1
|
Wang X, Chen K, Xu D, Wu S, Wu P, Ji Z, Kuang J, Zhang KY, Liu S, Zhao Q. Cyclometalated Iridium(III) Complexes Containing Viologen-Modified Phenylpyridine Ligands as Electroluminochromic Active Molecules for Information Display. SMALL METHODS 2024; 8:e2400113. [PMID: 38552252 DOI: 10.1002/smtd.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Indexed: 11/22/2024]
Abstract
Electroluminochromic (ELC) materials have garnered significant research interest because of their potential applications in lighting, displaying, and sensing. These materials exhibit reversible modulation of photoluminescence under low-voltage stimuli. Here five phosphorescent iridium(III) complexes are reported featuring viologen-substituted 2-phenylpyridine (Vppy) ligands acting as electroactive components. Four of the complexes are bis-cyclometalated and coordinated with either neutral bipyridine derivatives or negatively charged 2-picolinate. The remaining complex is heteroleptic tris-cyclometalated, containing one Vppy and two 2-phenylquinoline ligands. Upon photoexcitation, the bis-cyclometalated complexes exhibit orange to red phosphorescence originating from mixed triplet metal-to-ligand charge transfer (3MLCT) and intraligand (3IL) dπ(Ir)/π(Vppy) → π*(Vppy) state, whereas the tris-cyclometalated complex is non-emissive due to a low Ir(IV/III) oxidation potential favoring oxidative quenching by the viologen pendants. When the cationic viologens are electrochemically reduced to their neutral form, the bis-cyclometalated complexes show a remarkable blue-shift in their phosphorescence maxima due to increased energy levels of the Vppy molecular orbitals. In the case of the tris-cyclometalated complex, reduction of the viologen groups interrupts the quenching process, leading to a luminescence turn-on. These complexes are used to develop ELC devices, which exhibit reversible luminescence response in terms of color or on-off switching under a low voltage of 2 V.
Collapse
Affiliation(s)
- Xuecheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kun Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Dandong Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shuzi Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Pengcheng Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zhixin Ji
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jianru Kuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Yang SY, Chen Y, Kwok RTK, Lam JWY, Tang BZ. Platinum complexes with aggregation-induced emission. Chem Soc Rev 2024; 53:5366-5393. [PMID: 38712843 DOI: 10.1039/d4cs00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Transition metal-containing materials with aggregation-induced emission (AIE) have brought new opportunities for the development of biological probes, optoelectronic materials, stimuli-responsive materials, sensors, and detectors. Coordination compounds containing the platinum metal have emerged as a promising option for constructing effective AIE platinum complexes. In this review, we classified AIE platinum complexes based on the number of ligands. We focused on the development and performance of AIE platinum complexes with different numbers of ligands and discussed the impact of platinum ion coordination and ligand structure variation on the optoelectronic properties. Furthermore, this review analyzes and summarizes the influence of molecular geometries, stacking models, and aggregation environments on the optoelectronic performance of these complexes. We provided a comprehensive overview of the AIE mechanisms exhibited by various AIE platinum complexes. Based on the unique properties of AIE platinum complexes with different numbers of ligands, we systematically summarized their applications in electronics, biological fields, etc. Finally, we illustrated the challenges and opportunities for future research on AIE platinum complexes, aiming at giving a comprehensive summary and outlook on the latest developments of functional AIE platinum complexes and also encouraging more researchers to contribute to this promising field.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Yingying Chen
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
3
|
Riesebeck T, Strassner T. Phosphorescent Platinum(II) Complexes with a Spiro-fused Xanthene Unit: Synthesis and Photophysical Properties. Chemistry 2024; 30:e202304263. [PMID: 38450788 DOI: 10.1002/chem.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 03/08/2024]
Abstract
Novel platinum(II) complexes, derived from the spiro[fluorene-9,9'-xanthene] (SFX) motif, were synthesized and combined with different auxiliary ligands such as acetylacetonate (acac), bis(2,4,6-trimethylphenyl)propane-1,3-dionate (mesacac) and dihydrobis(3,5-dimethylpyrazole-1-yl) borate. The final products were obtained in yields of up to 36 % and characterized by NMR, X-ray and combustion analysis. These complexes have structured green-blue emission spectra with Commission Internationale de l'Éclairage (CIExy) coordinates of (0.21;0.46). Excellent photoluminescence quantum yields (PLQYs) ranging from 87 %-91 % were found. The emission lifetimes vary from 33 μs to 43 μs. Calculations on the B3LYP/6-311++G** level of theory reveal, that the nature of the emissive state is dependent on the positional regioisomerism of the SFX motif. The 2-SFX complexes demonstrate ligand-centered (3LC) emission, while the 2'-SFX regioisomer with the mesacac ligand shows a strong 3MLCT character.
Collapse
Affiliation(s)
- Tim Riesebeck
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
4
|
Kirse TM, Maisuls I, Spierling L, Hepp A, Kösters J, Strassert CA. One Dianionic Luminophore with Three Coordination Modes Binding Four Different Metals: Toward Unexpectedly Phosphorescent Transition Metal Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306801. [PMID: 38161218 PMCID: PMC10953592 DOI: 10.1002/advs.202306801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Indexed: 01/03/2024]
Abstract
This work reports on a battery of coordination compounds featuring a versatile dianionic luminophore adopting three different coordination modes (mono, bi, and tridentate) while chelating Pd(II), Pt(II), Au(III), and Hg(II) centers. An in-depth structural characterization of the ligand precursor (H2 L) and six transition metal complexes ([HLPdCNtBu], [LPtCl], [LPtCNtBu], [LPtCNPhen], [HLHgCl], and [LAuCl]) is presented. The influence of the cations and coordination modes of the luminophore and co-ligands on the photophysical properties (including photoluminescence quantum yields (ΦL ), excited state lifetimes (τ), and average (non-)radiative rate constants) are evaluated at various temperatures in different phases. Five complexes show interesting photophysical properties at room temperature (RT) in solution. Embedment in frozen glassy matrices at 77 K significantly boosts their luminescence by suppressing radiationless deactivation paths. Thus, the Pt(II)-based compounds provide the highest efficiencies, with slight variations upon exchange of the ancillary ligand. In the case of [HLPdCNtBu], both ΦL and τ increase over 30-fold as compared to RT. Furthermore, the Hg(II) complex achieves, for the first time in its class, a ΦL exceeding 60% and millisecond-range lifetimes. This demonstrates that a judicious ligand design can pave the way toward versatile coordination compounds with tunable excited state properties.
