1
|
Jana A, Saha S, Mondal SS, Kaur N, Bhunia A. Visible-Light-Driven CO₂ Reduction Using Imidazole-Based Metal-Organic Frameworks as Heterogeneous Photocatalysts. Chem Asian J 2025; 20:e202401401. [PMID: 39714367 DOI: 10.1002/asia.202401401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The development of robust, efficient, and cost-effective heterogeneous photocatalysts for visible light-driven CO2 reduction continues to be a significant challenge in the quest for sustainable energy solutions. As a result, increasing attention is being directed towards the exploration of high-performance photocatalysts capable of converting CO2 into valuable chemical feedstocks. In context to this, Imidazolate Frameworks Potsdam (IFPs), a class of metal-organic frameworks (MOFs), can be a promising candidate for CO2 photoreduction due to their ease of synthesis, use of low-cost, earth-abundant metals, and high chemical and thermal stability. In this study, we report the solvothermal synthesis of Zn(II)- and Co(II)-based IFPs, specifically IFP-1(Zn) and IFP-5(Co), for photocatalytic CO2 reduction. Moreover, we demonstrate the enhanced photocatalytic activity of redox-innocent Zn-based IFP-1 by partially substituting Zn(II) with redox-active Co(II) in IFP-1(Zn), resulting in the formation of a bimetallic photocatalyst, IFP-1(Zn/Co). The metal-exchanged IFP-1(Zn/Co) exhibited significantly improved CO evolution (637 μmol g-1 in 1 hour), compared to the pristine IFP-1(Zn) (29 μmol g-1). Notably, among all the prepared photocatalysts, IFP-5(Co) outperformed both the systems, achieving a CO evolution of 1174 μmol g-1 within 1 hour, due to the presence of catalytic cobalt sites. In addition, through the combination of photophysical and electrochemical studies, along with DFT calculations, we have proposed a plausible mechanism for the photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Anupam Jana
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| | - Sinthia Saha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| | - Suvendu Sekhar Mondal
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Navjot Kaur
- Department of Chemistry, Faculty of Applied and Basic Sciences, SGT University, Gurugram, 122505, India
| | - Asamanjoy Bhunia
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Nishi T, Sakamoto N, Sekizawa K, Morikawa T, Sato S. CO 2-to-CO Conversion with Over 10 % Efficiency Using Earth Abundant System in a Single-Compartment Reactor with Oxygen Tolerant Mn Complex Catalyst. CHEMSUSCHEM 2025; 18:e202401082. [PMID: 39021290 DOI: 10.1002/cssc.202401082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
The direct conversion of CO2 in the presence of O2 to value-added chemicals is a potentially important cost-effective solar-driven CO2 reduction technology. The present work demonstrates the solar-powered conversion of CO2 to CO with greater than 10 % efficiency using a Mn complex cathode and an Fe-Ni anode in a single-compartment reactor without an ion exchange membrane in conjunction with a Si solar cell. Reactors separated by ion exchange membranes are typically used to prevent any effects of oxygen generated by the counter electrode. However, the present Mn complex catalyst maintained its activity even in the presence of 15 % O2. Operando surface-enhanced Raman spectroscopy established that the present Mn catalyst preferentially reacted with CO2 without adsorbing O2. This unique characteristic enabled solar-driven CO2 reduction using a single-compartment reactor. In contrast, catalytic metals such as Ag tend to lose activity in such systems as a consequence of reaction with oxygen produced at the anode.
Collapse
Affiliation(s)
- Teppei Nishi
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Naonari Sakamoto
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Keita Sekizawa
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Takeshi Morikawa
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Shunsuke Sato
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| |
Collapse
|
3
|
Ning J, Chen W, Niu Q, Li L, Yu Y. Charge Transport Approaches in Photocatalytic Supramolecular Systems Composing of Semiconductor and Molecular Metal Complex for CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202301963. [PMID: 38703125 DOI: 10.1002/cssc.202301963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
The design of photocatalytic supramolecular systems composing of semiconductors and molecular metal complexes for CO2 reduction has attracted increasing attention. The supramolecular system combines the structural merits of semiconductors and metal complexes, where the semiconductor harvests light and undertakes the oxidative site, while the metal complex provides activity for CO2 reduction. The intermolecular charge transfer plays crucial role in ensuring photocatalytic performance. Here, we review the progress of photocatalytic supramolecular systems in reduction of CO2 and highlight the interfacial charge transfer pathways, as well as their state-of-the-art characterization methods. The remaining challenges and prospects for further design of supramolecular photocatalysts are also presented.
Collapse
Affiliation(s)
- Jiangqi Ning
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wei Chen
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qing Niu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
4
|
Kumar D, Jaswal R, Park CH, Kim CS. Synergistic Trimetallic Nanocomposites as Visible-NIR-Sunlight-Driven Photocatalysts for Efficient Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42490-42500. [PMID: 37644704 DOI: 10.1021/acsami.3c06730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Here, we report monodispersed tricomponent MnNSs-SnO2@Pt and MnNFs-SnO2@Pt nanocomposites prepared by simultaneous SnO2 and Pt nanodot coating on Mn nanospheres (MnNSs) and Mn nanoflowers (MnNFs) for highly efficient CO2 photoreduction in visible-NIR-sunlight irradiation. MnNFs-SnO2@Pt showed higher efficiency with a quantum yield of 3.21% and a chemical yield of 5.45% for CO2 conversion under visible light irradiation for HCOOH formation with 94% selectivity. Similarly, MnNFs-SnO2@Pt displayed significant photocatalytic efficiency in NIR and sunlight irradiation for HCOOH yield. MnNFs-SnO2@Pt nanocomposites also showed robust morphology and sustained structural stability with shelf-life for at least 1 year and were utilized for at least 10 reaction cycles without losing significant photocatalytic efficiency. The high surface area (94.98 m2/g), efficient electron-hole separation, and Pt-nanodot support in MnNFs--SnO2@Pt contributed to a higher photocatalytic efficacy toward CO2 reduction.
Collapse
Affiliation(s)
- Dinesh Kumar
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Regional Leading Research Center for Nanocarbon-based Energy Materials and Application Technology, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Richa Jaswal
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Chan Hee Park
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Regional Leading Research Center for Nanocarbon-based Energy Materials and Application Technology, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheol Sang Kim
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
5
|
Chen H, Xiong Y, Li J, Abed J, Wang D, Pedrazo-Tardajos A, Cao Y, Zhang Y, Wang Y, Shakouri M, Xiao Q, Hu Y, Bals S, Sargent EH, Su CY, Yang Z. Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production. Nat Commun 2023; 14:1719. [PMID: 36977716 PMCID: PMC10050177 DOI: 10.1038/s41467-023-37401-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi2 intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi2/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO2-to-syngas conversion, with CO and H2 yields of 4.7 mol g(Co)-1 and 4.4 mol g(Co)-1, respectively. Moreover, the H2/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 × 104 for visible-light-driven CO2 reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.
