Org Chem 2019; 84:3960-3967. [PMID: 30834752 DOI: 10.1021/acs.joc.8b03122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy is presented to preclude aggregation and enhance water solubility of cyanine dyes. Namely, a heteroatom-containing substituent, for distorting molecular plane and increasing interaction with water molecules, is introduced to the methine chain of 2-thiazole orange (1, a monocyanine) via one-step, and 2-thiazole orange derivatives 2a-g are prepared accordingly. The X-ray crystal structures show that the molecular plane of 2a-g is drastically twisted, which reduces intermolecular π-π stacking. The derivatives 2a-g exhibit good to excellent water solubility and can be dissolved in aqueous phosphate-buffered saline (PBS) at concentrations suitable for biomedical applications. No aggregation in aqueous PBS, relatively high molar extinction coefficients, and low solvatochromism of 2a-g are reflected by the UV-vis spectra. Compound 2b shows fast response and high selectivity for biothiols (Cys, Hcy, and GSH) in aqueous PBS and is further employed to detect endogenous biothiols with decent biocompatibility as demonstrated by live cell fluorescence imaging.
Collapse
Affiliation(s)
- Lanying Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Wenxia Lin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Mengqi Yan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Junlong Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Li Guan
- School of Science , Xi'an University of Architecture and Technology , Xi'an 710055 , P.R. China
| | - Wenting Deng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Yongqiang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P.R. China
| |
Collapse
|
20
|
Schwechheimer C, Doll L, Wagenknecht HA. Synthesis of Dye-Modified Oligonucleotides via Copper(I)-Catalyzed Alkyne Azide Cycloaddition Using On- and Off-Bead Approaches. ACTA ACUST UNITED AC 2019; 72:4.80.1-4.80.13. [PMID: 29927126 DOI: 10.1002/cpnc.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescence molecular imaging is widely used to visualize and observe different biomolecules, in particular DNA and RNA, in vivo and in real time. Typically, DNA strands are tagged with only one fluorophore, and, in the case of molecular beacons, an additional quencher is conjugated, which bears the risk of false-positive or false-negative results because only fluorescence intensities at one fluorescence wavelength (color) are compared. To address this drawback, the concept of "DNA/RNA traffic lights," which is characterized by a fluorescence color change due to energy transfer between two dyes, was developed by our working group. For these DNA and RNA systems, the oligonucleotides are post-synthetically labeled, specifically after solid-phase synthesis by chemical means, with a fluorescent dye using copper(I)-catalyzed cycloaddition at the 2' position of single uridines. In order to functionalize oligonucleotides with several different labels, an on-resin method is required to ensure the necessary selectivity. This unit describes two different CuAAC ("click") approaches-in solution (post-synthetic) and on solid phase (during synthesis)-for the attachment of fluorophores to the 2' position of DNA. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Larissa Doll
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
21
|
Abstract
A unified stereoselective synthesis of 4-substituted kainoids is reported. Four kainic acid analogues were obtained in 8-11 steps with up to 54% overall yields. Starting from trans-4-hydroxy-l-proline, the sequence enables a late-stage modification of C4 substituents with sp2 nucleophiles. Stereoselective steps include a cerium-promoted nucleophilic addition and a palladium-catalyzed reduction. A 10-step route to acid 21a was also established to enable ready functionalization of the C4 position.