Collapse
Affiliation(s)
- Thomas M. Kirse
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Leander Spierling
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Jutta Kösters
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| |
Collapse
|
5
|
Rigamonti L, Marchi L, Fiorini V, Stagni S, Zacchini S, Pinkowicz D, Dziedzic-Kocurek K, Forni A, Muniz Miranda F, Mazzoni R. Trapping an unprecedented octacoordinated iron(II) complex with neutral bis-tetrazolylpyridyl ligands and solvent molecules. Dalton Trans 2024; 53:3490-3498. [PMID: 38270176 DOI: 10.1039/d3dt04026g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Iron(II) can show a very rich coordination chemistry with concomitant modulation of its properties as promising functional materials. Metalation of the neutral tridentate nitrogen-donor mer-coordinating ligand 2,6-bis(2-(methyl)-2H-tetrazol-5-yl)pyridine (Me2btp) with Fe(ClO4)2·6H2O through accurate solvent polarity control enables the selective crystallization of [FeHS/LS(Me2btp)2](ClO4)2·MeCN·2.75H2O (2HS/LS·MeCN·2.75H2O) as red rods, where half of the iron(II) centres resides in the low spin (LS, S = 0) state and the other half is in the high spin (HS, S = 2) state. The red rods spontaneously convert into yellow crystals once removed from the mother liquor and exposed to air due to solvent rearrangement within the crystal packing; these new crystals can be assigned to [FeHS(Me2btp)2](ClO4)2·solvent (2HS·solvent) where all the iron(II) centres are now blocked in the HS state, as confirmed by magnetic measurements. The polarity of the crystallization solvent, together with the maintenance of the crystals within the mother liquor, are pivotal for the reactivity and interconversion of different species. Indeed, upon long standing in solution, 2HS/LS·MeCN·2.75H2O converts to another form of red crystals belonging to [FeLS(Me2btp)2][FeHS(Me2btp)(MeCN)2(H2O)](ClO4)4·MeCN (2LS·3HS·MeCN), as confirmed by single crystal X-ray diffraction data. In this co-crystal, the iron(II) in 2 resides in the LS state at all temperatures while the iron(II) in 3 is blocked in the HS state. Well-formed yellow crystals could be also isolated among the red crystals of 2HS/LS·MeCN·2.75H2O, and they could be identified as the unprecedented octacoordinated species [Fe(Me2btp)2(MeCN)(H2O)](ClO4)2·H2O (1·H2O) by single-crystal X-ray diffraction. These yellow crystals are stable in the air, but slowly convert into 2LS·3HS·MeCN if kept in the mother liquor for about one week. 1·H2O can be considered the trapped intermediate in the solid state during the conversion of [FeHS(Me2btp)2]2+ into [FeHS(Me2btp)(MeCN)2(H2O)]2+ in solution, where the two tridentate ligands in the starting species can unfold to accommodate coordinated MeCN and H2O molecules, as confirmed by theoretical calculations, and eventually one of the two Me2btp is completely replaced by the solvent.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Lorenzo Marchi
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Valentina Fiorini
- Dipartimento di Chimica Industriale 'Toso Montanari', Università degli Studi di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Stefano Stagni
- Dipartimento di Chimica Industriale 'Toso Montanari', Università degli Studi di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale 'Toso Montanari', Università degli Studi di Bologna, Via Gobetti 85, 40129 Bologna, Italy
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Katarzyna Dziedzic-Kocurek
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Stanisława Łojasiewicza 11, Kraków 30-348, Poland
| | - Alessandra Forni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (CNR-SCITEC) and INSTM RU of Milan, via C. Golgi 19, 20133 Milano, Italy
| | - Francesco Muniz Miranda
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale 'Toso Montanari', Università degli Studi di Bologna, Via Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis - C3, Università degli Studi di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
6
|
Chan MHY, Yam VWW. Toward the Design and Construction of Supramolecular Functional Molecular Materials Based on Metal–Metal Interactions. J Am Chem Soc 2022; 144:22805-22825. [DOI: 10.1021/jacs.2c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
7
|
Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. J Am Chem Soc 2022; 144:21948-21960. [DOI: 10.1021/jacs.2c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Kaser SJ, Christoff-Tempesta T, Uliassi LD, Cho Y, Ortony JH. Domain-Specific Phase Transitions in a Supramolecular Nanostructure. J Am Chem Soc 2022; 144:17841-17847. [PMID: 36125359 DOI: 10.1021/jacs.2c05908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding thermal phase behavior within nanomaterials can inform their rational design for medical technologies like drug delivery systems and vaccines, as well as for energy technologies and catalysis. This study resolves thermal phases of discrete domains within a supramolecular aramid amphiphile (AA) nanoribbon. Dynamics are characterized by X-band EPR spectroscopy of spin labels positioned at specific sites through the nanoribbon cross-section. The fitting of the electron paramagnetic resonance (EPR) line shapes reveals distinct conformational dynamics, with fastest dynamics at the surface water layer, intermediate dynamics within the flexible cationic head group domain, and slowest dynamics in the interior aramid domain. Measurement of conformational mobility as a function of temperature reveals first- and second-order phase transitions, with melting transitions observed in the surface and head group domains and a temperature-insensitive crystalline phase in the aramid domain. Arrhenius analysis yields activation energies of diffusion at each site. This work demonstrates that distinct thermal phase behaviors between adjacent nanodomains within a supramolecular nanostructure may be resolved and illustrates the utility of EPR spectroscopy for thermal phase characterization of nanostructures.