Collapse
Affiliation(s)
- Huai Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yangyang Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jun Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada
| | - Da Wang
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020, Antwerp, Belgium
| | - Adrián Pedrazo-Tardajos
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020, Antwerp, Belgium
| | - Yueping Cao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yiting Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ying Wang
- Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Mohsen Shakouri
- Canadian Light Source, Inc. (CLSI), Saskatoon, Saskatchewan, Canada
| | - Qunfeng Xiao
- Canadian Light Source, Inc. (CLSI), Saskatoon, Saskatchewan, Canada
| | - Yongfeng Hu
- Canadian Light Source, Inc. (CLSI), Saskatoon, Saskatchewan, Canada
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020, Antwerp, Belgium
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Zhenyu Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
6
|
Evaluation of a trinuclear heteroleptic bis-cyclometalated iridium(III) complex as a photoredox catalyst for visible light-mediated hydrothiolation reactions. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Xu S, Shen Q, Zheng J, Wang Z, Pan X, Yang N, Zhao G. Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203941. [PMID: 36008141 PMCID: PMC9631090 DOI: 10.1002/advs.202203941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Emerging photoelectrocatalysis (PEC) systems synergize the advantages of electrocatalysis (EC) and photocatalysis (PC) and are considered a green and efficient approach to CO2 conversion. However, improving the selectivity and conversion rate remains a major challenge. Strategies mimicking natural photosynthesis provide a prospective way to convert CO2 with high efficiency. Herein, several typical strategies are described for constructing biomimetic photoelectric functional interfaces; such interfaces include metal cocatalysts/semiconductors, small molecules/semiconductors, molecular catalysts/semiconductors, MOFs/semiconductors, and microorganisms/semiconductors. The biomimetic PEC interface must have enhanced CO2 adsorption capacity, preferentially activate CO2 , and have an efficient conversion ability; with these properties, it can activate CO bonds effectively and promote electron transfer and CC coupling to convert CO2 to single-carbon or multicarbon products. Interfacial electron transfer and proton coupling on the biomimetic PEC interface are also discussed to clarify the mechanism of CO2 reduction. Finally, the existing challenges and perspectives for biomimetic photoelectrocatalytic CO2 reduction are presented.
Collapse
Affiliation(s)
- Shaohan Xu
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Qi Shen
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
- Institute of New Energy, School of Chemistry and Chemical EngineeringShaoxing University508 Huancheng West RoadShaoxingZhejiang312000China
| | - Jingui Zheng
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Zhiming Wang
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Xun Pan
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Nianjun Yang
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Guohua Zhao
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| |
Collapse
|
8
|
Maarisetty D, Mary R, Hang DR, Mohapatra P, Baral SS. The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
10
|
Li P, Jia X, Zhang J, Li J, Zhang J, Wang L, Wang J, Zhou Q, Wei W, Zhao X, Wang S, Sun H. The roles of gold and silver nanoparticles on ZnIn 2S 4/silver (gold)/tetra(4-carboxyphenyl)porphyrin iron(III) chloride hybrids in carbon dioxide photoreduction. J Colloid Interface Sci 2022; 628:831-839. [PMID: 36029597 DOI: 10.1016/j.jcis.2022.08.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
The construction of hybrid catalysts composed of inorganic semiconductors and molecular catalysts shows great potential for achieving high photocatalytic carbon dioxide (CO2) conversion efficiency. In this study, ZnIn2S4 was first synthesized via a solvothermal route. Gold (Au) and silver (Ag) nanoparticles were then deposited on ZnIn2S4 via the reduction of noble metal precursor by sulfur vacancy defects. The obtained composite was further combined with tetra(4-carboxyphenyl)porphyrin iron(III) chloride (FeTCPP) molecular catalyst for efficient photocatalytic CO2 conversion. The roles of different noble metal nanoparticles in charge separation and interfacial electron transfer have been comprehensively studied. The photocatalytic performance and photoelectrochemical characterizations demonstrate that the introduction of Ag or Au nanoparticles is beneficial for charge separation. More importantly, the presence of Ag nanoparticles plays a crucial role in promoting the interfacial charge transfer between ZnIn2S4 and FeTCPP, whereas, Au nanoparticles function as active sites for the water reduction reaction.
Collapse
Affiliation(s)
- Pan Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Xiaorui Jia
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Jinping Zhang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Jieqiong Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Jinqiang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Lijing Wang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Junmei Wang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Qingfeng Zhou
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Wei Wei
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Xiaoli Zhao
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hongqi Sun
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| |
Collapse
|
11
|
Kamakura Y, Yasuda S, Hosokawa N, Nishioka S, Hongo S, Yokoi T, Tanaka D, Maeda K. Selective CO 2-to-Formate Conversion Driven by Visible Light over a Precious-Metal-Free Nonporous Coordination Polymer. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshinobu Kamakura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shuhei Yasuda
- Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Naoki Hosokawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shunta Nishioka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Sawa Hongo
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Toshiyuki Yokoi
- Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T. Solar-Driven CO 2 Reduction Using a Semiconductor/Molecule Hybrid Photosystem: From Photocatalysts to a Monolithic Artificial Leaf. Acc Chem Res 2022; 55:933-943. [PMID: 34851099 DOI: 10.1021/acs.accounts.1c00564] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of organic chemicals from H2O and CO2 using solar energy is important for recycling CO2 through cyclical use of chemical ingredients produced from CO2 or molecular energy carriers based on CO2. Similar to photosynthesis in plants, the CO2 molecules are reduced by electrons and protons, which are extracted from H2O molecules, to produce O2. This reaction is uphill; therefore, the solar energy is stored as the chemical bonding energy in the organic molecules. This artificial photosynthetic technology mimicking green vegetation should be implemented as a self-standing system for on-site direct solar energy storage that supports CO2 recycling in a circular economy. Herein, we explain our interdisciplinary fusion methodology to develop hybrid photocatalysts and photoelectrodes for an artificial photosynthetic system for the CO2 reduction reaction (CO2RR) in aqueous solutions. The key factor for the system is the integration of uniquely different functions of molecular transition-metal complexes and solid semiconductors. A metal complex catalyst and a semiconductor appropriate for a CO2RR and visible-light absorption, respectively, are linked, and they function complementary way to catalyze CO2RR under visible-light irradiation as a particulate photocatalyst dispersion in solution. It has also been proven that Ru complexes with bipyridine ligands can catalyze a CO2RR as photocathodes when they are linked with various semiconductor surfaces, such as those of doped tantalum oxides, doped iron oxides, indium phosphides, copper-based sulfides, selenides, silicon, and others. These photocathodes can produce formate and carbon monoxide using electrons and protons extracted from water through potential-matched connections with photoanodes such as TiO2 or SrTiO3 for oxygen evolution reactions (OERs). Benefiting from the very low overpotential of an aqueous CO2RR at metal complexes approaching the theoretical lower limit, the semiconductor/molecule hybrid system demonstrates a single tablet-formed monolithic electrode called "artificial leaf." This single electrode device can generate formate (HCOO-) from H2O and CO2 in a water-filled single-compartment reactor without requiring a separation membrane under unassisted or bias-free conditions, either electrically or chemically. The reaction proceeds with a stoichiometric electron/hole ratio and stores solar energy with a solar-to-chemical energy conversion efficiency of 4.6%, which exceeds that of plants. In this Account, the key results that marked our milestones in technological progress of the semiconductor/molecule hybrid photosystem are concisely explained. These results include design, proof of the principle, and understanding of the phenomena by time-resolved spectroscopies, synchrotron radiation analyses, and DFT calculations. These results enable us to address challenges toward further scientific progress and the social implementation, including the use of earth-abundant elements and the scale-up of the solar-driven CO2RR system.
