1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Prine N, Cao Z, Zhang S, Li T, Do C, Hong K, Cardinal C, Thornell TL, Morgan SE, Gu X. Enabling quantitative analysis of complex polymer blends by infrared nanospectroscopy and isotopic deuteration. NANOSCALE 2023; 15:7365-7373. [PMID: 37038929 DOI: 10.1039/d3nr00886j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) deciphers surface morphology of thin-film polymer blends and composites by simultaneously mapping physical topography and chemical composition. However, acquiring quantitative phase and composition information from multi-component blends can be challenging using AFM-IR due to the possible overlapping infrared absorption bands between different species. Isotope labeling one of the blend components introduces a new type of bond (carbon-deuterium vibration) that can be targeted using AFM-IR and responds at wavelengths sufficiently shifted toward unoccupied regions (around 2200 cm-1). In this project, AFM-IR was used to probe the surface morphology and chemical composition of three polymer blends containing deuterated polystyrene; each blend is expected to exhibit various degrees of miscibility. AFM-IR results successfully demonstrated that deuterium labeling prevents infrared spectral overlap and enables the visualization of blend phases that could not normally be distinguished by other scanning probe techniques. The nanoscale domain composition was resolved by fast infrared spectrum analysis. Overall, we presented isotope labeling as a robust approach for circumventing obstacles preventing the quantitative analysis of multiphase systems by AFM-IR.
Collapse
Affiliation(s)
- Nathaniel Prine
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Zhiqiang Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Song Zhang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Camille Cardinal
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Travis L Thornell
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| |
Collapse
|
3
|
Dewangan S, Mishra A, Halder B, Mishra A, Dhiman R, Chatterjee S. Unsymmetrically bi-functionalized 1,1’-ferrocenyl bi-hydrazone and hydrazone-cyanovinyl molecules as fluorescent “on-off” sensor: Synthesis, cytotoxicity and cancer cell imaging behavior. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
4
|
Vessières A, McGlinchey MJ. Bioorganometallic Chemistry – the early years. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Zoumpoulaki M, Schanne G, Delsuc N, Preud'homme H, Quévrain E, Eskenazi N, Gazzah G, Guillot R, Seksik P, Vinh J, Lobinski R, Policar C. Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022; 61:e202203066. [DOI: 10.1002/anie.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Martha Zoumpoulaki
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Gabrielle Schanne
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Elodie Quévrain
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Géraldine Gazzah
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Regis Guillot
- ICMMO UMR CNRS 8182 Université Paris-Saclay 91405 Orsay France
| | - Philippe Seksik
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
- Gastroenterology Department Saint-Antoine Hospital Sorbonne Université, APHP Paris France
| | - Joelle Vinh
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
| | - Ryszard Lobinski
- Universite de Pau, CNRS, E2S, IPREM-UMR5254, Hélioparc 64053 Pau France
- Chair of Analytical Chemistry Warsaw University of Technology, Noakowskiego 3 00-664 Warsaw Poland
| | - Clotilde Policar
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
6
|
Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Macedo LJA, Rodrigues FP, Hassan A, Máximo LNC, Zobi F, da Silva RS, Crespilho FN. Non-destructive molecular FTIR spectromicroscopy for real time assessment of redox metallodrugs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1094-1102. [PMID: 34935794 DOI: 10.1039/d1ay01198g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent emergence of FTIR spectromicroscopy (micro-FTIR) as a dynamic spectroscopy for imaging to study biological chemistry has opened new possibilities for investigating in situ drug release, redox chemistry effects on biological molecules, DNA and drug interactions, membrane dynamics, and redox reactions with proteins at the single cell level. Micro-FTIR applied to metallodrugs has been playing an important role since the last decade because of its great potential to achieve more robust and controlled pharmacological effects against several diseases, including cancer. An important aspect in the development of these drugs is to understand their cellular properties, such as uptake, accumulation, activity, and toxicity. In this review, we present the potential application of micro-FTIR and its importance for studying metal-based drugs, highlighting the perspectives of chemistry of living cells. We also emphasise bioimaging, which is of high importance to localize the cellular processes, for a proper understanding of the mechanism of action.
Collapse
Affiliation(s)
- Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Fernando P Rodrigues
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Leandro N C Máximo
- Department of Chemistry, Federal Institute of Education, Science and Technology, Goiano, Urutuai, GO 75790-000, Brazil
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
8
|
Pavlidis G, Schwartz JJ, Matson J, Folland T, Liu S, Edgar JH, Caldwell JD, Centrone A. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic ( 10B) hexagonal boron nitride at room temperature. APL MATERIALS 2021; 9:10.1063/5.0061941. [PMID: 37720466 PMCID: PMC10502608 DOI: 10.1063/5.0061941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy-providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared ( 6.4 - 7.4 μ m ) HPhPs in large (up to 120 × 250 μ m 2 near-monoisotopic > 99 % B 10 ) hexagonal boron nitride (hBN) flakes. Wide ( ≈ 40 μ m ) PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.) and together with Fourier analyses 0.05 μ m - 1 resolution) enable precise measurements of HPhP lifetimes (up to ≈ 4.2 p s and propagation lengths (up to ≈ 25 and ≈ 17 μ m for the first- and second-order branches, respectively). With respect to naturally abundant hBN, we report an eightfold improved, record-high (for hBN) propagating figure of merit (i.e., with both high confinement and long lifetime) in ≈ 99 % B 10 hBN, achieving, finally, theoretically predicted values. We show that wide near-field scans critically enable accurate estimates of the polaritons' lifetimes and propagation lengths and that the incidence angle of light, with respect to both the sample plane and the flake edge, needs to be considered to extract correctly the dispersion relation from the near-field polaritons maps. Overall, the measurements and data analyses employed here elucidate details pertaining to polaritons' propagation in isotopically enriched hBN and pave the way for developing high-performance HPhP-based devices.