Collapse
Affiliation(s)
- Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Linnaea D Uliassi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Yukio Cho
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| |
Collapse
|
9
|
Riesebeck T, Bertrams MS, Stipurin S, Konowski K, Kerzig C, Strassner T. Cyclometalated Spirobifluorene Imidazolylidene Platinum(II) Complexes with Predominant 3LC Emissive Character and High Photoluminescence Quantum Yields. Inorg Chem 2022; 61:15499-15509. [PMID: 36125339 DOI: 10.1021/acs.inorgchem.2c02141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel bidentate C^C*spiro cyclometalated platinum(II) complexes comprising a spiro-conjugated bifluorene ligand and different β-diketonate auxiliary ligands are synthesized and characterized. Their preparation employs a robust and elaborate synthetic protocol commencing with an N-heterocyclic carbene precursor. Structural characterization by means of NMR techniques and solid-state structures validate the proposed and herein presented molecular scaffolds. Photophysical studies, including laser flash photolysis methods, reveal an almost exclusively ligand-centered triplet state, governed by the C^C*spiro-NHC ligand. The high triplet energies and the long triplet lifetimes in the order of 30 μs in solution make the complexes good candidates for light-emitting diode-driven photocatalysis, as initial energy transfer experiments reveal. In-depth time-dependent density functional theory investigations are in excellent accordance with our spectroscopic findings. The title compounds are highly emissive in the bluish-green color region with quantum yields of up to 87% in solid-state measurements.
Collapse
Affiliation(s)
- Tim Riesebeck
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | | | - Sergej Stipurin
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Kai Konowski
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
10
|
Matern J, Maisuls I, Strassert CA, Fernández G. Luminescence and Length Control in Nonchelated d 8 -Metallosupramolecular Polymers through Metal-Metal Interactions. Angew Chem Int Ed Engl 2022; 61:e202208436. [PMID: 35749048 PMCID: PMC9545304 DOI: 10.1002/anie.202208436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Supramolecular polymers (SPs) of d8 transition metal complexes have received considerable attention by virtue of their rich photophysical properties arising from metal-metal interactions. However, thus far, the molecular design is restricted to complexes with chelating ligands due to their advantageous preorganization and strong ligand fields. Herein, we demonstrate unique pathway-controllable metal-metal-interactions and remarkable 3 MMLCT luminescence in SPs of a non-chelated PtII complex. Under kinetic control, self-complementary bisamide H-bonding motifs induce a rapid self-assembly into non-emissive H-type aggregates (1A). However, under thermodynamic conditions, a more efficient ligand coplanarization leads to superiorly stabilized SP 1B with extended Pt⋅⋅⋅Pt interactions and remarkably long 3 MMLCT luminescence (τ77 K =0.26 ms). The metal-metal interactions could be subsequently exploited to control the length of the emissive SPs using the seeded-growth approach.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Iván Maisuls
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Cristian A. Strassert
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
11
|
Matern J, Maisuls I, Strassert CA, Fernandez G. Luminescence and Length Control in Nonchelated d8‐Metallosupramolecular Polymers through Metal‐Metal Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Ivan Maisuls
- WWU Münster: Westfalische Wilhelms-Universitat Munster CeNTech GERMANY
| | | | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
12
|
Priyanto A, Hapidin DA, Khairurrijal K. Potential Loading of Virgin Coconut Oil into Centrifugally‐Spun Nanofibers for Biomedical Applications. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aan Priyanto
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
| | - Dian Ahmad Hapidin
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
| | - Khairurrijal Khairurrijal
- Institut Teknologi Bandung Department of Physics Jalan Ganesa 10 40132 Bandung Indonesia
- Institut Teknologi Bandung University Center of Excellence – Nutraceutical, Bioscience and Biotechnology Research Center Jalan Ganesa 10 40132 Bandung Indonesia
| |
Collapse
|
13
|
Gouthaman S, Jayaraj A, Sugunalakshmi M, Sivaraman G, P CAS. Supramolecular self-assembly mediated aggregation-induced emission of fluorene-derived cyanostilbenes: multifunctional probes for live cell-imaging. J Mater Chem B 2022; 10:2238-2250. [PMID: 35294959 DOI: 10.1039/d1tb02322e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first discovery of aggregation-induced emission (AIE), whereby luminogen aggregation plays a positive role in enhancing the light-emission efficiency, has piqued the interest of many researchers as it opens up a new avenue for the exploration of practically beneficial luminescent materials. Diverse AIE-active luminogens (or AIEgens) with tunable emission colours and very high quantum yields (up to unity) in the solid state have been extensively utilised in a broad range of fields including optoelectronics, energy and bioscience. In this article, we describe novel fluorene-based fluorogens that exhibit bright emission in the solid-state, mechanical stimuli-responsive optical properties and aggregation-induced emissive ability, and were able to modulate their donor and acceptor properties. The target compounds were synthesized by a Knoevenagel condensation followed by Suzuki cross-coupling reaction, which tends to result in good yields. The target cyanostilbenes (4a-4d) show different reversibly switched states with high contrast through morphology modulation and demonstrate solvatochromic, vapochromic, and AIE properties. These results strongly suggest that compound 4d has better properties than the other derivatives (4a-c) due to the presence of extended donor-acceptor ability. Moreover, density-functional theory (DFT) calculations strongly support the UV-Vis and fluorescence spectral studies. The formation of nano-flakes and cuboid-shaped nanocrystals was further confirmed by FE-SEM and AFM studies. The synthesized compound 4d displayed very bright emission in the solid state and in the aggregate state as compared with the other derivatives (4a-4c). These results might be due to the presence of high-color contrast, which is an advantage for elucidation and overcomes the challenges exhibited in live-cell imaging applications. Moreover, an MTT assay on live A549 cells incubated with the target compound (4d) showed very low cytotoxicity even at high concentrations.
Collapse
Affiliation(s)
- Siddan Gouthaman
- Organic Chemistry Division, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India. .,Department of Cellular Organization and Signaling, National Center for Biological Science-NCBS, Bangalore-560065, India
| | - Anjitha Jayaraj
- Main Group Organometallics Materials, Supramolecular Chemistry and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| | - Madurai Sugunalakshmi
- Organic Chemistry Division, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India.
