1
|
Xu Z, Geng T, Du J, Zuo Y, Hu X, Liu L, Shi Z, Huang H. Visible-light-mediated radical difunctionalization of alkenes with aromatic aldehydes. Org Biomol Chem 2025. [PMID: 39957547 DOI: 10.1039/d4ob02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We have developed a visible-light-mediated three-component tandem reaction of aromatic aldehydes with acrylates using a Hantzsch ester as the hydrogen atom transfer reagent, generating diethyl pentanedioate products in a one-pot synthesis. The reaction facilitates direct formation of acyl groups from the corresponding aldehydes, which are subsequently coupled successively to two molecules of acrylate in a Giese addition.
Collapse
Affiliation(s)
- Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Tao Geng
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoxiao Hu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Lin Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhiqiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Ji G, Li X, Zhang J. Anti-Markovnikov Hydroacylation of Aryl Alkenes with Aldehydes Enabled by Photo/Cobalt Dual Catalysis. Org Lett 2025; 27:334-339. [PMID: 39731548 DOI: 10.1021/acs.orglett.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Herein we describe a dual photo/cobalt-catalyzed anti-Markovnikov hydroacylation of aryl alkenes using aldehyde as acyl source. The key to success is the cobalt catalyzed hydrogen atom transfer, which enables effective formation of the desired products and efficient regeneration of the photocatalyst under mild conditions. This protocol features broad substrate scopes, good functional group tolerance, high efficiency and regioselectivity.
Collapse
Affiliation(s)
- Guanghao Ji
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Xuan Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| |
Collapse
|
3
|
Li L, Zhang SQ, Cui X, Zhao G, Tang Z, Li GX. Catalytic Asymmetric Hydrogen Atom Transfer Based on a Chiral Hydrogen Atom Donor Generated from TBADT and Chiral BINOL. Org Lett 2024; 26:8371-8376. [PMID: 39316028 DOI: 10.1021/acs.orglett.4c03175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Enantioselective radical reactions mediated by TBADT have seldom been seen due to the inherent challenges. Herein, we disclose a new chiral hydrogen atom transfer (HAT) reagent that was generated easily from 8H-BINOL, potassium carbonate, and TBADT under irradiation. The new complex 8H-BINOL/DTs could be used as a chiral H donor. A series of azaarenes could be converted into the corresponding chiral compounds via radical addition followed by enantioselective HAT.
Collapse
Affiliation(s)
- Ling Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
5
|
Cao J, Zhu JL, Scheidt KA. Photoinduced cerium-catalyzed C-H acylation of unactivated alkanes. Chem Sci 2023; 15:154-159. [PMID: 38131082 PMCID: PMC10732008 DOI: 10.1039/d3sc05162e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Ketones are ubiquitous motifs in the realm of pharmaceuticals and natural products. Traditional approaches to accessing these species involve the addition of metal reagents to carboxyl compounds under harsh conditions. Herein, we report a cerium-catalyzed acylation of unactivated C(sp3)-H bonds using bench-stable acyl azolium reagents under mild and operationally-friendly conditions. This reaction exhibits excellent generality, accommodating a wide range of feedstock chemicals such as cycloalkanes and acyclic compounds as well as facilitating the late-stage functionalization of pharmaceuticals. We demonstrate further applications of our strategy with a three-component radical relay reaction and an enantioselective N-heterocyclic carbene (NHC) and cerium dual-catalyzed reaction.