Collapse
Affiliation(s)
- Zhenlin Tian
- Department of Chemistry , University of British Columbia , Kelowna , British Columbia V6T 1Z1 , Canada
| | - Frederic Menard
- Department of Chemistry , University of British Columbia , Kelowna , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
22
|
|
23
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Amor S, Yang SY, Wong JMY, Monchaud D. Cellular Detection of G-Quadruplexes by Optical Imaging Methods. ACTA ACUST UNITED AC 2017; 76:4.33.1-4.33.19. [PMID: 28862343 DOI: 10.1002/cpcb.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
G-quadruplexes (G4s) are higher-order nucleic acid structures that fold from guanine (G)-rich DNA and RNA strands. This field of research gains traction as a major chemical biology area since it aims at uncovering many key cellular mechanisms in which quadruplexes are involved. The wealth of knowledge acquired over the past three decades strongly supports pivotal roles of G4 in the regulation of gene expression at both transcriptional (DNA quadruplexes) and translational levels (RNA quadruplexes). Recent biochemical discoveries uncovered myriad of additional G4 actions: from chromosomal stability to the firing of replication origins, from telomere homeostasis to functional dysregulations underlying genetic diseases (including cancers and neurodegeneration). Here, we listed a repertoire of protocols that we have developed over the past years to visualize quadruplexes in cells. These achievements were made possible thanks to the discovery of a novel family of versatile quadruplex-selective fluorophores, the twice-as-smart quadruplex ligands named TASQ (for template-assembled synthetic G-quartet). The versatility of this probe allows for multiple imaging techniques in both fixed and live cells, including the use of the multiphoton microscopy, confocal microscopy, and real-time fluorescent image collection. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Souheila Amor
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, UBFC Dijon, France
| | - Sunny Y Yang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Judy M Y Wong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, UBFC Dijon, France
| |
Collapse
|
25
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
26
|
Ihmels H, Mahmoud MM, Patrick BO. Optical differentiation between quadruplex DNA and duplex DNA with a [2.2.2]heptamethinecyanine dye. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Heiko Ihmels
- Department of Chemistry and Biology; University of Siegen; Siegen Germany
- Center of Micro- and Nanochemistry and Engineering; University of Siegen; Siegen Germany
| | - Mohamed M.A. Mahmoud
- Department of Chemistry and Biology; University of Siegen; Siegen Germany
- Center of Micro- and Nanochemistry and Engineering; University of Siegen; Siegen Germany
| | - Brian O. Patrick
- Department of Chemistry; University of British Columbia; Vancouver Canada
| |
Collapse
|
27
|
Abstract
Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| |
Collapse
|
28
|
Novel DNA/RNA-targeting amino acid beacon for the versatile incorporation at any position within the peptide backbone. Amino Acids 2017; 49:1381-1388. [DOI: 10.1007/s00726-017-2438-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 01/28/2023]
|
29
|
Saadallah D, Bellakhal M, Amor S, Lefebvre JF, Chavarot-Kerlidou M, Baussanne I, Moucheron C, Demeunynck M, Monchaud D. Selective Luminescent Labeling of DNA and RNA Quadruplexes by π-Extended Ruthenium Light-Up Probes. Chemistry 2017; 23:4967-4972. [DOI: 10.1002/chem.201605948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Dounia Saadallah
- Laboratoire de Chimie Organique et Photochimie; Université Libre de Bruxelles; 1050 Bruxelles Belgium
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - Mehdi Bellakhal
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| | - Souheila Amor
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| | - Jean-François Lefebvre
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CNRS UMR5249, CEA; 38054 Grenoble France
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux; Université Grenoble Alpes, CNRS UMR5249, CEA; 38054 Grenoble France
| | - Isabelle Baussanne
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie; Université Libre de Bruxelles; 1050 Bruxelles Belgium
| | - Martine Demeunynck
- Departement de Pharmacochimie Moléculaire; Université Grenoble Alpes, CNRS UMR5063; 38041 Grenoble France
| | - David Monchaud
- Institut de Chimie Moléculaire; ICMUB CNRS UMR6302, UBFC; 21078 Dijon France
| |
Collapse
|
30
|
Debieu S, Romieu A. In situ formation of pyronin dyes for fluorescence protease sensing. Org Biomol Chem 2017; 15:2575-2584. [DOI: 10.1039/c7ob00370f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cutting-edge strategy for fluorogenic sensing of proteases (leucine aminopeptidase for the proof of concept) and based on the “covalent-assembly” principle is reported. Non-fluorescent mixed bis-aryl ethers are readily converted into a fluorescent pyronin through a domino process triggered by the peptide bond cleavage event caused by the targeted enzyme.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| |
Collapse
|
31
|
Wu H, Alexander SC, Jin S, Devaraj NK. A Bioorthogonal Near-Infrared Fluorogenic Probe for mRNA Detection. J Am Chem Soc 2016; 138:11429-32. [PMID: 27510580 DOI: 10.1021/jacs.6b01625] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is significant interest in developing methods that visualize and detect RNA. Bioorthogonal template-driven tetrazine ligations could be a powerful route to visualizing nucleic acids in native cells, yet past work has been limited with respect to the diversity of fluorogens that can be activated via a tetrazine reaction. Herein we report a novel bioorthogonal tetrazine uncaging reaction that harnesses tetrazine reactivity to unmask vinyl ether caged fluorophores spanning the visible spectrum, including a near-infrared (NIR)-emitting cyanine dye. Vinyl ether caged fluorophores and tetrazine partners are conjugated to high-affinity antisense nucleic acid probes, which show highly selective fluorogenic reactivity when annealed to their respective target RNA sequences. A target sequence in the 3' untranslated region of an expressed mRNA was detected in live cells employing appropriate nucleic acid probes bearing a tetrazine-reactive NIR fluorogen. Given the expansion of tetrazine fluorogenic chemistry to NIR dyes, we believe highly selective proximity-induced fluorogenic tetrazine reactions could find broad uses in illuminating endogenous biomolecules in cells and tissues.