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624032, Dindigul, Tamilnadu, India.
| | - Chinna Ayya Swamy P
- Main Group Organometallics Materials, Supramolecular Chemistry and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| |
Collapse
|
14
|
Priyanto A, Hapidin DA, Suciati T, Khairurrijal K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Yadav P, Verma A, Sharma VP, Singh R, Yadav T, Kumar R, Pal S, Gupta H, Saha S, Tewari AK. The development of a robust folded scaffold as a fluorescent material using butylidine-linked pyridazinone-based systems via aromatic π⋯π stacking interactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00083k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence-capable robust folded pyridazinone-based homo- and heterodimers linked with butylidine linkers, whose crystals exhibit fluorescence with quantum yields of 11% (1CN) and 28% (2CN) due to intramolecular stacking, were synthesized.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| | - Abhineet Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| | - Vishal Prasad Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| | - Rashmi Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| | - Tarun Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar, Pradesh-221005, India
| | - Ranjeet Kumar
- Department of Chemistry, CMP Degree College, Prayagraj, Uttar Pradesh-211002, India
| | - Shiv Pal
- Department of Chemistry, Indian Institute of Technology, Bombay-400076, India
| | - Hariom Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP), Lucknow-226015, India
| | - Satyen Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| | - Ashish K. Tewari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
16
|
Shamsiya A, Bahulayan D. D–A systems based on oxazolone–coumarin triazoles as solid-state emitters and inhibitors of human cervical cancer cells (HeLa). NEW J CHEM 2022. [DOI: 10.1039/d1nj04151g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
D–A systems with solid-state emission and anticancer properties have been synthesized in three steps via the MCR-Click protocol.
Collapse
Affiliation(s)
- Aranhikkal Shamsiya
- Department of Chemistry, University of Calicut, Malappuram 673635, Kerala, India
| | - Damodaran Bahulayan
- Department of Chemistry, University of Calicut, Malappuram 673635, Kerala, India
| |
Collapse
|
17
|
Zhang X, Wang J, Yu F, Cheng X, Hao Y, Liu Y, Huang X, Wang T, Hao H. Influence of additives on the polymorphic manipulation of organic fluorescent crystals and its mechanism. CrystEngComm 2022. [DOI: 10.1039/d1ce01285a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The influence and mechanism behind using additives to isolate metastable fluorescent polymorphs were carefully investigated.
Collapse
Affiliation(s)
- Xiunan Zhang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Fei Yu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaowei Cheng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yunhui Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yue Liu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
18
|
Deka P, Patir K, Rawal I, Ahmed S, Bora SR, Kalita DJ, Althubeiti K, Gogoi SK, Sarma P, Thakuria R. Solid-State Fluorescence of A Quasi-Isostructural Polymorphic Biphenyl Based Michael Addition Product. CrystEngComm 2022. [DOI: 10.1039/d2ce00425a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymorphic materials have gained significant attention owing to their fascinating physicochemical properties. Herein, a biphenyl based Michael addition product (Compound A) with an active methylene group (dimedone) was synthesized. Compound...
Collapse
|
19
|
Wang ZC, Li XZ, Liu JH, Zhou LP, Guo XQ, Cheng XY, Sun QF. Coordination-Assembly of Lanthanide Supramolecular Hydrogels with Luminescent Multi-stimulus Response. Inorg Chem 2021; 60:18192-18198. [PMID: 34747597 DOI: 10.1021/acs.inorgchem.1c02827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescent supramolecular hydrogels have shown extensive potential for a variety of applications due to their unique optical properties and biocompatibility. Coordination self-assembly provides a promising strategy for the preparation of supramolecular hydrogels. In this contribution, a series of luminescent lanthanide (Ln) supramolecular hydrogels HG-Ln2nL3n1/2 are synthesized by coordination self-assembly of Ln ions and V shaped bis-tetradentate ligands (H4L1 and H4L2) with different bent angles (∠B). Two rigid conjugated ligands H4L1 and H4L2 with bent angles (∠B ≈ 150°) featuring a 2,6-pyridine bitetrazolate chelating moiety were designed and synthesized, which generated hydrogels via the deprotonation self-assembly with lanthanide ions. Characteristic Eu3+ and Yb3+ emissions were realized in the corresponding hydrogels, with intriguing multi-stimulus response behaviors. The luminescence of the HG-Eu2nL3n1 hydrogel can be enhanced or quenched when stimulated by diverse metal ions, attributed to the replacement of the coordinated lanthanide ions and changes in the intersystem crossing efficiency of the ligand. Furthermore, pH-responsive emission of the HG-Eu2nL3n1 hydrogel has also been observed. Our work provides potential strategies for the design of next-generation smart responsive hydrogel materials with variable structures.