Collapse
Affiliation(s)
- Jing Cao
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Joshua L Zhu
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
6
|
Jin Y, Fan LF, Ng EWH, Yu L, Hirao H, Gong LZ. Atom Transfer Radical Coupling Enables Highly Enantioselective Carbo-Oxygenation of Alkenes with Hydrocarbons. J Am Chem Soc 2023; 145:22031-22040. [PMID: 37774121 DOI: 10.1021/jacs.3c07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The selective functionalization of C(sp3)-H bonds has emerged as a transformative approach for streamlining synthetic routes, offering remarkable efficiency in the preparation and modification of complex organic molecules. However, the direct enantioselective transformation of hydrocarbons to medicinally valuable chiral molecules remains a significant challenge that has yet to be addressed. In this study, we adopt an atom transfer radical coupling (ATRC) strategy to achieve the asymmetric functionalization of C(sp3)-H bonds in hydrocarbons. This approach involves intermolecular H atom transfer (HAT) between a hydrocarbon and an alkoxy radical, leading to the formation of a carbon-centered radical. The resulting radical adds to alkenes, generating a new radical species that is intercepted by a chiral copper-mediated C-O bond coupling. By employing this method, we can directly access valuable chiral lactones bearing a quaternary stereocenter with high efficiency and excellent enantioselectivity. Importantly, ATRC exhibits great potential as a versatile platform for achieving stereoselective transformations of hydrocarbons.
Collapse
Affiliation(s)
- Youxiang Jin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lian-Feng Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Elvis Wang Hei Ng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei 230026, China
| |
Collapse
|
7
|
Raymenants F, Masson TM, Sanjosé-Orduna J, Noël T. Efficient C(sp 3 )-H Carbonylation of Light and Heavy Hydrocarbons with Carbon Monoxide via Hydrogen Atom Transfer Photocatalysis in Flow. Angew Chem Int Ed Engl 2023; 62:e202308563. [PMID: 37459232 DOI: 10.1002/anie.202308563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Despite their abundance in organic molecules, considerable limitations still exist in synthetic methods that target the direct C-H functionalization at sp3 -hybridized carbon atoms. This is even more the case for light alkanes, which bear some of the strongest C-H bonds known in Nature, requiring extreme activation conditions that are not tolerant to most organic molecules. To bypass these issues, synthetic chemists rely on prefunctionalized alkyl halides or organometallic coupling partners. However, new synthetic methods that target regioselectively C-H bonds in a variety of different organic scaffolds would be of great added value, not only for the late-stage functionalization of biologically active molecules but also for the catalytic upgrading of cheap and abundant hydrocarbon feedstocks. Here, we describe a general, mild and scalable protocol which enables the direct C(sp3 )-H carbonylation of saturated hydrocarbons, including natural products and light alkanes, using photocatalytic hydrogen atom transfer (HAT) and gaseous carbon monoxide (CO). Flow technology was deemed crucial to enable high gas-liquid mass transfer rates and fast reaction kinetics, needed to outpace deleterious reaction pathways, but also to leverage a scalable and safe process.
Collapse
Affiliation(s)
- Fabian Raymenants
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jesús Sanjosé-Orduna
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wang T, Zong YY, Feng WZ, Wu LZ, Liu Q. Visible-Light-Mediated Generation of Acyl Radicals from Triazine Esters. J Org Chem 2023; 88:12698-12708. [PMID: 37589746 DOI: 10.1021/acs.joc.3c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Acyl radicals are significant synthetic active species in organic synthesis. However, their generation via green and compatible methods remains challenging. Herein, we report an unprecedented visible-light-mediated approach for generating aryl acyl radicals from readily available triazine esters. This protocol with mild and redox-neutral conditions affords a diverse array of oxindoles attached to alcohol groups in a single operation. The recycling of leaving groups and a range of visible-light-mediated reactions using triazine ester as an acyl radical precursor demonstrate the synthetic potential of this methodology.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuan-Yuan Zong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wan-Zhong Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Velasco-Rubio Á, Martínez-Balart P, Álvarez-Constantino AM, Fañanás-Mastral M. C-C bond formation via photocatalytic direct functionalization of simple alkanes. Chem Commun (Camb) 2023; 59:9424-9444. [PMID: 37417212 PMCID: PMC10392964 DOI: 10.1039/d3cc02790b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
The direct functionalization of alkanes represents a very important challenge in the goal to develop more atom-efficient and clean C-C bond forming reactions. These processes, however, are hampered by the low reactivity of the aliphatic C-H bonds. Photocatalytic processes based on hydrogen atom transfer C-H bond activation strategies have become a useful tool to activate and functionalize these inert compounds. In this article, we summarize the main achievements in this field applied to the development of C-C bond forming reactions, and we discuss the key mechanistic features that enable these transformations.