Collapse
Affiliation(s)
- Haoxing Wu
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Seth C Alexander
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
32
|
Metcalf GAD, Shibakawa A, Patel H, Sita-Lumsden A, Zivi A, Rama N, Bevan CL, Ladame S. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis. Anal Chem 2016; 88:8091-8. [PMID: 27498854 DOI: 10.1021/acs.analchem.6b01594] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening.
Collapse
Affiliation(s)
- Gavin A D Metcalf
- Department of Bioengineering, Imperial College London , South Kensington Campus, London SW72AZ, U.K.,Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Akifumi Shibakawa
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Hinesh Patel
- Department of Bioengineering, Imperial College London , South Kensington Campus, London SW72AZ, U.K
| | - Ailsa Sita-Lumsden
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Andrea Zivi
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Nona Rama
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London , South Kensington Campus, London SW72AZ, U.K
| |
Collapse
|
33
|
Dang DT, Phan AT. Development of Fluorescent Protein Probes Specific for Parallel DNA and RNA G-Quadruplexes. Chembiochem 2015; 17:42-5. [DOI: 10.1002/cbic.201500503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Dung Thanh Dang
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
34
|
Zhang XF, Lan L, Chen L, Chen HB, Yang QF, Li Q, Li QL, Sun XR, Tang YL. Spectroscopic Investigation on the Binding of a Cyanine Dye with Transferrin. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiu-feng Zhang
- College of Chemical Engineering; North China University of Science and Technology; Tangshan Hebei 063009 China
| | - Ling Lan
- College of Chemical Engineering; North China University of Science and Technology; Tangshan Hebei 063009 China
| | - Lei Chen
- College of Chemical Engineering; North China University of Science and Technology; Tangshan Hebei 063009 China
| | - Hong-bo Chen
- College of Chemical Engineering; North China University of Science and Technology; Tangshan Hebei 063009 China
| | - Qian-fan Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Qi-long Li
- College of Chemical Engineering; North China University of Science and Technology; Tangshan Hebei 063009 China
| | - Xiao-ran Sun
- College of Chemical Engineering; North China University of Science and Technology; Tangshan Hebei 063009 China
| | - Ya-lin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
35
|
Barluenga S, Winssinger N. PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions. Acc Chem Res 2015; 48:1319-31. [PMID: 25947113 DOI: 10.1021/acs.accounts.5b00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The programmability of oligonucleotide hybridization offers an attractive platform for the design of assemblies with emergent properties or functions. Developments in DNA nanotechnologies have transformed our thinking about the applications of nucleic acids. Progress from designed assemblies to functional outputs will continue to benefit from functionalities added to the nucleic acids that can participate in reactions or interactions beyond hybridization. In that respect, peptide nucleic acids (PNAs) are interesting because they combine the hybridization properties of DNA with the modularity of peptides. In fact, PNAs form more stable duplexes with DNA or RNA than the corresponding natural homoduplexes. The high stability achieved with shorter oligomers (an 8-mer is sufficient for a stable duplex at room temperature) typically results in very high sequence fidelity in the hybridization with negligible impact of the ionic strength of the buffer due to the lack of electrostatic repulsion between the duplex strands. The simple peptidic backbone of PNA has been shown to be tolerant of modifications with substitutions that further enhance the duplex stability while providing opportunities for functionalization. Moreover, the metabolic stability of PNAs facilitates their integration into systems that interface with biology. Over the past decade, there has been a growing interest in using PNAs as biosupramolecular tags to program assemblies and reactions. A series of robust templated reactions have been developed with functionalized PNA. These reactions can be used to translate DNA templates into functional polymers of unprecedented complexity, fluorescent outputs, or bioactive small molecules. Furthermore, cellular nucleic acids (mRNA or miRNA) have been harnessed to promote assemblies and reactions in live cells. The tolerance of PNA synthesis also lends itself to the encoding of small molecules that can be further assembled on the basis of their nucleic acid sequences. It is now well-established that hybridization-based assemblies displaying two or more ligands can interact synergistically with a target biomolecule. These assemblies have now been shown to be functional in vivo. Similarly, PNA-tagged macromolecules have been used to prepare bioactive assemblies and three-dimensional nanostructures. Several technologies based on DNA-templated synthesis of sequence-defined polymers or DNA-templated display of ligands have been shown to be compatible with reiterative cycles of selection/amplification starting with large libraries of DNA templates, bringing the power of in vitro evolution to synthetic molecules and offering the possibility of exploring uncharted molecular diversity space with unprecedented scope and speed.