Collapse
Affiliation(s)
- Georges Pavlidis
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| | - Jeffrey J. Schwartz
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Joseph Matson
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Thomas Folland
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Song Liu
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - James H. Edgar
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - Josh D. Caldwell
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Andrea Centrone
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
9
|
Schrage BR, Frisinger BR, Schmidtke Sobeck SJ, Ziegler CJ. Lipophilic Re(CO) 3pyca complexes for Mid-IR imaging applications. Dalton Trans 2021; 50:1069-1075. [PMID: 33367427 PMCID: PMC7932017 DOI: 10.1039/d0dt03743e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several Re(i)pyca conjugates incorporating long aliphatic amines have been synthesized through a one-pot methodology. The compounds have been fully characterized, and seven compounds have been structurally elucidated by single crystal X-ray diffraction. The C14 variant was probed as a potential organometallic IR dye. Large unilamellar vesicles were generated with DOPC and the C14 compound and we observed incorporation of the rhenium complex as observed by FTIR microscopy.
Collapse
Affiliation(s)
- Briana R Schrage
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, USA.
| | - Baylee R Frisinger
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, USA.
| | | | | |
Collapse
|
10
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
11
|
Bertrand B, Botuha C, Forté J, Dossmann H, Salmain M. A Bis-Chelating O N O ^ / N N ^ Ligand for the Synthesis of Heterobimetallic Platinum(II)/Rhenium(I) Complexes: Tools for the Optimization of a New Class of Platinum(II) Anticancer Agents. Chemistry 2020; 26:12846-12861. [PMID: 32602602 DOI: 10.1002/chem.202001752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/23/2020] [Indexed: 01/03/2023]
Abstract
The two independent and N N ^ coordination sites of a newly synthesized bis[2-(hydroxyphenyl)-1,2,4-triazole] platform have been exploited to prepare four monometallic neutral ()PtII complexes carrying DMSO, pyridine, triphenylphosphine, or N-heterocyclic carbene as the fourth ligand. Then, the second N N ^ coordination site was used to introduce an IR-active rhenium tricarbonyl entity, affording the four corresponding heterobimetallic neutral PtII /ReI complexes, as well as a cationic PtII /ReI derivative. X-ray crystallographic studies showed that distortion of the organic platform occurred to accommodate the coordination geometry of both metal centers. No ligand exchange or transchelation occurred upon incubation of the PtII complexes in aqueous environment or in the presence of FeIII , respectively. The antiproliferative activity of the ligand and complexes was first screened on the triple-negative breast cancer cell line MDA-MB-231. Then, the IC50 values of the most active candidates were determined on a wider panel of human cancer cells (MDA-MB-231, MCF-7, and A2780), as well as on a nontumorigenic cell line (MCF-10A). Low micromolar activities were reached for the complexes carrying a DMSO ligand, making them the first examples of highly active, but hydrolytically stable, PtII complexes. Finally, the characteristic mid-IR signature of the {Re(CO)3 } fragment in the Pt/Re heterobimetallic complexes was used to quantify their uptake in breast cancer cells.
Collapse
Affiliation(s)
- Benoît Bertrand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Candice Botuha
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Jérémy Forté
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Héloïse Dossmann
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| |
Collapse
|
12
|
Morsch S, Lyon S, Edmondson S, Gibbon S. Reflectance in AFM-IR: Implications for Interpretation and Remote Analysis of the Buried Interface. Anal Chem 2020; 92:8117-8124. [PMID: 32412736 PMCID: PMC7467426 DOI: 10.1021/acs.analchem.9b05793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AFM-IR combines the chemical sensitivity of infrared spectroscopy with the lateral resolution of scanning probe microscopy, allowing nanoscale chemical analysis of almost any organic material under ambient conditions. As a result, this versatile technique is rapidly gaining popularity among materials scientists. Here, we report a previously overlooked source of data and artifacts in AFM-IR analysis; reflection from the buried interface. Periodic arrays of gold on glass are used to show that the overall signal in AFM-IR is affected by the wavelength-dependent reflectivity and thermal response of the underlying substrate. Excitingly, this demonstrates that remote analysis of heterogeneities at the buried interface is possible alongside that of an overlying organic film. On the other hand, AFM-IR users should carefully consider the composition and topography of underlying substrates when interpreting nanoscale infrared data. The common practice of generating ratio images, or indeed the normalization of AFM-IR spectra, should be approached with caution in the presence of substrate heterogeneity or variable sample thickness.
Collapse
Affiliation(s)
- Suzanne Morsch
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Stuart Lyon
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Steve Edmondson
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Simon Gibbon
- AkzoNobel, Stoneygate Lane, Felling, Gateshead, Tyne and Wear NE10 0JY, United Kingdom
| |
Collapse
|
13
|
Chan KLA, Lekkas I, Frogley MD, Cinque G, Altharawi A, Bello G, Dailey LA. Synchrotron Photothermal Infrared Nanospectroscopy of Drug-Induced Phospholipidosis in Macrophages. Anal Chem 2020; 92:8097-8107. [PMID: 32396367 DOI: 10.1021/acs.analchem.9b05759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synchrotron resonance-enhanced infrared atomic force microscopy (RE-AFM-IR) is a near-field photothermal vibrational nanoprobe developed at Diamond Light Source (DLS), capable of measuring mid-infrared absorption spectra with spatial resolution around 100 nm. The present study reports a first application of synchrotron RE-AFM-IR to interrogate biological soft matter at the subcellular level, in this case, on a cellular model of drug-induced phospholipidosis (DIPL). J774A-1 macrophages were exposed to amiodarone (10 μM) or medium for 24 h and chemically fixed. AFM topography maps revealed amiodarone-treated cells with enlarged cytoplasm and very thin regions corresponding to collapsed vesicles. IR maps of the whole cell were analyzed by exploiting the RE-AFM-IR overall signal, i.e., the integrated RE-AFM-IR signal amplitude versus AFM-derived cell thickness, also on lateral resolution around 100 nm. Results show that vibrational band assignment was possible, and all characteristic peaks for lipids, proteins, and DNA/RNA were identified. Both peak ratio and unsupervised chemometric analysis of RE-AFM-IR nanospectra generated from the nuclear and perinuclear regions of untreated and amiodarone-treated cells showed that the perinuclear region (i.e., cytoplasm) of amiodarone-treated cells had significantly elevated band intensities in the regions corresponding to phosphate and carbonyl groups, indicating detection of phospholipid-rich inclusion bodies typical for cells with DIPL. The results of this study are of importance to demonstrate not only the applicability of Synchrotron RE-AFM-IR to soft biological matters with subcellular spatial resolution but also that the spectral information gathered from an individual submicron sample volume enables chemometric identification of treatment and biochemical differences between mammalian cells.