Collapse
Affiliation(s)
- Takeshi Morikawa
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Shunsuke Sato
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Keita Sekizawa
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Tomiko. M. Suzuki
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Takeo Arai
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
13
|
Kumagai H, Tamaki Y, Ishitani O. Photocatalytic Systems for CO 2 Reduction: Metal-Complex Photocatalysts and Their Hybrids with Photofunctional Solid Materials. Acc Chem Res 2022; 55:978-990. [PMID: 35255207 PMCID: PMC8988296 DOI: 10.1021/acs.accounts.1c00705] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Photocatalytic CO2 reduction is a critical objective
in the field of artificial photosynthesis because it can potentially
make a total solution for global warming and shortage of energy and
carbon resources. We have successfully developed various highly efficient,
stable, and selective photocatalytic systems for CO2 reduction
using transition metal complexes as both photosensitizers and catalysts.
The molecular architectures for constructing selective and efficient
photocatalytic systems for CO2 reduction are discussed
herein. As a typical example, a mixed system of a ring-shaped Re(I)
trinuclear complex as a photosensitizer and fac-[Re(bpy)(CO)3{OC2H4N(C2H4OH)2}] as a catalyst selectively photocatalyzed CO2 reduction to CO with the highest quantum yield of 82% and a turnover
number (TON) of over 600. Not only rare and noble metals but also
earth abundant ones, such as Mn(I), Cu(I), and Fe(II) can be used
as central metal cations. In the case using a Cu(I) dinuclear complex
as a photosensitizer and fac-Mn(bpy)(CO)3Br as a catalyst, the total formation quantum yield of CO and HCOOH
from CO2 was 57% and TONCO+HCOOH exceeded 1300. Efficient supramolecular photocatalysts for CO2 reduction,
in which photosensitizer and catalyst units are connected through
a bridging ligand, were developed for removing a diffusion control
on collisions between a photosensitizer and a catalyst. Supramolecular
photocatalysts, in which [Ru(N∧N)3]2+-type photosensitizer and Re(I) or Ru(II) catalyst units
are connected to each other with an alkyl chain, efficiently and selectively
photocatalyzed CO2 reduction in solutions. Mechanistic
studies using time-resolved IR and electrochemical measurements provided
molecular architecture for constructing efficient supramolecular photocatalysts.
A Ru(II)–Re(I) supramolecular photocatalyst constructed according
to this molecular architecture efficiently photocatalyzed CO2 reduction even when it was fixed on solid materials. Harnessing
this property of the supramolecular photocatalysts, two types of hybrid
photocatalytic systems were developed, namely, photocatalysts with
light-harvesting capabilities and photoelectrochemical systems for
CO2 reduction. Introduction of light-harvesting capabilities
into molecular photocatalytic
systems should be important because the intensity of solar light shone
on the earth’s surface is relatively low. Periodic mesoporous
organosilica, in which methyl acridone groups are embedded in the
silica framework as light harvesters, was combined with a Ru(II)–Re(I)
supramolecular photocatalyst with phosphonic acid anchoring groups.
In this hybrid, the photons absorbed by approximately 40 methyl acridone
groups were transferred to one Ru(II) photosensitizer unit, and then,
the photocatalytic CO2 reduction commenced. To use
water as an abundant electron donor, we developed hybrid
photocatalytic systems combining metal-complex photocatalysts with
semiconductor photocatalysts that display high photooxidation powers,
in which two photons are sequentially absorbed by the metal-complex
photosensitizer and the semiconductor, resulting in both high oxidation
and reduction power. Various types of dye-sensitized molecular photocathodes
comprising the p-type semiconductor electrodes and the supramolecular
photocatalysts were developed. Full photoelectrochemical cells combining
these dye-sensitized molecular photocathodes and n-type semiconductor
photoanodes achieved CO2 reduction using only visible light
as the energy source and water as the reductant. Drastic improvement
of dye-sensitized molecular photocathodes is reported. The results
presented in this Account clearly indicate that we
can construct very efficient, selective, and durable photocatalytic
systems constructed with the metal-complex photosensitizers and catalysts.
The supramolecular-photocatalyst architecture in which the photosensitizer
and the catalyst are connected to each other is useful especially
on the surface of solid owing to rapid electron transfer from the
photosensitizer to the catalyst. On basis of these findings, we successfully
constructed hybrid systems of the supramolecular photocatalysts with
photoactive solid materials. These hybridizations can add new functions
to the metal-complex photocatalytic systems, such as water oxidation
and light harvesting.