Collapse
Affiliation(s)
- Sofia Barluenga
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
36
|
Romieu A. “AND” luminescent “reactive” molecular logic gates: a gateway to multi-analyte bioimaging and biosensing. Org Biomol Chem 2015; 13:1294-306. [DOI: 10.1039/c4ob02076f] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This feature article focuses on the recent development of “AND” luminescent molecular logic gates, in which the optical output is produced in response to multiple (bio)chemical inputs and through cascades of covalent bond-modifying reactions triggered by target (bio)analytes, for biosensing and bioimaging applications in complex media.
Collapse
Affiliation(s)
- Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Université de Bourgogne
- 21078 Dijon
- France
| |
Collapse
|
37
|
Debieu S, Romieu A. Dual enzyme-responsive “turn-on” fluorescence sensing systems based on in situ formation of 7-hydroxy-2-iminocoumarin scaffolds. Org Biomol Chem 2015; 13:10348-61. [DOI: 10.1039/c5ob01624j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a novel class of dual enzyme-responsive fluorogenic probes based on two orthogonal deprotection reactions via the “covalent assembly” principle. Sensing of two different enzymes (hydrolase and nitroreductase) through domino reactions, producing the push–pull backbone of a fluorescent 3-substituted 7-hydroxy-2-iminocoumarin dye, is reported.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| |
Collapse
|
38
|
Das RN, Debnath M, Gaurav A, Dash J. Environment-Sensitive Probes Containing a 2,6-Diethynylpyridine Motif for Fluorescence Turn-On Detection and Induction of Nanoarchitectures of Human Telomeric Quadruplex. Chemistry 2014; 20:16688-93. [DOI: 10.1002/chem.201404795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/24/2022]
|
39
|
Chen Z, Zhou T, Zhang C, Ma H, Lin Y, Li K. Aptasensor for label-free square-wave voltammetry detection of potassium ions based on gold nanoparticle amplification. RSC Adv 2014. [DOI: 10.1039/c4ra05058d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Laguerre A, Stefan L, Larrouy M, Genest D, Novotna J, Pirrotta M, Monchaud D. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J Am Chem Soc 2014; 136:12406-14. [PMID: 25101894 DOI: 10.1021/ja506331x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent and unambiguous evidences of the formation of DNA and RNA G-quadruplexes in cells has provided solid support for these structures to be considered as valuable targets in oncology. Beyond this, they have lent further credence to the anticancer strategies relying on small molecules that selectively target these higher-order DNA/RNA architectures, referred to as G-quadruplex ligands. They have also shed bright light on the necessity of designing multitasking ligands, displaying not only enticing quadruplex interacting properties (affinity, structural selectivity) but also additional features that make them usable for detecting quadruplexes in living cells, notably for determining whether, when, and where these structures fold and unfold during the cell cycle and also for better assessing the consequences of their stabilization by external agents. Herein, we report a brand new design of such multitasking ligands, whose structure experiences a quadruplex-promoted conformational switch that triggers not only its quadruplex affinity (i.e., smart ligands, which display high affinity and selectivity for DNA/RNA quadruplexes) but also its fluorescence (i.e., smart probes, which behave as selective light-up fluorescent reporters on the basis of a fluorogenic electron redistribution). The first prototype of such multifunctional ligands, termed PyroTASQ, represents a brand new generation of quadruplex ligands that can be referred to as "twice-as-smart" quadruplex ligands.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Institute of Molecular Chemistry, University of Dijon, ICMUB CNRS UMR6302 , 21078 Dijon, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Choi Y, Metcalf G, Sleiman MH, Vair-Turnbull D, Ladame S. Oligonucleotide-templated reactions based on Peptide Nucleic Acid (PNA) probes: concept and biomedical applications. Bioorg Med Chem 2014; 22:4395-8. [PMID: 24957880 DOI: 10.1016/j.bmc.2014.05.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/12/2022]
Abstract
Sensing technologies based on Peptide Nucleic Acids (PNAs) and oligonucleotide-templated chemistry are perfectly suited for biomedical applications (e.g., diagnosis, prognosis and stratification of diseases) and could compete well with more traditional amplification technologies using expensive dual-labelled oligonucleotide probes. PNAs can be easily synthesised and functionalised, are more stable and are more responsive to point-mutations than their DNA counterpart. For these reasons, fluorogenic PNAs represent an interesting alternative to DNA-based molecular beacons for sensing applications in a cell-free environment, where cellular uptake is not required.