Collapse
Affiliation(s)
- Zi-Cheng Wang
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Jia-Hui Liu
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Xiu-Yan Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| |
Collapse
|
20
|
Inoue R, Naota T, Ehara M. Origin of the Aggregation-Induced Phosphorescence of Platinum(II) Complexes: The Role of Metal-Metal Interactions on Emission Decay in the Crystalline State. Chem Asian J 2021; 16:3129-3140. [PMID: 34476913 DOI: 10.1002/asia.202100887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Indexed: 11/06/2022]
Abstract
Discerning the origins of the phosphorescent aggregation-induced emission (AIE) from Pt(II) complexes is crucial for developing the broader range of photo-functional materials. Over the past few decades, several mechanisms of phosphorescent AIE have been proposed, however, not have been directly elucidated. Herein, we describe phosphorescence and deactivation processes of four class of AIE active Pt(II) complexes in the crystalline state based on experimental and theoretical investigation. These complexes show metal-to-ligand and/or metal-metal-to-ligand charge transfer emission in crystalline state with different heat resistance against thermal emission quenching. The calculated energy profiles including the minimum energy crossing point between S0 and T1 states were consistent with the heat resistant properties, which provided the mechanism for AIE expression. Furthermore, we have clarified the role of metal-metal interaction in AIE by comparing two computational models.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science, Nishigo-naka 38, Myodai-ji, 444-8585, Okazaki, Japan
| |
Collapse
|
21
|
Basuyaux G, Amar A, Troufflard C, Boucekkine A, Métivier R, Raynal M, Moussa J, Bouteiller L, Amouri H. Cyclometallated Pt(II) Complexes Containing a Functionalized Bis‐Urea Alkynyl Ligand: Probing Aggregation Mediated by Hydrogen Bonds
versus
Pt⋅⋅⋅Pt and π−π Interactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaëtan Basuyaux
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Anissa Amar
- Laboratoire de Chimie et de Physique Quantiques Faculté des Sciences, U.M.M.T.O 15000 Tizi-Ouzou Algeria
| | - Claire Troufflard
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Abdou Boucekkine
- Univ. Rennes ISCR UMR 6226 CNRS Campus de Beaulieu 35042 Rennes Cedex France
| | - Rémi Métivier
- PPSM, ENS Paris-Saclay, CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Matthieu Raynal
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Jamal Moussa
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Hani Amouri
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| |
Collapse
|
22
|
Pinter P, Hennersdorf F, Weigand JJ, Strassner T. Polymorphic Phosphorescence from Separable Aggregates with Unique Photophysical Properties. Chemistry 2021; 27:13135-13138. [PMID: 34405914 PMCID: PMC8518788 DOI: 10.1002/chem.202100483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Platinum complexes aggregate into polymorphs with different intermolecular interactions leading to different photophysical properties. Strong intermolecular interactions stabilize the aggregate to such an extent that the polymorphs can be separated directly by column chromatography. Solid‐state structures as well as quantum‐chemical calculations confirmed the effect of the interactions on the photophysical properties.
Collapse
Affiliation(s)
- Piermaria Pinter
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Felix Hennersdorf
- Anorganische Molekülchemie, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jan J Weigand
- Anorganische Molekülchemie, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
23
|
|
24
|
Synthesis and UV-light induced oligomerization of a benzofulvene-based neutral platinum(II) complex. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Maisuls I, Singh J, Salto IP, Steiner ST, Kirse TM, Niemann S, Strassert CA, Faust A. Conjugated Pt(II) Complexes as Luminescence-Switch-On Reporters Addressing the Microenvironment of Bacterial Biofilms. Inorg Chem 2021; 60:11058-11069. [PMID: 34255500 DOI: 10.1021/acs.inorgchem.1c00860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the synthesis, structural and photophysical characterization of six phosphorescent H2O-soluble Pt(II) complexes are reported while addressing their emission maxima, photoluminescence quantum yields (ΦL), lifetimes (τ), aggregation tendency, and microenvironment sensitivity as a function of the substitution pattern on the main tridentate luminophore. Different ancillary ligands, namely, a trisulfonated phosphane and maltohexaose-conjugated pyridines (with or without amide bridges), were introduced and evaluated for the realization of switch-on-photoluminescent labels reporting on the microenvironment sensed in biofilms of Gram+ and Gram- models, namely, Staphylococcus aureus and Escherichia coli. With the aid of confocal luminescence micro(spectro)scopy, we observed that selected complexes specifically interact with the biofilms while leaving planktonic cells unlabeled. By using photoluminescence lifetime imaging microscopy, excited-state lifetimes within S. aureus biofilms were measured. The photoluminescence intensities were drastically boosted, and the excited state lifetimes were significantly prolonged upon binding to the viscous biofilm matrix, mainly due to the suppression of radiationless deactivation pathways upon shielding from physical quenching processes, such as interactions with solvent molecules and 3O2. The best performances were attained for non-aggregating complexes with maltohexaose targeting units and without amide bridges. Notably, in the absence of the maltodextrin, a hydrophobic adamantyl moiety suffices to attain a sizeable labeling capacity. Moreover, photoluminescence studies showed that selected complexes can also effectively interact with E. coli biofilms, where the bacterial cells are able to partially uptake the maltodextrin-based agents. In summary, the herein introduced concepts enable the development of specific biofilm reporters providing spatial resolution as well as lifetime- and spectrum-based readouts. Considering that most theragnostic agents reported so far mainly address metabolically active bacteria at the surface of biofilms but without reaching cells deeply immersed in the matrix, a new platform with a clear structure-property correlation is provided for the early detection of such bacterial arrays.
Collapse
Affiliation(s)
- Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Jasveer Singh
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Ileana P Salto
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - Simon T Steiner
- European Institute for Molecular Imaging, University of Münster, Münster, Waldeyerstr. 15, 48159 Münster, Germany
| | - Thomas M Kirse
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, Münster, Waldeyerstr. 15, 48159 Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
26
|
Yoshida M, Hirao T, Haino T. Self-assembly of neutral platinum complexes possessing chiral hydrophilic TEG chains. Org Biomol Chem 2021; 19:5303-5311. [PMID: 33969859 DOI: 10.1039/d1ob00492a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutral platinum complexes that possess chiral triethylene glycol (TEG) moieties were synthesized. The platinum complexes formed helically twisted stacked assemblies in chloroform and toluene, which were studied by 1H NMR, UV/vis spectroscopy, and emission spectroscopy. On the other hand, emissive micellar aggregates were observed in a THF/water mixed solvent. Dynamic light scattering (DLS) experiments revealed that micellar aggregates with a diameter (d) of ≈100 nm emitted strong light, whereas the monomeric form and large aggregates (d > 500 nm) did not show luminescence efficiently. Furthermore, the micellar aggregates were twisted chirally, where the twisted direction was determined by the chirality of the TEG moieties. The assemblies were observed to be solvent responsive, which allows for the modulation of the nanostructure by changing the solvent polarity.