Collapse
Affiliation(s)
- Ka Lung Andrew Chan
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Ioannis Lekkas
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton-Didcot OX11 0DE, U.K
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton-Didcot OX11 0DE, U.K
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton-Didcot OX11 0DE, U.K
| | - Ali Altharawi
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Gianluca Bello
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmacy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
14
|
Roman M, Wrobel TP, Paluszkiewicz C, Kwiatek WM. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960094. [PMID: 31999078 DOI: 10.1002/jbio.201960094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier-transform infrared [FT-IR], Raman and atomic force microscopy infrared [AFM-IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC-3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT-IR and Raman imaging showed to be comparable, whereas those achieved from AFM-IR study exhibited higher spectral heterogeneity. It confirms AFM-IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p-polarized AFM-IR spectra showed strong enhancement of lipid bands when compared to FT-IR.
Collapse
Affiliation(s)
- Maciej Roman
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz P Wrobel
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Czeslawa Paluszkiewicz
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech M Kwiatek
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
15
|
Wu K, Pudasaini B, Park JY, Top S, Jaouen G, Baik MH, Geiger WE. Oxidation of Cymantrene-Tagged Tamoxifen Analogues: Effect of Diphenyl Functionalization on the Redox Mechanism. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kan Wu
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji Young Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Siden Top
- Sorbonne Université, UPMC, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Gérard Jaouen
- Sorbonne Université, UPMC, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 rue Pierre and Marie Curie, F-75005 Paris, France
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - William E. Geiger
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
16
|
Rodrigues FP, Macedo LJA, Máximo LNC, Sales FCPF, da Silva RS, Crespilho FN. Real-time redox monitoring of a nitrosyl ruthenium complex acting as NO-donor agent in a single A549 cancer cell with multiplex Fourier-transform infrared microscopy. Nitric Oxide 2020; 96:29-34. [PMID: 31952991 DOI: 10.1016/j.niox.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
Multiplex Fourier-transform infrared microscopy (μFT-IR) helped to monitor trans-[Ru(NO) (NH3)4 (isn)]3+(I), uptake by A549 lung carcinoma cell, as well as the generation of its product, nitric oxide (NO), inside the cell. Chronoamperometry with NO-sensor and μFT-IR showed that exogenous NADH and the A549 cell induced the NO release redox mechanism. Chemical imaging confirmed that (I) was taken up by the cell, and that its localization coincided with its consumption in the cellular environment within 15 min of exposure. The Ru-NO absorption band in the IR spectrum shifted from 1932 cm-1, when NO was coordinated to Ru as {RuII-NO+}3+, to 1876 cm-1, due the formation of reduced species {RuII-NO0}2+, a precursor of NO release. Futhermore, the μFT-IR spectral profile demonstrated that, as a result of the NO action on the target, NO interacted with nucleic acids, which provided a biochemical response that is detectable in living cells.
Collapse
Affiliation(s)
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Leandro N C Máximo
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil; Department of Chemistry, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Urutaí, GO, 75790-000, Brazil
| | - Fernanda C P F Sales
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
17
|
Bioactive 1,1′-unsymmetrical bi-functional ferrocenyl compounds using a novel solvent free one pot multicomponent reaction method. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Clède S, Sandt C, Dumas P, Policar C. Monitoring the Kinetics of the Cellular Uptake of a Metal Carbonyl Conjugated with a Lipidic Moiety in Living Cells Using Synchrotron Infrared Spectromicroscopy. APPLIED SPECTROSCOPY 2020; 74:63-71. [PMID: 31617373 DOI: 10.1177/0003702819877260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Presented here is the exploitation of synchrotron infrared spectromicroscopy to evaluate the feasibility of monitoring the cellular uptake of rhenium-tris-carbonyl-tagged (Re(CO)3) lipophilic chains in living cells. To this aim, an in-house thermostated microfluidic device was used to limit water absorption while keeping cells alive. Indeed, cells showed a high survival rate in the microfluidic device over the course of the experiment, proving the short-term biocompatibility of the device. We recorded spectra of single, living, fully hydrated breast cancer MDA-MB231 cells and could follow the penetration of the rhenium complexes for up to 2 h. Despite the strong variations observed in the uptake kinetics between individual cells, the Re(CO)3 complex was traced inside the cells at low concentration and shown to enter them on the hour time scale by active transport.
Collapse
Affiliation(s)
- Sylvain Clède
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| | - Christophe Sandt
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Paul Dumas
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| |
Collapse
|
19
|
Morrison CN, Prosser KE, Stokes RW, Cordes A, Metzler-Nolte N, Cohen SM. Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. Chem Sci 2019; 11:1216-1225. [PMID: 34123246 PMCID: PMC8148059 DOI: 10.1039/c9sc05586j] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity - particularly fragments with three-dimensional (3D) structures - has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called 'metallofragments' (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.