Collapse
Affiliation(s)
- Youngeun Choi
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Gavin Metcalf
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Mazen Haj Sleiman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
42
|
Sleiman MH, Ladame S. Synthesis of squaraine dyes under mild conditions: applications for labelling and sensing of biomolecules. Chem Commun (Camb) 2014; 50:5288-90. [PMID: 24402188 DOI: 10.1039/c3cc47894g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of squaraine dyes under mild conditions by carbodiimide activation of squaric acid or semi-squaraine dyes. Despite low yields when the reaction was carried out in solution, these conditions were successfully applied to efficient peptide labelling on resin and nucleic acid sensing in solution.
Collapse
Affiliation(s)
- Mazen Haj Sleiman
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | | |
Collapse
|
43
|
Michaelis J, van der Heden van Noort GJ, Seitz O. DNA-Triggered Dye Transfer on a Quantum Dot. Bioconjug Chem 2013; 25:18-23. [DOI: 10.1021/bc400494j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Julia Michaelis
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | - Oliver Seitz
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
44
|
Oligonucleotide Labelling Using a Fluorogenic “Click” Reaction with a Hemicarboxonium Salt. Molecules 2013; 18:12966-76. [PMID: 24141246 PMCID: PMC6270631 DOI: 10.3390/molecules181012966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 11/17/2022] Open
Abstract
Two fluorescent streptocyanine labelled oligonucleotides have been synthesized by a simple “click” reaction between a non-fluorescent hemicarboxonium salt and aminoalkyl functionalized thymidines within the oligonucleotide and their spectrophotometric properties have been studied.
Collapse
|
45
|
Gabelica V, Maeda R, Fujimoto T, Yaku H, Murashima T, Sugimoto N, Miyoshi D. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex. Biochemistry 2013; 52:5620-8. [PMID: 23909872 DOI: 10.1021/bi4006072] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thioflavin T (ThT), a typical probe for protein fibrils, also binds human telomeric G-quadruplexes with a fluorescent light-up signal change and high specificity against DNA duplexes. Cell penetration and low cytotoxicity of fibril probes having been widely established, modifying ThT and other fibril probes is an attractive means of generating new G-quadruplex ligands. Thus, elucidating the binding mechanism is important for the design of new drugs and fluorescent probes based on ThT. Here, we investigated the binding mechanism of ThT with several variants of the human telomeric sequence in the presence of monovalent cations. Fluorescence titrations and electrospray ionization mass spectrometry (ESI-MS) analyses demonstrated that each G-quadruplex unit cooperatively binds to several ThT molecules. ThT brightly fluoresces when a single ligand is bound to the G-quadruplex and is quenched as ligand binding stoichiometry increases. Both the light-up signal and the dissociation constants are exquisitely sensitive to the base sequence and to the G-quadruplex structure. These results are crucial for the sensible design and interpretation of G-quadruplex detection assays using fluorescent ligands in general and ThT in particular.