Collapse
Affiliation(s)
- Hiromu Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yusuke Tamaki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
14
|
Joshi G, Mir AQ, Layek A, Ali A, Aziz ST, Khatua S, Dutta A. Plasmon-Based Small-Molecule Activation: A New Dawn in the Field of Solar-Driven Chemical Transformation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gayatri Joshi
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arkaprava Layek
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Afsar Ali
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sk. Tarik Aziz
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Saumyakanti Khatua
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
15
|
Chen S, Li K, Liu H, Zhang J, Peng T. Efficient CO2 reduction over a Ru-pincer complex/TiO2 hybrid photocatalyst via direct Z-scheme mechanism. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01840j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solar-driven CO2 conversion to hydrocarbon fuels is a feasible way to solve the increasingly serious energy problem and greenhouse effect. Herein, we fabricate a novel hybrid photocatalyst for CO2 reduction...
Collapse
|
16
|
Li A, Chen S, Yang F, Gao H, Dong C, Wang G. Metalloporphyrin-Decorated Titanium Dioxide Nanosheets for Efficient Photocatalytic Carbon Dioxide Reduction. Inorg Chem 2021; 60:18337-18346. [PMID: 34748322 DOI: 10.1021/acs.inorgchem.1c02957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photocatalysis, the most efficient way to separate photogenerated electron-hole pairs has been extensively studied. However, the methods to increase the quantities of free electrons are neglected. Herein, we used a self-assembly method to fabricate MTCPP/TiO2 composite materials with a series of metalloporphyrins (MTCPPs, M = Fe, Co, Zn) as sensitizers to modify TiO2 nanosheets. First, abundant carboxyl and hydroxyl on porphyrin were adsorbed by metal ions. Then, the remaining carboxyl and hydroxyl on porphyrin were anchored on the surface of TiO2 nanosheets. Finally, MTCPP/TiO2 was obtained by a layer-by-layer self-assembly process. MTCPP broadens the light response of TiO2 from ultraviolet light to visible light and enhances the CO2 adsorption ability. Moreover, metal ions coordinating with porphyrin regulate the electron density of the porphyrin ring and provide a stronger π feedback bond, which promote charge separation. Consequently, by optimizing the type of metal ion, the yield of ZnTCPP/TiO2 composites reached 109.33 μmol/(g h) of CO and 9.94 μmol/(g h) of CH4, which was more than 50 times that of pure TiO2. This study proposes a possible visible-light-induced CO2 reduction mechanism of metal-ion-based photocatalysis, which provides great insights into optimizing the designation of efficient photocatalysis.
Collapse
Affiliation(s)
- Ang Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Siyuan Chen
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Fucheng Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Cheng Dong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
17
|
Nanostructure Engineering via Intramolecular Construction of Carbon Nitride as Efficient Photocatalyst for CO 2 Reduction. NANOMATERIALS 2021; 11:nano11123245. [PMID: 34947595 PMCID: PMC8706010 DOI: 10.3390/nano11123245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
Light-driven heterogeneous photocatalysis has gained great significance for generating solar fuel; the challenging charge separation process and sluggish surface catalytic reactions significantly restrict the progress of solar energy conversion using a semiconductor photocatalyst. Herein, we propose a novel and feasible strategy to incorporate dihydroxy benzene (DHB) as a conjugated monomer within the framework of urea containing CN (CNU-DHBx) to tune the electronic conductivity and charge separation due to the aromaticity of the benzene ring, which acts as an electron-donating species. Systematic characterizations such as SPV, PL, XPS, DRS, and TRPL demonstrated that the incorporation of the DHB monomer greatly enhanced the photocatalytic CO2 reduction of CN due to the enhanced charge separation and modulation of the ionic mobility. The significantly enhanced photocatalytic activity of CNU–DHB15.0 in comparison with parental CN was 85 µmol/h for CO and 19.92 µmol/h of the H2 source. It can be attributed to the electron–hole pair separation and enhance the optical adsorption due to the presence of DHB. Furthermore, this remarkable modification affected the chemical composition, bandgap, and surface area, encouraging the controlled detachment of light-produced photons and making it the ideal choice for CO2 photoreduction. Our research findings potentially offer a solution for tuning complex charge separation and catalytic reactions in photocatalysis that could practically lead to the generation of artificial photocatalysts for efficient solar energy into chemical energy conversion.
Collapse
|
18
|
Pirzada BM, Dar AH, Shaikh MN, Qurashi A. Reticular-Chemistry-Inspired Supramolecule Design as a Tool to Achieve Efficient Photocatalysts for CO 2 Reduction. ACS OMEGA 2021; 6:29291-29324. [PMID: 34778605 PMCID: PMC8581999 DOI: 10.1021/acsomega.1c04018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 05/03/2023]
Abstract
Photocatalytic CO2 reduction into C1 products is one of the most trending research subjects of current times as sustainable energy generation is the utmost need of the hour. In this review, we have tried to comprehensively summarize the potential of supramolecule-based photocatalysts for CO2 reduction into C1 compounds. At the outset, we have thrown light on the inert nature of gaseous CO2 and the various challenges researchers are facing in its reduction. The evolution of photocatalysts used for CO2 reduction, from heterogeneous catalysis to supramolecule-based molecular catalysis, and subsequent semiconductor-supramolecule hybrid catalysis has been thoroughly discussed. Since CO2 is thermodynamically a very stable molecule, a huge reduction potential is required to undergo its one- or multielectron reduction. For this reason, various supramolecule photocatalysts were designed involving a photosensitizer unit and a catalyst unit connected by a linker. Later on, solid semiconductor support was also introduced in this supramolecule system to achieve enhanced durability, structural compactness, enhanced charge mobility, and extra overpotential for CO2 reduction. Reticular chemistry is seen to play a pivotal role as it allows bringing all of the positive features together from various components of this hybrid semiconductor-supramolecule photocatalyst system. Thus, here in this review, we have discussed the selection and role of various components, viz. the photosensitizer component, the catalyst component, the linker, the semiconductor support, the anchoring ligands, and the peripheral ligands for the design of highly performing CO2 reduction photocatalysts. The selection and role of various sacrificial electron donors have also been highlighted. This review is aimed to help researchers reach an understanding that may translate into the development of excellent CO2 reduction photocatalysts that are operational under visible light and possess superior activity, efficiency, and selectivity.