Collapse
Affiliation(s)
- Christine N Morrison
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Kathleen E Prosser
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Anna Cordes
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
20
|
Quaroni L. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging. Molecules 2019; 24:E4504. [PMID: 31835358 PMCID: PMC6943681 DOI: 10.3390/molecules24244504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Photothermal-induced resonance (PTIR) spectroscopy and imaging with infrared light has seen increasing application in the molecular spectroscopy of biological samples. The appeal of the technique lies in its capability to provide information about IR light absorption at a spatial resolution better than that allowed by light diffraction, typically below 100 nm. In the present work, we tested the capability of the technique to perform measurements with subcellular resolution on intact eukaryotic cells, without drying or fixing. We demonstrate the possibility of obtaining PTIR images and spectra from the nucleus and multiple organelles with high resolution, better than that allowed by diffraction with infrared light. We obtain particularly strong signal from bands typically assigned to acyl lipids and proteins. We also show that while a stronger signal is obtained from some subcellular structures, other large subcellular components provide a weaker or undetectable PTIR response. The mechanism that underlies such variability in response is presently unclear. We propose and discuss different possibilities, addressing thermomechanical, geometrical, and electrical properties of the sample and the presence of cellular water, from which the difference in response may arise.
Collapse
Affiliation(s)
- Luca Quaroni
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland; ; Tel.: +48-12-6862520
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| |
Collapse
|
21
|
Solvent free synthesis of ferrocene based rhodamine – hydrazone molecular probe with improved bioaccumulation for sensing and imaging applications. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Roman M, Wrobel TP, Panek A, Paluszkiewicz C, Kwiatek WM. Nanoscale AFM-IR spectroscopic imaging of lipid heterogeneity and effect of irradiation in prostate cancer cells. NANOTECHNOLOGY 2019; 30:425502. [PMID: 31300624 DOI: 10.1088/1361-6528/ab31dd] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent development of the AFM-IR technique, which combines nanoscale imaging with chemical contrast through infrared spectroscopy, opened up new fields for exploration, which were out of reach for other modalities, e.g. Raman spectroscopy. Lipid droplets (LDs) are key organelles, which are associated with stress response mechanisms in cells and their size falls into that niche. LDs composition is heterogeneous and varies depending on cancer cell type and the tumor microenvironment. Prostate cancer cells show a unique lipid metabolism manifested by an increased requirement for lipid accumulation in cytosolic LDs. In the current work, AFM-IR nanoimaging was undertaken to analyze lipids in untreated and x-ray irradiated PC-3 prostate cancer cells. Cells poor in LDs showed slightly increased lipid signal in cytoplasm close to the nucleus. On the other hand, high lipid signal coming from LDs accumulation could be found in any part of the cytoplasmic region. The observed behavior was found to be independent from irradiation and its dose. According to the band assignment of the collected AFM-IR spectra, the main components of LDs were assigned to cholesteryl esters. The size of LDs present in cells poor in lipids was found to be of less than 1 μm, whereas LDs aggregates spread out over a few microns. Analysis of AFM-IR spectra shows relative homogeneity of LDs composition in single cells and heterogeneity of LDs content within the PC-3 cell population.
Collapse
Affiliation(s)
- Maciej Roman
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | | | | | | | | |
Collapse
|
23
|
Lipiec E, Ruggeri FS, Benadiba C, Borkowska AM, Kobierski JD, Miszczyk J, Wood BR, Deacon GB, Kulik A, Dietler G, Kwiatek WM. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Res 2019; 47:e108. [PMID: 31562528 PMCID: PMC6765102 DOI: 10.1093/nar/gkz630] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 01/27/2023] Open
Abstract
The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Francesco S Ruggeri
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University of Cambridge, CB21EW, UK
| | - Carine Benadiba
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anna M Borkowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Jan D Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy Jagiellonian University Medical College, PL-31007 Cracow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Glen B Deacon
- School of Chemistry, Faculty of Science, Monash University, 3800 Victoria, Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
24
|
Dewangan S, Mishra S, Mawatwal S, Dhiman R, Parida R, Giri S, Wölper C, Chatterjee S. Synthesis of Ferrocene Tethered Heteroaromatic Compounds Using Solid Supported Reaction Method, their Cytotoxic Evaluation and Fluorescence Behavior. ChemistrySelect 2019. [DOI: 10.1002/slct.201901088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Smriti Dewangan
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Sasmita Mishra
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Shradha Mawatwal
- Department of Life ScienceNational Institute of Technology Rourkela Orissa-769008 India
| | - Rohan Dhiman
- Department of Life ScienceNational Institute of Technology Rourkela Orissa-769008 India
| | - Rakesh Parida
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| | - Santanab Giri
- Department of Applied SciencesHaldia Institute of Technology, ICARE Complex Haldia-721657, W.B India
| | - Christoph Wölper
- Department for X-Ray DiffractionInstitut für Anorganische Chemie, Universität Duisburg-Essen D-45117 Essen Germany
| | - Saurav Chatterjee
- Department of ChemistryNational Institute of Technology Rourkela Orissa-769008 India
| |
Collapse
|
25
|
Ghosh A, Barik T, Dewangan S, Majhi PK, Sasamori T, Mobin SM, Giri S, Chatterjee S. Selective functionalization of ferrocenyl compounds using a novel solvent free synthetic method for the preparation of bioactive unsymmetrical ferrocenyl derivatives. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Avishek Ghosh
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Tulasi Barik
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Smriti Dewangan
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Paresh Kumar Majhi
- Graduate School of Natural SciencesNagoya City University Nagoya Aichi 467‐8501 Japan
| | - Takahiro Sasamori
- Graduate School of Natural SciencesNagoya City University Nagoya Aichi 467‐8501 Japan
| | - Shaikh M. Mobin
- Schools of Basic ScienceIndian Institute of Technology Indore MP 452017 India
| | - Santanab Giri
- Theoretical Chemistry Laboratory, Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| | - Saurav Chatterjee
- Department of ChemistryNational Institute of Technology Rourkela Rourkela 769008 India
| |
Collapse
|
26
|
Lin D, Lin YC, Yang SW, Zhou L, Leong WK, Feng SY, Kong KV. Organometallic-Constructed Tip-Based Dual Chemical Sensing by Tip-Enhanced Raman Spectroscopy for Diabetes Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41902-41908. [PMID: 30387600 DOI: 10.1021/acsami.8b11950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is capable of probing specific molecular information with high sensitivity, but dual chemical sensing remains a challenge. Another major hindrance to TERS chemical detection in biosamples such as blood is the interference from the strong absorptions of biomolecules. Herein, we report the preparation of an organometallic-conjugated TERS tip. We demonstrate that organometallic chemistry can be perfectly coupled with TERS for dual-molecule sensing. The unique Raman signals generated by the organometallic compound circumvent signal interference from the biomolecules in blood, allowing the rapid analysis of two important molecules (glucose and thiol) in ultralow volume (50 nL) samples. This enabled a correlation between the thiol and glucose levels in the blood of nondiabetic and diabetic patients to be drawn.