Collapse
Affiliation(s)
- Valérie Gabelica
- Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, B-4000 Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
46
|
Seckute J, Yang J, Devaraj NK. Rapid oligonucleotide-templated fluorogenic tetrazine ligations. Nucleic Acids Res 2013; 41:e148. [PMID: 23775794 PMCID: PMC3753649 DOI: 10.1093/nar/gkt540] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Template driven chemical ligation of fluorogenic probes represents a powerful method for DNA and RNA detection and imaging. Unfortunately, previous techniques have been hampered by requiring chemistry with sluggish kinetics and background side reactions. We have developed fluorescent DNA probes containing quenched fluorophore-tetrazine and methyl-cyclopropene groups that rapidly react by bioorthogonal cycloaddition in the presence of complementary DNA or RNA templates. Ligation increases fluorescence with negligible background signal in the absence of hybridization template. Reaction kinetics depend heavily on template length and linker structure. Using this technique, we demonstrate rapid discrimination between single template mismatches both in buffer and cell media. Fluorogenic bioorthogonal ligations offer a promising route towards the fast and robust fluorescent detection of specific DNA or RNA sequences.
Collapse
Affiliation(s)
- Jolita Seckute
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
47
|
Xin J, Zhang X, Liang J, Xia L, Yin J, Nie Y, Wu K, Tian J. In vivo gastric cancer targeting and imaging using novel symmetric cyanine dye-conjugated GX1 peptide probes. Bioconjug Chem 2013; 24:1134-43. [PMID: 23725355 DOI: 10.1021/bc3006539] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To facilitate the translation of cancer fluorescence imaging into clinical practice, the development of stable and highly specific and sensitive targeted fluorescence probes with low toxicity is desirable. GX1, a gastric tumor angiogenesis marker candidate, holds promise in the target-specific delivery of molecular imaging probes for early gastric cancer detection in vivo. In this study, we describe the design and synthesis of a series of novel penta-methine cyanine dyes using the symmetric synthesis method and further conjugated the dyes with GX1, allowing specific binding to the vasculature of gastric cancer. This efficient synthetic route can decrease the undesired byproducts, while increasing yield. Furthermore, in vivo fluorescence imaging revealed that this novel targeted probe accumulates selectively in the tumor site of SGC-7901 subcutaneous xenograft models. The combination of such novel vasculature-targeted molecular probes with fluorescence imaging technology may improve early detection, metastasis detection, and antitumor angiogenesis therapy for gastric cancer.
Collapse
Affiliation(s)
- Jing Xin
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gorska K, Winssinger N. Reactions templated by nucleic acids: more ways to translate oligonucleotide-based instructions into emerging function. Angew Chem Int Ed Engl 2013; 52:6820-43. [PMID: 23794204 DOI: 10.1002/anie.201208460] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Indexed: 12/30/2022]
Abstract
The programmability of oligonucleotide recognition offers an attractive platform to direct the assembly of reactive partners that can engage in chemical reactions. Recently, significant progress has been made in both the breadth of chemical transformations and in the functional output of the reaction. Herein we summarize these recent progresses and illustrate their applications to translate oligonucleotide instructions into functional materials and novel architectures (conductive polymers, nanopatterns, novel oligonucleotide junctions); into fluorescent or bioactive molecule using cellular RNA; to interrogate secondary structures or oligonucelic acids; or a synthetic oligomer.
Collapse
Affiliation(s)
- Katarzyna Gorska
- Institut de Science et Ingénierie Supramoléculaires (ISIS-UMR 7006), Universite de Strasbourg-CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | |
Collapse
|
49
|
Gorska K, Winssinger N. Reaktionen an Nucleinsäuretemplaten: mehr Methoden zur Übersetzung Oligonucleotid-basierter Informationen in neue Funktionen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Percivalle C, Bartolo JF, Ladame S. Oligonucleotide-templated chemical reactions: pushing the boundaries of a nature-inspired process. Org Biomol Chem 2013; 11:16-26. [PMID: 23076879 DOI: 10.1039/c2ob26163d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Widespread in nature, oligonucleotide-templated reactions of phosphodiester bond formation have inspired chemists who are now applying this elegant strategy to the catalysis of a broad range of otherwise inefficient reactions. This review highlights the increasing diversity of chemical reactions that can be efficiently catalysed by an oligonucleotide template, using Watson-Crick base-pairing to bring both reagents in close enough proximity to react, thus increasing significantly their effective molarity. The applications of this elegant concept for nucleic acid sensing and controlled organic synthesis will also be discussed.
Collapse
Affiliation(s)
- Claudia Percivalle
- Department of Bioengineering, Imperial College London, South Kensington campus, London SW7 2AZ, UK
| | | | | |
Collapse
|