Collapse
Affiliation(s)
- Masaya Yoshida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
27
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
28
|
Gao Q, Peng F, Wang C, Lin J, Chang X, Zou C, Lu W. Phosphorescent Zwitterionic Pt(
II
)
N
‐Heterocyclic
Allenylidene Complexes: Metallophilicity and Ionic
Self‐Assembly
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qin Gao
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fei Peng
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuanfei Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jinqiang Lin
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chao Zou
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
29
|
Influence of the ancillary ligands on the luminescence of platinum(II) complexes with a triazole-based tridentate C^N^N luminophore. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Iwamura M, Fukui A, Nozaki K, Kuramochi H, Takeuchi S, Tahara T. Coherent Vibration and Femtosecond Dynamics of the Platinum Complex Oligomers upon Intermolecular Bond Formation in the Excited State. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Munetaka Iwamura
- Graduate School of Science and Engineering University of Toyama 3190 Gofuku Toyama 930-8555 Japan
| | - Airi Fukui
- Graduate School of Science and Engineering University of Toyama 3190 Gofuku Toyama 930-8555 Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering University of Toyama 3190 Gofuku Toyama 930-8555 Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Japan
- Current address: Research Center of Integrative Molecular Systems (CIMoS) Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki 444-8585 Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Material Science University of Hyogo 3-2-1 Kohto Kamigori Hyogo 678-1297 Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
| |
Collapse
|
31
|
Coherent Vibration and Femtosecond Dynamics of the Platinum Complex Oligomers upon Intermolecular Bond Formation in the Excited State. Angew Chem Int Ed Engl 2020; 59:23154-23161. [DOI: 10.1002/anie.202011813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 11/07/2022]
|
32
|
Panja A, Bairi P, Halder D, Das S, Nandi AK. A robust stimuli responsive Eu 3+ - Metalo organic hydrogel and xerogel emitting white light. J Colloid Interface Sci 2020; 579:531-540. [PMID: 32623119 DOI: 10.1016/j.jcis.2020.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/13/2023]
Abstract
Recently, there is incredible growth on optoelectronic properties of new supramolecular gels and white-light-emitting (WLE) metalo-organic gel comprised with single lanthanide metal ion having stimuli-responsive property is not yet reported. Here, we report a mandelic acid (MA)-triethylene tetraamine (TETA)-Eu-acetate conjugate (4.5:1:0.4 mol ratio), producing stimuli-sensitive WLE hydrogel exhibiting thermoreversible, thixotropic, pH-switchable, self-standing and self-healing properties. Energy minimized structure suggests complexation between MA-TETA conjugate and Eu3+ ion. Fluorescence intensity of MA-TETA conjugate decreases with increasing Eu3+ concentration indicating energy transfer from MA-TETA to Eu3+. Decay of donor fluorescence intensity follows Stern-Volmer equation and energy transfer efficiency is 42%. WLE gel has Quantum yield 11.4% and Förster distance 1.7 Å. Hydrogel and xerogel show WLE on excitation at 330 and 350 nm having CIE coordinates (0.34, 0.33) and (0.28, 0.32), respectively. WLE gel has Correlated colour temperature 5148 K, appropriate for cool day light emission and on coating over UV-LED bulb it emits bright white light.
Collapse
Affiliation(s)
- Aditi Panja
- Polymer Science Unit, School of Materials Science, Jadavpur, Kolkata 700032, India
| | - Partha Bairi
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Debabrata Halder
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujoy Das
- Polymer Science Unit, School of Materials Science, Jadavpur, Kolkata 700032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Materials Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
33
|
Lochenie C, Insuasty A, Battisti T, Pesce L, Gardin A, Perego C, Dentinger M, Wang D, Pavan GM, Aliprandi A, De Cola L. Solvent-driven chirality for luminescent self-assembled structures: experiments and theory. NANOSCALE 2020; 12:21359-21367. [PMID: 33075118 PMCID: PMC8251519 DOI: 10.1039/d0nr04524a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/12/2020] [Indexed: 05/03/2023]
Abstract
We describe, for a single platinum complex bearing a dipeptide moiety, a solvent-driven interconversion from twisted to straight micrometric assembled structures with different chirality. The photophysical and morphological properties of the aggregates have been investigated as well as the role of the media and concentration. A real-time visualization of the solvent-driven interconversion processes has been achieved by confocal microscopy. Finally, atomistic and coarse-grained simulations, providing results consistent with the experimental observations, allow to obtain a molecular-level insight into the interesting solvent-responsive behavior of this system.
Collapse
Affiliation(s)
- Charles Lochenie
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Alberto Insuasty
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Tommaso Battisti
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland
| | - Mike Dentinger
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Di Wang
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldschaffen, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland and Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Alessandro Aliprandi
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France. and Institut für Nanotechnologie (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldschaffen, Germany
| |
Collapse
|
34
|
Wu D, Song J, Qu L, Zhou W, Wang L, Zhou X, Xiang H. Ultralow-Molecular-Weight Stimuli-Responsive and Multifunctional Supramolecular Gels Based on Monomers and Trimers of Hydrazides. Chem Asian J 2020; 15:3370-3378. [PMID: 32893975 DOI: 10.1002/asia.202001041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/13/2022]
Abstract
The simpler, the better. A series of simple, neutral and ultralow-molecular-weight (MW: 140-200) hydrazide-derived supramolecular gelators have been designed and synthesized in two straightforward steps. For non-conjugated cyclohexane-derived hydrazides, their monomers can self-assemble to form gels through intermolecular hydrogen bonds and dipole-dipole interactions. Significantly, conjugated phthalhydrazide can self-aggregate into planar and circular trimers through intermolecular hydrogen bonds and then self-assemble to form gels through intermolecular π-π stacking interactions. It is interesting that these simple gelators exhibit unusual properties, such as self-healing, multi-response fluorescence, and visual and selective recognition of chiral (R)/(S)-1,1'-binaphthalene-2,2'-diamine and S2- through much different times of gel re-formation and blue-green color change, respectively. These results underline the importance of supramolecular gels and extend the scope of supramolecular gelators.