Collapse
Affiliation(s)
- Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology , Fujian Normal University , Fuzhou 350007 , China
- College of Integrated Traditional Chinese and Western Medicine , Fujian University of Traditional Chinese Medicine , Fuzhou 350122 , China
| | - Yi-Cheng Lin
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Shang-Wei Yang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Lan Zhou
- Department of Urology, Shanghai East Hospital , Tongji University School of Medicine , Shanghai 200000 , China
| | - Weng Kee Leong
- Division of Chemistry & Biological Chemistry , Nanyang Technological University , 639798 , Singapore
| | - Shang-Yuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology , Fujian Normal University , Fuzhou 350007 , China
| | - Kien Voon Kong
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
27
|
Wang Y, Heinemann F, Top S, Dazzi A, Policar C, Henry L, Lambert F, Jaouen G, Salmain M, Vessieres A. Ferrocifens labelled with an infrared rhenium tricarbonyl tag: synthesis, antiproliferative activity, quantification and nano IR mapping in cancer cells. Dalton Trans 2018; 47:9824-9833. [PMID: 29993046 DOI: 10.1039/c8dt01582a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antiproliferative activities of several members of the ferrocifen family, both in vitro and in vivo, are well documented although their precise location in cancer cells has not yet been elucidated. However, two different infrared imaging techniques have been used to map the non-cytotoxic cyrhetrenyl analogue of ferrociphenol in a single cell. This observation prompted us to tag two ferrocifens with a cyrhetrenyl unit [CpRe(CO)3; Cp = η5-cyclopentadienyl] by grafting it, via an ester bond, either to one of the phenols (4, 5) or to the hydroxypropyl chain (6). Complexes 4-6 retained a high cytotoxicity on breast cancer cells (MDA-MB-231) with IC50 values in the range 0.32-2.5 μM. Transmission IR spectroscopy was used to quantify the amount of cyrhetrenyl tag present in cells incubated with 5 or 6. The results show that after a 1-hour incubation of cells at 37 °C, complexes 5 and 6 are mainly present within cells while only a limited percentage, quantified by ICP-OES, remained in the incubation medium. AFM-IR spectroscopy, a technique coupling infrared irradiation with near-field AFM detection, was used to map the cyrhetrenyl unit in a single MDA-MB-231 cell, incubated at 37 °C for 1 hour with 10 μM of 6. The results show that signal distribution of the characteristic band of the Re(CO)3 entity at 1950 cm-1 matched those of amide and phosphate, thus indicating a location of the complex mainly in the cell nucleus.
Collapse
Affiliation(s)
- Yong Wang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ruggeri FS, Marcott C, Dinarelli S, Longo G, Girasole M, Dietler G, Knowles TPJ. Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. Int J Mol Sci 2018; 19:E2582. [PMID: 30200270 PMCID: PMC6163177 DOI: 10.3390/ijms19092582] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022] Open
Abstract
During their lifespan, Red blood cells (RBC), due to their inability to self-replicate, undergo an ageing degradation phenomenon. This pathway, both in vitro and in vivo, consists of a series of chemical and morphological modifications, which include deviation from the biconcave cellular shape, oxidative stress, membrane peroxidation, lipid content decrease and uncoupling of the membrane-skeleton from the lipid bilayer. Here, we use the capabilities of atomic force microscopy based infrared nanospectroscopy (AFM-IR) to study and correlate, with nanoscale resolution, the morphological and chemical modifications that occur during the natural degradation of RBCs at the subcellular level. By using the tip of an AFM to detect the photothermal expansion of RBCs, it is possible to obtain nearly two orders of magnitude higher spatial resolution IR spectra, and absorbance images than can be obtained on diffraction-limited commercial Fourier-transform Infrared (FT-IR) microscopes. Using this approach, we demonstrate that we can identify localized sites of oxidative stress and membrane peroxidation on individual RBC, before the occurrence of neat morphological changes in the cellular shape.