Collapse
Affiliation(s)
- Bilal Masood Pirzada
- Department
of Chemistry, Khalifa University of Science
and Technology (KU), Abu Dhabi 127788, United Arab Emiratus
- ,
| | - Arif Hassan Dar
- Institute
of NanoScience and Technology (INST), Mohali 160062, India
| | - M. Nasiruzzaman Shaikh
- Interdisciplinary
Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ahsanulhaq Qurashi
- Department
of Chemistry, Khalifa University of Science
and Technology (KU), Abu Dhabi 127788, United Arab Emiratus
| |
Collapse
|
19
|
Liu C, Sadeghzadeh SM. CdSnO3/SnD NPs as a Nanocatalyst for Carbonylation of o-Phenylenediamine with CO2. Catal Letters 2021. [DOI: 10.1007/s10562-020-03528-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Garcia Osorio DA, Neri G, Cowan AJ. Hybrid Photocathodes for Carbon Dioxide Reduction: Interfaces for Charge Separation and Selective Catalysis. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dora Alicia Garcia Osorio
- Department of Chemistry and Stephenson Institute for Renewable Energy University of Liverpool Liverpool L69 7ZF UK
| | - Gaia Neri
- Department of Chemistry and Stephenson Institute for Renewable Energy University of Liverpool Liverpool L69 7ZF UK
| | - Alexander J. Cowan
- Department of Chemistry and Stephenson Institute for Renewable Energy University of Liverpool Liverpool L69 7ZF UK
| |
Collapse
|
21
|
Zhang Y, Yao D, Xia B, Xu H, Tang Y, Davey K, Ran J, Qiao SZ. ReS
2
Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO
2
Reduction. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000052] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yanzhao Zhang
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Dazhi Yao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Bingquan Xia
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Haolan Xu
- Future Industries Institute University of South Australia Adelaide SA 5095 Australia
| | - Youhong Tang
- Center for Nanoscale Science and Technology School of Computer Science Engineering, and Mathematics Flinders University Adelaide SA 5042 Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Jingrun Ran
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
22
|
Sato S, Tanaka S, Yamanaka KI, Saeki S, Sekizawa K, Suzuki TM, Morikawa T, Onda K. Study of Excited States and Electron Transfer of Semiconductor-Metal-Complex Hybrid Photocatalysts for CO 2 Reduction by Using Picosecond Time-Resolved Spectroscopies. Chemistry 2021; 27:1127-1137. [PMID: 33020962 DOI: 10.1002/chem.202004068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 11/07/2022]
Abstract
A semiconductor-metal-complex hybrid photocatalyst was previously reported for CO2 reduction; this photocatalyst is composed of nitrogen-doped Ta2 O5 as a semiconductor photosensitizer and a Ru complex as a CO2 reduction catalyst, operating under visible light (>400 nm), with high selectivity for HCOOH formation of more than 75 %. The electron transfer from a photoactive semiconductor to the metal-complex catalyst is a key process for photocatalytic CO2 reduction with hybrid photocatalysts. Herein, the excited-state dynamics of several hybrid photocatalysts are described by using time-resolved emission and infrared absorption spectroscopies to understand the mechanism of electron transfer from a semiconductor to the metal-complex catalyst. The results show that electron transfer from the semiconductor to the metal-complex catalyst does not occur directly upon photoexcitation, but that the photoexcited electron transfers to a new excited state. On the basis of the present results and previous reports, it is suggested that the excited state is a charge-transfer state located between shallow defects of the semiconductor and the metal-complex catalyst.
Collapse
Affiliation(s)
- Shunsuke Sato
- Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Sei'ichi Tanaka
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken-Ichi Yamanaka
- Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Shu Saeki
- Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Tomiko M Suzuki
- Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Ken Onda
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan.,Present address: Department of Chemistry, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
23
|
Abeadi N, Zhiani R, Motavalizadehkakhky A, Omidvar M, Sadat Hosseiny M. FPS/[Fe(Bpy)3]2+ NPs as a nanocatalyst for production of quinoline-2-ones through the annulation of ortho-heteroaryl anilines and CO2. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Wu HL, Li XB, Tung CH, Wu LZ. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chem Commun (Camb) 2020; 56:15496-15512. [PMID: 33300513 DOI: 10.1039/d0cc05870j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired transformation of small-molecules to energy-related feedstocks is an attractive research area to overcome both the environmental issues and the depletion of fossil fuels. The highly effective metalloenzymes in nature provide blueprints for the utilization of bioinspired metal complexes for artificial photosynthesis. Through simpler structural and functional mimics, the representative herein is the pivotal development of several critical small molecule conversions catalyzed by metal complexes, e.g., water oxidation, proton and CO2 reduction and organic chemical transformation of small molecules. Of great achievement is the establishment of bioinspired metal complexes as catalysts with high stability, specific selectivity and satisfactory efficiency to drive the multiple-electron and multiple-proton processes related to small molecule transformation. Also, potential opportunities and challenges for future development in these appealing areas are highlighted.
Collapse
Affiliation(s)
- Hao-Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | |
Collapse
|
25
|
Liu L, Lim SY, Law CS, Jin B, Abell AD, Ni G, Santos A. Engineering of Broadband Nanoporous Semiconductor Photonic Crystals for Visible-Light-Driven Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57079-57092. [PMID: 33300792 DOI: 10.1021/acsami.0c16914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new class of semiconductor photonic crystals composed of titanium dioxide (TiO2)-functionalized nanoporous anodic alumina (NAA) broadband-distributed Bragg reflectors (BDBRs) for visible-light-driven photocatalysis is presented. NAA-BDBRs produced by double exponential pulse anodization (DEPA) show well-resolved, spectrally tunable, broad photonic stop bands (PSBs), the width of which can be precisely tuned from 70 ± 6 to 153 ± 9 nm (in air) by progressive modification of the anodization period in the input DEPA profile. Photocatalytic efficiency of TiO2-NAA-BDBRs with tunable PSB width upon visible-NIR illumination is studied using three model photodegradation reactions of organics with absorbance bands across the visible spectral regions. Analysis of these reactions allows us to elucidate the interplay of spectral distance between red edge of TiO2-NAA-BDBRs' PSB, electronic bandgap, and absorbance band of model organics in harnessing visible photons for photocatalysis. Photodegradation reaction efficiency is optimal when the PSB's red edge is spectrally close to the electronic bandgap of the functional semiconductor coating. Photocatalytic performance decreases dramatically when the red edge of the PSB is shifted toward visible wavelengths. However, a photocatalytic recovery is observed when the PSB's red edge is judiciously positioned within the proximity of the absorption band of model organics, indicating that TiO2-NAA-BDBRs can harness visible electromagnetic waves to speed up photocatalytic reactions by drastically slowing the group velocity of incident photons at specific spectral regions. Our advances provide new opportunities to better understand and engineer light-matter interactions for photocatalysis, using TiO2-NAA-BDBRs as model nanoporous semiconductor platforms. These high-performing photocatalysts could find broad applicability in visible-NIR light harvesting for environmental remediation, green energy generation, and chemical synthesis.