Collapse
Affiliation(s)
- Dehua Wu
- College of Chemistry, Sichuan University, Chengdu, 610041, P. R. China
| | - Jintong Song
- College of Chemistry, Sichuan University, Chengdu, 610041, P. R. China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu, 610041, P. R. China
| | - Weilan Zhou
- College of Chemistry, Sichuan University, Chengdu, 610041, P. R. China
| | - Lei Wang
- College of Chemistry, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu, 610041, P. R. China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
35
|
Chakraborty S, Aliprandi A, De Cola L. Multinuclear Pt II Complexes: Why Three is Better Than Two to Enhance Photophysical Properties. Chemistry 2020; 26:11007-11012. [PMID: 32329122 PMCID: PMC7496982 DOI: 10.1002/chem.202001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 01/31/2023]
Abstract
The self-assembly of platinum complexes is a well-documented process that leads to interesting changes of the photophysical and electrochemical behavior as well as to a change in reactivity of the complexes. However, it is still not clear how many metal units must interact in order to achieve the desired properties of a large assembly. This work aimed to clarify the role of the number of interacting PtII units leading to an enhancement of the spectroscopic properties and how to address inter- versus intramolecular processes. Therefore, a series of neutral multinuclear PtII complexes were synthesized and characterized, and their photophysical properties at different concentration were studied. Going from the monomer to dimers, the growth of a new emission band and the enhancement of the emission properties were observed. Upon increasing the platinum units up to three, the monomeric blue emission could not be detected anymore and a concentration independent bright-yellow/orange emission, due to the establishment of intramolecular metallophilic interactions, was observed.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
| | - Alessandro Aliprandi
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
| | - Luisa De Cola
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
- Institute for Nanotechnology (INT)Karlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
36
|
Li Y, Huo GF, Liu B, Song B, Zhang Y, Qian X, Wang H, Yin GQ, Filosa A, Sun W, Hla SW, Yang HB, Li X. Giant Concentric Metallosupramolecule with Aggregation-Induced Phosphorescent Emission. J Am Chem Soc 2020; 142:14638-14648. [DOI: 10.1021/jacs.0c06680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Gui-Fei Huo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Zhang
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Xiaomin Qian
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Alexander Filosa
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
37
|
Han Y, Gao Z, Wang C, Zhong R, Wang F. Recent progress on supramolecular assembly of organoplatinum(II) complexes into long-range ordered nanostructures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213300] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Ghosh G, Ghosh T, Fernández G. Controlled Supramolecular Polymerization of d
8
Metal Complexes through Pathway Complexity and Seeded Growth. Chempluschem 2020; 85:1022-1033. [DOI: 10.1002/cplu.202000210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Goutam Ghosh
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität, Münster Correnstraße, 40 48149 Münster Germany
| | - Tanwistha Ghosh
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität, Münster Correnstraße, 40 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität, Münster Correnstraße, 40 48149 Münster Germany
| |
Collapse
|
39
|
Chen Z, Xue Y, Gui M, Wang C, Wang F. Structural Isomerism Effect in Platinum(II) Acetylide-Based Supramolecular Polymers. Inorg Chem 2020; 59:6481-6488. [PMID: 32275403 DOI: 10.1021/acs.inorgchem.0c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The self-assembly of π-aromatic organic and organometallic molecules into long-range-ordered supramolecular polymers is dictated by a variety of molecular parameters and external conditions. In this work, structural isomerism, representing one of the potent molecular parameters, has been investigated to modulate the self-assembly behaviors. Two platinum(II) acetylide-based structural isomers, with different N-hexyl substitution positions on the inner benzotriazole core, have been designed. Thanks to the synergistic participation of hydrogen-bonding and π-π-stacking interactions, both platinum(II) acetylide-based compounds are prone to forming supramolecular polymers via a nucleation-elongation cooperative mechanism in apolar media. Thermal hysteresis phenomena are observed for both compounds, suggesting the different supramolecular polymerization pathways upon cooling and heating. Remarkably, in addition to the spectroscopic difference, these two supramolecular polymers display distinct thermostability and rheological moduli, ascribing to different binding enthalpies of the neighboring monomers. Overall, it is evident that a minor variation at the molecular level brings huge differences to the properties of long-range-ordered supramolecular polymers. The current study illustrates the importance of the structural isomerism effect for the rational design of π-functional supramolecular materials.
Collapse
Affiliation(s)
- Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuncong Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingliang Gui
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cong Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
40
|
Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: Design, mechanistic insights, and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Evstigneev MP, Lantushenko AO, Yakovleva YA, Suleymanova AF, Eltsov OS, Kozhevnikov VN. Tuning the Aggregation of N
^
N
^
C Pt(II) Complexes by Varying the Aliphatic Side Chain and Auxiliary Halide Ligand:
1
H and
195
Pt NMR Investigation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxim P. Evstigneev
- Department of Physics Sevastopol State University 299053 Sevastopol Russian Federation
- Belgorod State University 85 Pobedy str. 308015 Belgorod Russian Federation
| | | | - Yulia A. Yakovleva
- Department of Technology for Organic Synthesis Chemical Technology Institute Ural Federal University 620002 Yekaterinburg Russian Federation
| | - Alfiya F. Suleymanova
- Department of Technology for Organic Synthesis Chemical Technology Institute Ural Federal University 620002 Yekaterinburg Russian Federation
| | - Oleg S. Eltsov
- Department of Technology for Organic Synthesis Chemical Technology Institute Ural Federal University 620002 Yekaterinburg Russian Federation
| | - Valery N. Kozhevnikov
- Department of Applied Sciences Northumbria University NE1 8ST Newcastle‐Upon‐Tyne UK
| |
Collapse
|
42
|
Ren J, Cnudde M, Brünink D, Buss S, Daniliuc CG, Liu L, Fuchs H, Strassert CA, Gao HY, Doltsinis NL. On-Surface Reactive Planarization of Pt(II) Complexes. Angew Chem Int Ed Engl 2019; 58:15396-15400. [PMID: 31361071 PMCID: PMC6856856 DOI: 10.1002/anie.201906247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022]
Abstract
A series of Pt(II) complexes with tetradentate luminophores has been designed, synthesized, and deposited on coinage metal surfaces with the aim to produce highly planar self‐assembled monolayers. Low‐temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations reveal a significant initial nonplanarity for all complexes. A subsequent metal‐catalyzed separation of the nonplanar moiety at the bridging unit via the scission of a C−N bond is observed, leaving behind a largely planar core complex. The activation barrier of this bond scission process is found to depend strongly on the chemical nature of both bridging group and coordination plane, and to increase from Cu(111) through Ag(111) to Au(111).