Collapse
Affiliation(s)
| | - Curtis Marcott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Light Light Solutions, Athens, GA 30608, USA.
| | - Simone Dinarelli
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Longo
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Marco Girasole
- Institute of Structural Matter, ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Tuomas P J Knowles
- Department of Chemistry, Cambridge University, Cambridge CB21EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
29
|
Kenkel S, Mittal A, Mittal S, Bhargava R. Probe-Sample Interaction-Independent Atomic Force Microscopy-Infrared Spectroscopy: Toward Robust Nanoscale Compositional Mapping. Anal Chem 2018; 90:8845-8855. [PMID: 29939013 PMCID: PMC6361725 DOI: 10.1021/acs.analchem.8b00823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoscale topological imaging using atomic force microscopy (AFM) combined with infrared (IR) spectroscopy (AFM-IR) is a rapidly emerging modality to record correlated structural and chemical images. Although the expectation is that the spectral data faithfully represents the underlying chemical composition, the sample mechanical properties affect the recorded data (known as the probe-sample-interaction effect). Although experts in the field are aware of this effect, the contribution is not fully understood. Further, when the sample properties are not well-known or when AFM-IR experiments are conducted by nonexperts, there is a chance that these nonmolecular properties may affect analytical measurements in an uncertain manner. Techniques such as resonance-enhanced imaging and normalization of the IR signal using ratios might improve fidelity of recorded data, but they are not universally effective. Here, we provide a fully analytical model that relates cantilever response to the local sample expansion which opens several avenues. We demonstrate a new method for removing probe-sample-interaction effects in AFM-IR images by measuring the cantilever responsivity using a mechanically induced, out-of-plane sample vibration. This method is then applied to model polymers and mammary epithelial cells to show improvements in sensitivity, accuracy, and repeatability for measuring soft matter when compared to the current state of the art (resonance-enhanced operation). Understanding of the sample-dependent cantilever responsivity is an essential addition to AFM-IR imaging if the identification of chemical features at nanoscale resolutions is to be realized for arbitrary samples.
Collapse
Affiliation(s)
- Seth Kenkel
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Mechanical Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Anirudh Mittal
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Shachi Mittal
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Mechanical Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemical and Biomolecular Engineering, Department of Electrical and Computer Engineering, and Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
30
|
Lipiec E, Wood BR, Kulik A, Kwiatek WM, Dietler G. Nanoscale Investigation into the Cellular Response of Glioblastoma Cells Exposed to Protons. Anal Chem 2018; 90:7644-7650. [PMID: 29799188 DOI: 10.1021/acs.analchem.8b01497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exposure to ionizing radiation can induce cellular defense mechanisms including cell activation and rapid proliferation prior to metastasis and in extreme cases can result in cell death. Herewith we apply infrared nano- and microspectroscopy combined with multidimensional data analysis to characterize the effect of ionizing radiation on single glioblastoma nuclei isolated from cells treated with 10 Gy of X-rays or 1 and 10 Gy of protons. We observed chromatin fragmentation related to the formation of apoptotic bodies following X-ray exposure. Following proton irradiation we detected evidence of a DNA conformational change (B-DNA to A-DNA transition) related to DNA repair and accompanied by an increase in protein content related to the synthesis of peptide enzymes involved in DNA repair. We also show that proton exposure can increase cholesterol and sterol ester synthesis, which are important lipids involved in the metastatic process changing the fluidity of the cellular membrane in preparation for rapid proliferation.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow , Poland.,Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.,Centre for Biospectroscopy and School of Chemistry , Monash University , 3800 Clayton , Victoria , Australia
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry , Monash University , 3800 Clayton , Victoria , Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow , Poland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
31
|
Henry L, Delsuc N, Laugel C, Lambert F, Sandt C, Hostachy S, Bernard AS, Bertrand HC, Grimaud L, Baillet-Guffroy A, Policar C. Labeling of Hyaluronic Acids with a Rhenium-tricarbonyl Tag and Percutaneous Penetration Studied by Multimodal Imaging. Bioconjug Chem 2018; 29:987-991. [PMID: 29360339 DOI: 10.1021/acs.bioconjchem.7b00825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyaluronic acids were labeled with a rhenium-tricarbonyl used as single core multimodal probe for imaging and their penetration into human skin biopsies was studied using IR microscopy and fluorescence imaging (labeled SCoMPI). The penetration was shown to be dependent on the molecular weight of the molecule and limited to the upper layer of the skin.
Collapse
Affiliation(s)
- Lucas Henry
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Cécile Laugel
- Laboratory of Analytical Chemistry, Lip(Sys)2, (EA 7357), Faculty of Pharmacy, Paris-Sud , University of Paris-Saclay , 5 Rue Jean-Baptiste Clément , 92296 Chatenay-Malabry , France
| | - François Lambert
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Christophe Sandt
- SMIS beamline , Synchrotron SOLEIL Saint-Aubin , 91192 Gif-sur-Yvette Cedex , France
| | - Sarah Hostachy
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Anne-Sophie Bernard
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Hélène C Bertrand
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Laurence Grimaud
- PASTEUR, Département de chimie, École normale supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS , 75005 Paris , France
| | - Arlette Baillet-Guffroy
- Laboratory of Analytical Chemistry, Lip(Sys)2, (EA 7357), Faculty of Pharmacy, Paris-Sud , University of Paris-Saclay , 5 Rue Jean-Baptiste Clément , 92296 Chatenay-Malabry , France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
32
|
Tang F, Bao P, Roy A, Wang Y, Su Z. In-situ spectroscopic and thermal analyses of phase domains in high-impact polypropylene. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Choi B, Jeong G, Kim ZH. Infrared Spectroscopy and Imaging at Nanometer Scale. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Boogeon Choi
- Department of Chemistry; Seoul National University; Seoul 08826 South Korea
| | - Gyouil Jeong
- Department of Chemistry; Seoul National University; Seoul 08826 South Korea
| | - Zee Hwan Kim
- Department of Chemistry; Seoul National University; Seoul 08826 South Korea
| |
Collapse
|
34
|
Kaczmarek R, Korczyński D, Królewska‐Golińska K, Wheeler KA, Chavez FA, Mikus A, Dembinski R. Organometallic Nucleosides: Synthesis and Biological Evaluation of Substituted Dicobalt Hexacarbonyl 2'-Deoxy-5-oxopropynyluridines. ChemistryOpen 2018; 7:237-247. [PMID: 29531887 PMCID: PMC5838391 DOI: 10.1002/open.201700168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 01/16/2023] Open
Abstract
Reactions of dicobalt octacarbonyl [Co2(CO)8] with 2'-deoxy-5-oxopropynyluridines and related compounds gave dicobalt hexacarbonyl nucleoside complexes (83-31 %). The synthetic outcomes were confirmed by X-ray structure determination of dicobalt hexacarbonyl 2'-deoxy-5-(4-hydroxybut-1-yn-1-yl)uridine, which exhibits intermolecular hydrogen bonding between a modified base and ribose. The electronic structure of this compound was characterized by the DFT calculations. The growth inhibition of HeLa and K562 cancer cell lines by organometallic nucleosides was examined and compared to that by alkynyl nucleoside precursors. Coordination of the dicobalt carbonyl moiety to the 2'-deoxy-5-alkynyluridines led to a significant increase in the cytotoxic potency. The cobalt compounds displayed antiproliferative activities with median inhibitory values (IC50) in the range of 20 to 80 μm for the HeLa cell line and 18 to 30 μm for the K562 cell line. Coordination of an acetyl-substituted cobalt nucleoside was expanded by using the 1,1-bis(diphenylphosphino)methane (dppm) ligand, which exhibited cytotoxicity at comparable levels. The formation of reactive oxygen species in the presence of cobalt compounds was determined in K562 cells. The results indicate that the mechanism of action for most antiproliferative cobalt compounds may be related to the induction of oxidative stress.