Collapse
Affiliation(s)
- Lina Liu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Siew Yee Lim
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cheryl Suwen Law
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gang Ni
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Abel Santos
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
26
|
Shit SC, Shown I, Paul R, Chen KH, Mondal J, Chen LC. Integrated nano-architectured photocatalysts for photochemical CO 2 reduction. NANOSCALE 2020; 12:23301-23332. [PMID: 33107552 DOI: 10.1039/d0nr05884j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal-organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.
Collapse
Affiliation(s)
- Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | | | | | | | | | | |
Collapse
|
27
|
Kovačič Ž, Likozar B, Huš M. Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02557] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Žan Kovačič
- National Institute of Chemistry, Department of Chemical Reaction Engineering, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, European Union
| | - Blaž Likozar
- National Institute of Chemistry, Department of Chemical Reaction Engineering, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, European Union
| | - Matej Huš
- National Institute of Chemistry, Department of Chemical Reaction Engineering, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, European Union
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Pan H, Heagy MD. Photons to Formate-A Review on Photocatalytic Reduction of CO 2 to Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2422. [PMID: 33291520 PMCID: PMC7761832 DOI: 10.3390/nano10122422] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023]
Abstract
Rising levels of atmospheric carbon dioxide due to the burning and depletion of fossil fuels is continuously raising environmental concerns about global warming and the future of our energy supply. Renewable energy, especially better utilization of solar energy, is a promising method for CO2 conversion and chemical storage. Research in the solar fuels area is focused on designing novel catalysts and developing new conversion pathways. In this review, we focus on the photocatalytic reduction of CO2 primarily in its neutral pH species of carbonate to formate. The first two-electron photoproduct of carbon dioxide, a case for formate (or formic acid) is made in this review based on its value as; an important chemical feedstock, a hydrogen storage material, an intermediate to methanol, a high-octane fuel and broad application in fuel cells. This review focuses specifically on the following photocatalysts: semiconductors, phthalocyanines as photosensitizers and membrane devices and metal-organic frameworks.
Collapse
|
29
|
DFNS/α-CD/Au as a Nanocatalyst for Interpolation of CO2 into Aryl Alkynes Followed by SN2 Coupling with Allylic Chlorides. Catal Letters 2020. [DOI: 10.1007/s10562-020-03451-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Saito D, Yamazaki Y, Tamaki Y, Ishitani O. Photocatalysis of a Dinuclear Ru(II)-Re(I) Complex for CO 2 Reduction on a Solid Surface. J Am Chem Soc 2020; 142:19249-19258. [PMID: 33121248 DOI: 10.1021/jacs.0c09170] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of CO2-reduction photocatalysts is one of the main targets in the field of artificial photosynthesis. Recently, numerous hybrid systems in which supramolecular photocatalysts comprised of a photosensitizer and catalytic-metal-complex units are immobilized on inorganic solid materials, such as semiconductors or mesoporous organosilica, have been reported as CO2-reduction photocatalysts for various functions, including water oxidation and light harvesting. In the present study, we investigated the photocatalytic properties of supramolecular photocatalysts comprised of a Ru(II)-complex photosensitizer and a Re(I)-complex catalyst fixed on the surface of insulating Al2O3 particles: the distance among the supramolecular photocatalyst molecules should be fixed. Visible-light irradiation of the photocatalyst in the presence of an electron donor under a CO2 atmosphere produced CO selectively. Although CO formation was also observed for a 1:1 mixture of mononuclear Ru(II) and Re(I) complexes attached to an Al2O3 surface, the photocatalytic activity was much lower. The activity of the Al2O3-supported photocatalyst was strongly dependent on the adsorption density of the supramolecular moiety, where the initial rate of photocatalytic CO formation was faster at lower density and higher photocatalyst durability was achieved at higher density. One of the main reasons for the former phenomenon is the decreased quenching fraction of the excited state of the photosensitizer unit by the reductant dissolved in the solution phase in the case of higher density. This is due to the self-quenching of the excited photosensitizer unit and steric hindrance between the condensed supramolecular photocatalyst molecules attached to the surface. The higher durability of the more condensed system is caused by intermolecular electron transfer between reduced supramolecular photocatalyst molecules, which accelerates the formation of CO in the photocatalytic CO2 reduction. Coadsorption of a Ru(II) mononuclear complex as a redox photosensitizer could drastically reinforce the photocatalysis of the supramolecular photocatalyst on the surface of the Al2O3 particles: more than 10 times higher turnover number and about 3.4 times higher turnover frequency of CO formation. These investigations provide new architectures for the construction of efficient and durable hybrid photocatalytic systems for CO2 reduction, which are composed of metal-complex photocatalysts and solid materials.
Collapse
Affiliation(s)
- Daiki Saito
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuomi Yamazaki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Tamaki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
31
|
A Selective Synthesis of TaON Nanoparticles and Their Comparative Study of Photoelectrochemical Properties. Catalysts 2020. [DOI: 10.3390/catal10101128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A simplified ammonolysis method for synthesizing single phase TaON nanoparticles is presented and the resulting photoelectrochemical properties are compared and contrasted with as-synthesized Ta2O5 and Ta3N5. The protocol for partial nitridation of Ta2O5 (synthesis of TaON) offers a straightforward simplification over existing methods. Moreover, the present protocol offers extreme reproducibility and enhanced chemical safety. The morphological characterization of the as-synthesized photocatalysts indicate spherical nanoparticles with sizes 30, 40, and 30 nm Ta2O5, TaON, and Ta3N5 with the absorbance onset at ~320 nm, 580 nm, and 630 nm respectively. The photoactivity of the catalysts has been examined for the degradation of a representative cationic dye methylene blue (MB) using xenon light. Subsequent nitridation of Ta2O5 yields significant increment in the conversion (ζ: Ta2O5 < TaON < Ta3N5) mainly attributable to the defect-facilitated adsorption of MB on the catalyst surface and bandgap lowering of catalysts with Ta3N5 showing > 95% ζ for a lower (0.1 g) loading and with a lamp with lower Ultraviolet (UV) content. Improved Photoelectrochemical performance is noted after a series of chronoamperometry (J/t), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) measurements. Finally, stability experiments performed using recovered and treated photocatalyst show no loss of photoactivity, suggesting the photocatalysts can be successfully recycled.