Collapse
Affiliation(s)
- Jindong Ren
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Marvin Cnudde
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Dana Brünink
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Stefan Buss
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Lacheng Liu
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Hong-Ying Gao
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| |
Collapse
|
43
|
Ren J, Cnudde M, Brünink D, Buss S, Daniliuc CG, Liu L, Fuchs H, Strassert CA, Gao H, Doltsinis NL. Reaktive Oberflächenplanarisierung von Pt(II)‐Komplexen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jindong Ren
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Deutschland
| | - Marvin Cnudde
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Deutschland
| | - Dana Brünink
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Stefan Buss
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Lacheng Liu
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Deutschland
| | - Harald Fuchs
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Deutschland
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Deutschland
| | - Hong‐Ying Gao
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Deutschland
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Nikos L. Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| |
Collapse
|
44
|
Aliprandi A, Capaldo L, Bobica C, Silvestrini S, De Cola L. Effects of the Molecular Design on the Supramolecular Organization of Luminescent Pt(II) Complexes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alessandro Aliprandi
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Luca Capaldo
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Carla Bobica
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Simone Silvestrini
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
- Institut für Nanotechnologie (INT)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldschaffen Germany
| |
Collapse
|
45
|
Hatakeda M, Toohara S, Nakashima T, Sakurai S, Kuroiwa K. Helical-Ribbon and Tape Formation of Lipid Packaged [Ru(bpy) 3] 2+ Complexes in Organic Media. Int J Mol Sci 2019; 20:E3298. [PMID: 31277518 PMCID: PMC6650996 DOI: 10.3390/ijms20133298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023] Open
Abstract
Anionic lipid amphiphiles with [RuII(bpy)3]2+ complex have been prepared. The metal complexes have been found to form ribbon and tape structures depending on chemical structures of lipid amphiphiles. Especially, the composites showed hypochromic effect and induced circular dichroism in organic media, and flexibly and weakly supramolecular control of morphological and optical properties have been demonstrated.
Collapse
Affiliation(s)
- Miho Hatakeda
- Department of nanoscience, Faculty of engineering, Sojo University, 4-22-1, Ikeda, Kumamoto 860-0082, Japan
| | - Souta Toohara
- Department of nanoscience, Faculty of engineering, Sojo University, 4-22-1, Ikeda, Kumamoto 860-0082, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shinichi Sakurai
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keita Kuroiwa
- Department of nanoscience, Faculty of engineering, Sojo University, 4-22-1, Ikeda, Kumamoto 860-0082, Japan.
| |
Collapse
|
46
|
Le NHT, Inoue R, Kawamorita S, Komiya N, Naota T. Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted trans-Bis[2-(iminomethyl)imidazolato]platinum(II) Complexes. Inorg Chem 2019; 58:9076-9084. [DOI: 10.1021/acs.inorgchem.9b00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ngoc Ha-Thu Le
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Inoue
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Soichiro Kawamorita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Chemistry Laboratory, The Jikei University School of Medicine, Kokuryo, Chofu, Tokyo 182-8570, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
47
|
Kobayashi F, Ohtani R, Teraoka S, Yoshida M, Kato M, Zhang Y, Lindoy LF, Hayami S, Nakamura M. Phosphorescence at Low Temperature by External Heavy-Atom Effect in Zinc(II) Clusters. Chemistry 2019; 25:5875-5879. [PMID: 30860310 DOI: 10.1002/chem.201900343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/08/2019] [Indexed: 11/11/2022]
Abstract
Luminescent ZnII clusters [Zn4 L4 (μ3 -OMe)2 X2 ] (X=SCN (1), Cl (2), Br (3)) and [Zn7 L6 (μ3 -OMe)2 (μ3 -OH)4 ]Y2 (Y=I- (4), ClO4 - (5)), HL=methyl-3-methoxysalicylate, exhibiting blue fluorescence at room temperature (λmax =416≈429 nm, Φem =0.09-0.36) have been synthesised and investigated in detail. In one case the external heavy-atom effect (EHE) arising the presence of iodide counter anions yielded phosphorescence with a long emission lifetime (λmax =520 nm, τ=95.3 ms) at 77 K. Single-crystal X-ray structural analysis and time-dependent density-functional theory (TD-DFT) calculations revealed that their emission origin was attributed to the fluorescence from the singlet ligand-centred (1 LC) excited state, and the phosphorescence observed in 4 was caused by the EHE of counter anions having strong CH-I interactions.
Collapse
Affiliation(s)
- Fumiya Kobayashi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Saki Teraoka
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
48
|
Ning H, Huang X, Yang L, Zhang J. Molecular design of organoplatinum(II) complexes through a DFT/TDDFT study: Photophysical properties and intermolecular interactions. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Proetto MT, Sanning J, Peterlechner M, Thunemann M, Stegemann L, Sadegh S, Devor A, Gianneschi NC, Strassert CA. Phosphorescent Pt(ii) complexes spatially arrayed in micellar polymeric nanoparticles providing dual readout for multimodal imaging. Chem Commun (Camb) 2019; 55:501-504. [PMID: 30556084 PMCID: PMC6462434 DOI: 10.1039/c8cc06347h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper we report phosphorescent Pt(ii) complexes as monomers which can be directly incorporated into growing polymers. Due to the amphiphilic nature of the polymers they can self-assemble into micellar nanoparticles, where the phosphorescent Pt(ii) complexes can arrange selectively in the core or shell of the nanoparticles. The complexes enable dual orthogonal imaging, made possible by the heavy metal, which enhances the contrast for these micelles in electron microscopy and facilitates spin-orbit coupling that turns on microsecond lifetime luminescence.
Collapse
Affiliation(s)
- Maria T Proetto
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Q, Wang Q, Chen XX, Zhang P, Ding CF, Li Z, Jiang YB. Developing the spectral sensing scheme with in situ generated chromophores. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|