Collapse
Affiliation(s)
- Renata Kaczmarek
- Department of Bioorganic ChemistryCentre of Molecular and Macromolecular StudiesPolish Academy of SciencesSienkiewicza 11290–363ŁódźPoland
| | - Dariusz Korczyński
- Department of Bioorganic ChemistryCentre of Molecular and Macromolecular StudiesPolish Academy of SciencesSienkiewicza 11290–363ŁódźPoland
| | - Karolina Królewska‐Golińska
- Department of Bioorganic ChemistryCentre of Molecular and Macromolecular StudiesPolish Academy of SciencesSienkiewicza 11290–363ŁódźPoland
| | - Kraig A. Wheeler
- Department of ChemistryWhitworth University300 W. Hawthorne Rd.SpokaneWA99251USA
| | - Ferman A. Chavez
- Department of ChemistryOakland University146 Library DriveRochesterMI48309-4479USA
| | - Agnieszka Mikus
- Department of ChemistryOakland University146 Library DriveRochesterMI48309-4479USA
| | - Roman Dembinski
- Department of Bioorganic ChemistryCentre of Molecular and Macromolecular StudiesPolish Academy of SciencesSienkiewicza 11290–363ŁódźPoland
- Department of ChemistryOakland University146 Library DriveRochesterMI48309-4479USA
| |
Collapse
|
35
|
Quaroni L, Pogoda K, Wiltowska-Zuber J, Kwiatek WM. Mid-infrared spectroscopy and microscopy of subcellular structures in eukaryotic cells with atomic force microscopy – infrared spectroscopy. RSC Adv 2018; 8:2786-2794. [PMID: 35541450 PMCID: PMC9077331 DOI: 10.1039/c7ra10240b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/25/2019] [Accepted: 12/21/2017] [Indexed: 01/30/2023] Open
Abstract
Atomic force microscopy – infrared (AFM-IR) spectroscopy allows spectroscopic studies in the mid-infrared (mid-IR) spectral region with a spatial resolution better than is allowed by the diffraction limit. We show that the high spatial resolution can be used to perform spectroscopic and imaging studies at the subcellular level in fixed eukaryotic cells. We collect AFM-IR images of subcellular structures that include lipid droplets, vesicles and cytoskeletal filaments, by relying on the intrinsic contrast from IR light absorption. We also obtain AFM-IR absorption spectra of individual subcellular structures. Most spectra show features that are recognizable in the IR absorption spectra of cells and tissue obtained with FTIR technology, including absorption bands characteristic of phospholipids and polypeptides. The quality of the spectra and of the images opens the way to structure and composition studies at the subcellular level using mid-IR absorption spectroscopy. Atomic force microscopy – infrared (AFM-IR) spectroscopy allows spectroscopic studies in the mid-infrared (mid-IR) spectral region with a spatial resolution better than is allowed by the diffraction limit.![]()
Collapse
Affiliation(s)
- Luca Quaroni
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Katarzyna Pogoda
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Joanna Wiltowska-Zuber
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| | - Wojciech M. Kwiatek
- Department of Experimental Physics of Complex Systems
- Institute of Nuclear Physics
- Polish Academy of Sciences
- Kraków
- Poland
| |
Collapse
|
36
|
Ruggeri FS, Habchi J, Cerreta A, Dietler G. AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species. Curr Pharm Des 2017; 22:3950-70. [PMID: 27189600 PMCID: PMC5080865 DOI: 10.2174/1381612822666160518141911] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Background A wide class of human diseases and neurodegenerative disorders, such as Alzheimer’s disease, is due to the failure of a specific peptide or protein to keep its native functional conformational state and to undergo a conformational change into a misfolded state, triggering the formation of fibrillar cross-β sheet amyloid aggregates. During the fibrillization, several coexisting species are formed, giving rise to a highly heterogeneous mixture. Despite its fundamental role in biological function and malfunction, the mechanism of protein self-assembly and the fundamental origins of the connection between aggregation, cellular toxicity and the biochemistry of neurodegeneration remains challenging to elucidate in molecular detail. In particular, the nature of the specific state of proteins that is most prone to cause cytotoxicity is not established. Methods: In the present review, we present the latest advances obtained by Atomic Force Microscopy (AFM) based techniques to unravel the biophysical properties of amyloid aggregates at the nanoscale. Unraveling amyloid single species biophysical properties still represents a formidable experimental challenge, mainly because of their nanoscale dimensions and heterogeneous nature. Bulk techniques, such as circular dichroism or infrared spectroscopy, are not able to characterize the heterogeneity and inner properties of amyloid aggregates at the single species level, preventing a profound investigation of the correlation between the biophysical properties and toxicity of the individual species. Conclusion: The information delivered by AFM based techniques could be central to study the aggregation pathway of proteins and to design molecules that could interfere with amyloid aggregation delaying the onset of misfolding diseases.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Synthesis of hybrid compounds composed of daunorubicin covalently linked with Cp 2 Fe and CpMn(CO) 3. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
|
39
|
Murshid N, El-Temtamy A, Wang X. Synthesis and solution behaviour of metal-carbonyl amphiphiles with an Fp (CpFe(CO)2) junction. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
41
|