Collapse
|
32
|
Lin M, Mochizuki C, An B, Inomata Y, Ishida T, Haruta M, Murayama T. Elucidation of Active Sites of Gold Nanoparticles on Acidic Ta 2O 5 Supports for CO Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingyue Lin
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Chihiro Mochizuki
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Baoxiang An
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yusuke Inomata
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tamao Ishida
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masatake Haruta
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
33
|
Ou W, Zou R, Han M, Yu L, Su C. Tailorable carbazolyl cyanobenzene-based photocatalysts for visible light-induced reduction of aryl halides. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Huang P, Pantovich SA, Okolie NO, Deskins NA, Li G. Hybrid Carbon Dioxide Reduction Photocatalysts Consisting of Macrocyclic Cobalt(III) Complexes Deposited on Semiconductor Surfaces. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peipei Huang
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | | | - Norbert O. Okolie
- Materials Science Program University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - N. Aaron Deskins
- Department of Chemical Engineering Worcester Polytechnic Institute 100 Institute Road Worcester MA 01609 USA
| | - Gonghu Li
- Department of Chemistry University of New Hampshire 23 Academic Way Durham NH 03824 USA
- Materials Science Program University of New Hampshire 23 Academic Way Durham NH 03824 USA
| |
Collapse
|
35
|
Yu H, Haviv E, Neumann R. Visible‐Light Photochemical Reduction of CO
2
to CO Coupled to Hydrocarbon Dehydrogenation. Angew Chem Int Ed Engl 2020; 59:6219-6223. [DOI: 10.1002/anie.201915733] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Huijun Yu
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Eynat Haviv
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Ronny Neumann
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
36
|
Yu H, Haviv E, Neumann R. Visible‐Light Photochemical Reduction of CO
2
to CO Coupled to Hydrocarbon Dehydrogenation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huijun Yu
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Eynat Haviv
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Ronny Neumann
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
37
|
Ji L, Li L, Ji X, Zhang Y, Mou S, Wu T, Liu Q, Li B, Zhu X, Luo Y, Shi X, Asiri AM, Sun X. Highly Selective Electrochemical Reduction of CO
2
to Alcohols on an FeP Nanoarray. Angew Chem Int Ed Engl 2020; 59:758-762. [PMID: 31664770 DOI: 10.1002/anie.201912836] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Lei Ji
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- College of ChemistrySichuan University Chengdu 610064 Sichuan China
| | - Lei Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of China Chengdu 611731 Sichuan China
| | - Xuqiang Ji
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Ya Zhang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- College of ChemistrySichuan University Chengdu 610064 Sichuan China
| | - Shiyong Mou
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Qian Liu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Baihai Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of China Chengdu 611731 Sichuan China
| | - Xiaojuan Zhu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceCollege of Chemistry and Chemical EngineeringChina West Normal University Nanchong 637002 Sichuan China
| | - Yonglan Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceCollege of Chemistry and Chemical EngineeringChina West Normal University Nanchong 637002 Sichuan China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal University Jinan 250014 Shandong China
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of Science & Center of Excellence for Advanced Materials ResearchKing Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Xuping Sun
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| |
Collapse
|
38
|
Zhiani R, Khoobi M, Sadeghzadeh SM. Ruthenium–birhodanine complex supported over fibrousphosphosilicate for photocatalytic CO2 reduction to formate. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Abeadi N, Zhiani R, Motavalizadehkakhky A, Omidwar M, Hosseiny MS. FeNi3 magnetic nanoparticles supported on ruthenium silicate-functionalized DFNS for photocatalytic CO2 reduction to formate. RSC Adv 2020; 10:20536-20542. [PMID: 35517733 PMCID: PMC9054344 DOI: 10.1039/d0ra03928d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
For aerobic oxidation, anchoring ruthenium(ii) in the nanospaces of magnetic dendritic fibrous nanosilica (DFNS) afforded a potential nanocatalyst (the complex FeNi3/DFNS/Ru(ii)), which showed enhanced activity. The FeNi3/DFNS/Ru(ii) complex exhibited excellent catalytic activity in the reduction of carbon dioxide to formate in the presence of visible-light irradiation. We have analyzed its characteristics by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). For aerobic oxidation, anchoring ruthenium(ii) in the nanospaces of magnetic dendritic fibrous nanosilica (DFNS) afforded a potential nanocatalyst (the complex FeNi3/DFNS/Ru(ii)), which showed enhanced activity.![]()
Collapse
Affiliation(s)
- Nader Abeadi
- Department of Chemical Engineering
- Faculty of Sciences
- Islamic Azad University
- Neyshabur Branch
- Neyshabur
| | - Rahele Zhiani
- Department of Chemistry
- Faculty of Sciences
- Islamic Azad University
- Neyshabur Branch
- Neyshabur
| | | | - Maryam Omidwar
- Department of Chemistry
- Faculty of Sciences
- Islamic Azad University
- Quchan Branch
- Quchan
| | - Malihe Sadat Hosseiny
- Department of Chemistry
- Faculty of Sciences
- Islamic Azad University
- Neyshabur Branch
- Neyshabur
| |
Collapse
|
40
|
Ji L, Li L, Ji X, Zhang Y, Mou S, Wu T, Liu Q, Li B, Zhu X, Luo Y, Shi X, Asiri AM, Sun X. Highly Selective Electrochemical Reduction of CO
2
to Alcohols on an FeP Nanoarray. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912836] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lei Ji
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- College of ChemistrySichuan University Chengdu 610064 Sichuan China
| | - Lei Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of China Chengdu 611731 Sichuan China
| | - Xuqiang Ji
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Ya Zhang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- College of ChemistrySichuan University Chengdu 610064 Sichuan China
| | - Shiyong Mou
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Qian Liu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Baihai Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of China Chengdu 611731 Sichuan China
| | - Xiaojuan Zhu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceCollege of Chemistry and Chemical EngineeringChina West Normal University Nanchong 637002 Sichuan China
| | - Yonglan Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceCollege of Chemistry and Chemical EngineeringChina West Normal University Nanchong 637002 Sichuan China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal University Jinan 250014 Shandong China
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of Science & Center of Excellence for Advanced Materials ResearchKing Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Xuping Sun
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| |
Collapse
|
41
|
Muraoka K, Vequizo JJM, Kuriki R, Yamakata A, Uchiyama T, Lu D, Uchimoto Y, Ishitani O, Maeda K. Oxygen‐Doped Ta
3
N
5
Nanoparticles for Enhanced Z‐Scheme Carbon Dioxide Reduction with a Binuclear Ruthenium(II) Complex under Visible Light. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kanemichi Muraoka
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Japan Society for the Promotion of Science Kojimachi Business Centre Building, 5–3-1, Kojimachi, Chiyoda-ku Tokyo 102-0083 Japan