Design, Synthesis, and Reactivity of Multidentate Ligands with Rhenium(I) and Rhenium(V) Cores. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Rosenberger MR, Wang MC, Xie X, Rogers JA, Nam S, King WP. Measuring individual carbon nanotubes and single graphene sheets using atomic force microscope infrared spectroscopy. NANOTECHNOLOGY 2017; 28:355707. [PMID: 28656907 DOI: 10.1088/1361-6528/aa7c23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Matthew R Rosenberger
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801, United States of America
| | | | | | | | | | | |
Collapse
|
43
|
Chien YH, Wang CH, Liu CC, Chang SH, Kong KV, Chang YC. Large-Scale Nanofabrication of Designed Nanostructures Using Angled Nanospherical-Lens Lithography for Surface Enhanced Infrared Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24917-24925. [PMID: 28671812 DOI: 10.1021/acsami.7b08994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanophotonics has been a focused research discipline for the past decade and has resulted in many novel concepts that promise to change human life. However, the actual penetration of this research into real products is severely limited mostly due to the slow development of economic nanofabrication. In this study, we have demonstrated a versatile and low-cost nanofabrication method referred to as "angled nanospherical-lens lithography (A-NLL)", which is able to produce large-scale and periodic nanopatterns. The nanopatterns designed within a two-dimensional polar chart can be carefully fabricated on the substrate. The fabricated patterns easily cover an area larger than 1 cm2, which is beneficial as platforms for surface enhanced infrared absorption (SEIRA) where an expensive and bulky IR microscope is not required. We believe that the proposed A-NLL method is ideal for industrialization of future nanophotonic applications.
Collapse
Affiliation(s)
- Yi-Hsin Chien
- Research Center for Applied Sciences, Academia Sinica , Taipei 11526, Taiwan
| | - Chang-Han Wang
- Research Center for Applied Sciences, Academia Sinica , Taipei 11526, Taiwan
| | - Chi-Ching Liu
- Research Center for Applied Sciences, Academia Sinica , Taipei 11526, Taiwan
| | - Shih-Hui Chang
- Department of Photonics, National Cheng Kung University , Tainan 70101, Taiwan
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Yun-Chorng Chang
- Research Center for Applied Sciences, Academia Sinica , Taipei 11526, Taiwan
- Department of Photonics, National Cheng Kung University , Tainan 70101, Taiwan
- Department of Physics, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
44
|
Jin M, Lu F, Belkin MA. High-sensitivity infrared vibrational nanospectroscopy in water. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17096. [PMID: 30167276 PMCID: PMC6062223 DOI: 10.1038/lsa.2017.96] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 05/05/2023]
Affiliation(s)
- Mingzhou Jin
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758, USA
| | - Feng Lu
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758, USA
| | - Mikhail A Belkin
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758, USA
| |
Collapse
|
45
|
Lee LCC, Leung KK, Lo KKW. Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 2017; 46:16357-16380. [DOI: 10.1039/c7dt03465b] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Perspective summarizes recent advances in the biological applications of luminescent rhenium(i) tricarbonyl polypyridine complexes.
Collapse
Affiliation(s)
| | - Kam-Keung Leung
- Department of Chemistry
- City University of Hong Kong
- P. R. China
| | | |
Collapse
|
46
|
Handschuh-Wang S, Wang T, Zhou X. Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques. RSC Adv 2017. [DOI: 10.1039/c7ra08515j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review summaries the recent progress of the combination of optical and non-optical surface sensitive techniques with the atomic force microscopy.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Tao Wang
- Functional Thin Films Research Center
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|
47
|
Dazzi A, Prater CB. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem Rev 2016; 117:5146-5173. [DOI: 10.1021/acs.chemrev.6b00448] [Citation(s) in RCA: 532] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexandre Dazzi
- Laboratoire
de Chimie Physique, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Craig B. Prater
- Anasys Instruments, 325 Chapala
St., Santa Barbara, California 93101, United States
| |
Collapse
|
48
|
Mishra S, Dewangan S, Giri S, Mobin SM, Chatterjee S. Synthesis of Diferrocenyl Hydrazone–Enone Receptor Molecules – Electronic Communication, Metal Binding, and DFT Study. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sasmita Mishra
- Department of Chemistry National Institute of Technology Rourkela 769008 Orissa India
| | - Smriti Dewangan
- Department of Chemistry National Institute of Technology Rourkela 769008 Orissa India
| | - Santanab Giri
- Theoretical Chemistry Laboratory Department of Chemistry National Institute of Technology Rourkela 769008 Orissa India
| | - Shaikh M. Mobin
- Schools of Basic Science Indian Institute of Technology Indore 452017 Indore, MP India
| | - Saurav Chatterjee
- Department of Chemistry National Institute of Technology Rourkela 769008 Orissa India
| |
Collapse
|
49
|
Shedding light on the morphology of calcium oxalate monohydrate crystallites present in kidney biopsies in the case of hyperoxaluria. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Colboc H, Bazin D, Moguelet P, Frochot V, Weil R, Letavernier E, Jouanneau C, Francès C, Bachmeyer C, Bernaudin JF, Daudon M. Detection of silica and calcium carbonate deposits in granulomatous areas of skin sarcoidosis by μFourier transform infrared spectroscopy and Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy analysis. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|