| | - Junie Jhon M. Vequizo
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Ryo Kuriki
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Japan Society for the Promotion of Science Kojimachi Business Centre Building, 5–3-1, Kojimachi, Chiyoda-ku Tokyo 102-0083 Japan
| | - Akira Yamakata
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies Kyoto University Nihonmatsu-cho, Yoshida, Sakyo-ku Kyoto 606-8317 Japan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies Kyoto University Nihonmatsu-cho, Yoshida, Sakyo-ku Kyoto 606-8317 Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
42
|
Maeda K. Metal-Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO 2 Reduction Driven by Visible Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808205. [PMID: 31066136 DOI: 10.1002/adma.201808205] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/20/2019] [Indexed: 05/12/2023]
Abstract
CO2 reduction to carbon feedstocks using heterogeneous photocatalysts is an attractive means of addressing both climate change and the depletion of fossil fuels. Of particular importance is the development of a photosystem capable of functioning in response to visible light, which accounts for the majority of the solar spectrum, representing a kind of artificial photosynthesis. Hybrid systems comprising a metal complex and a semiconductor are promising because of the excellent electrochemical (and/or photocatalytic) activity of metal complexes during CO2 reduction and the ability of semiconductors to efficiently oxidize water to molecular O2 . Here, the development of hybrid photocatalysts and photoelectrodes for CO2 reduction in combination with water oxidation is described.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
43
|
Ajmal S, Yang Y, Li K, Tahir MA, Liu Y, Wang T, Bacha AUR, Feng Y, Deng Y, Zhang L. Zinc-Modified Copper Catalyst for Efficient (Photo-)Electrochemical CO 2 Reduction with High Selectivity of HCOOH Production. THE JOURNAL OF PHYSICAL CHEMISTRY C 2019; 123:11555-11563. [DOI: 10.1021/acs.jpcc.9b00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Saira Ajmal
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Aziz-Ur-Rahim Bacha
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yiqing Feng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yue Deng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People’s Republic of China
| |
Collapse
|
44
|
Morikawa T, Sato S, Sekizawa K, Arai T, Suzuki TM. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting. CHEMSUSCHEM 2019; 12:1807-1824. [PMID: 30963707 DOI: 10.1002/cssc.201900441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photocatalytic or photoelectrochemical hydrogen production by water splitting is one of the key reactions for the development of an energy supply that enables a clean energy system for a future sustainable society. Utilization of solar photon energy for the uphill water splitting reaction is a promising technology, and therefore many systems using semiconductor photocatalysts and semiconductor photoelectrodes for the reaction producing hydrogen and dioxygen in a 2:1 stoichiometric ratio have been reported. In these systems, molecular catalysts are also considered to be feasible; recently, systems based on molecular catalysts conjugated with semiconductor photosensitizers have been used for photoinduced hydrogen generation by proton reduction. Additionally, there are reports that the so-called Z-scheme (two-step photoexcitation) mechanism realizes the solar-driven uphill reaction by overall water splitting. Although the number of these reports is still small compared to those of all-inorganic systems, the advantages of molecular cocatalysts and its immobilization on a semiconductor are attractive. This Minireview provides a brief overview of approaches and recent research progress toward molecular catalysts immobilized on semiconductor photocatalysts and photoelectrodes for solar-driven hydrogen production with the stoichiometric uphill reaction of hydrogen and oxygen generation.
Collapse
Affiliation(s)
- Takeshi Morikawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Shunsuke Sato
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Keita Sekizawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Takeo Arai
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | - Tomiko M Suzuki
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| |
Collapse
|
45
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
46
|
Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem Rev 2019; 119:3962-4179. [DOI: 10.1021/acs.chemrev.8b00400] [Citation(s) in RCA: 1094] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
47
|
Muraoka K, Uchiyama T, Lu D, Uchimoto Y, Ishitani O, Maeda K. A Visible-Light-Driven Z-Scheme CO2 Reduction System Using Ta3N5 and a Ru(II) Binuclear Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kanemichi Muraoka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
48
|
Kuriki R, Yamamoto M, Higuchi K, Yamamoto Y, Akatsuka M, Lu D, Yagi S, Yoshida T, Ishitani O, Maeda K. Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective CO 2 Reduction under Visible Light in Aqueous Solution. Angew Chem Int Ed Engl 2019; 56:4867-4871. [PMID: 28387039 DOI: 10.1002/anie.201701627] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 11/10/2022]
Abstract
Carbon nitride nanosheets (NS-C3 N4 ) were found to undergo robust binding with a binuclear ruthenium(II) complex (RuRu') even in basic aqueous solution. A hybrid material consisting of NS-C3 N4 (further modified with nanoparticulate Ag) and RuRu' promoted the photocatalytic reduction of CO2 to formate in aqueous media, in conjunction with high selectivity (approximately 98 %) and a good turnover number (>2000 with respect to the loaded Ru complex). These represent the highest values yet reported for a powder-based photocatalytic system during CO2 reduction under visible light in an aqueous environment. We also assessed the desorption of RuRu' from the Ag/C3 N4 surface, a factor that can contribute to a loss of activity. It was determined that desorption is not induced by salt additives, pH changes, or photoirradiation, which partly explains the high photocatalytic performance of this material.
Collapse
Affiliation(s)
- Ryo Kuriki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Muneaki Yamamoto
- Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kimitaka Higuchi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masato Akatsuka
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinya Yagi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoko Yoshida
- Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
49
|
Zahedifar M, Zhiani R, Sadeghzadeh SM, Shamsa F. Nanofibrous rhodium with a new morphology for the hydrogenation of CO2 to formate. NEW J CHEM 2019. [DOI: 10.1039/c8nj05228j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, fibrous rhodium (Rh) was engineered using a microemulsion system.
Collapse
Affiliation(s)
| | - Rahele Zhiani
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| | - Seyed Mohsen Sadeghzadeh
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| | - Farzaneh Shamsa
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| |
Collapse
|
50
|
Hockin BM, Li C, Robertson N, Zysman-Colman E. Photoredox catalysts based on earth-abundant metal complexes. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02336k] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible light photoredox catalysis has exploded into the consciousness of the synthetic chemist. We critically review Earth-abundant metal complexes photocatalysts including Cu(i), Zn(ii), Ni(0), V(v), Zr(iv), W(0), W(vi), Mo(0), Cr(iii), Co(iii) and Fe(ii).
Collapse
Affiliation(s)
- Bryony M. Hockin
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife
- UK
| | - Chenfei Li
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife
- UK
| | - Neil Robertson
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife
- UK
| |
Collapse
|