Collapse
Affiliation(s)
- Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Pol Martínez-Balart
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem Sci 2023; 14:6841-6859. [PMID: 37389263 PMCID: PMC10306100 DOI: 10.1039/d3sc01118f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Linxuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yubo Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
11
|
Tang H, Zhang M, Zhang Y, Luo P, Ravelli D, Wu J. Direct Synthesis of Thioesters from Feedstock Chemicals and Elemental Sulfur. J Am Chem Soc 2023; 145:5846-5854. [PMID: 36854068 DOI: 10.1021/jacs.2c13157] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The development of a mild, atom- and step-economical catalytic strategy that effectively generates value-added molecules directly from readily available commodity chemicals is a central goal of organic synthesis. In this context, the thiol-ene click chemistry for carbon-sulfur (C-S) bond construction has found widespread applications in the synthesis of pharmaceuticals and functional materials. In contrast, the selective carbonyl thiyl radical addition to carbon-carbon multiple bonds remains underdeveloped. Herein, we report a carbonyl thiyl radical-based thioester synthesis through three-component coupling from feedstock aldehydes, alkenes, or alkynes and elemental sulfur by direct photocatalyzed hydrogen atom transfer. This method represents an orthogonal strategy to the conventional thiol-based nucleophilic substitution and exhibits a remarkably broad substrate scope ranging from simple commodity chemicals such as ethylene and acetylene to complex pharmaceutical molecules. This protocol can be easily extended to the synthesis of thiolactones, oligomer/polymers, and thioacids. Its synthetic utility has been demonstrated by a two-step synthesis of the drug esonarimod. Mechanistic studies indicate that the use of elemental sulfur to trap acyl radicals is both thermodynamically and kinetically favored, illustrating its great potential for the synthesis of sulfur-containing molecules.
Collapse
Affiliation(s)
- Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuchao Zhang
- Institute of Basic Medicine and Cancer (IBMC) Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|
12
|
Chen YY, Zhou CD, Li XT, Yang TY, Han WY, Wan NW, Chen YZ, Cui BD. Cooperative Tertiary Amine/Palladium-Catalyzed Sequential [4 + 3] Cyclization/[1,3]-Rearrangement for Stereoselective Synthesis of Spiro [Methylenecyclopentane-1,3'-oxindolines]. J Org Chem 2023; 88:371-383. [PMID: 36563325 DOI: 10.1021/acs.joc.2c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A cooperative tertiary amine/palladium-catalyzed sequential reaction process, proceeding via a [4 + 3] cyclization of isatin-derived Morita-Baylis-Hillman Expansion (MBH) carbonates and tert-butyl 2-(hydroxymethyl)allyl carbonates followed by a [1,3]-rearrangement, has been found and developed. A range of structurally diverse spiro[methylene cyclopentane-1,3'-oxindolines] bearing two adjacent β,γ-acyl quaternary carbon stereocenters, which are difficult to obtain by conventional strategies, were obtained in good yields. Further synthetic utility of this protocol is highlighted by its excellent regio- and stereocontrol as well as the large-scale synthesis and diverse functional transformations of the synthetic compounds. Moreover, the control experiments probably established the plausible mechanism for this sequential [4 + 3] cyclization/[1,3]-rearrangement process.
Collapse
Affiliation(s)
- Yue-You Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Chen-Dong Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xing-Tong Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting-You Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
13
|
Zhao B, Li H, Jiang F, Wan JP, Cheng K, Liu Y. Synergistic Visible Light and Pd-Catalyzed C-H Alkylation of 1-Naphthylamines with α-Diazoesters. J Org Chem 2023; 88:640-646. [PMID: 36538361 DOI: 10.1021/acs.joc.2c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of visible light irradiation and Pd-catalysis has been practically employed for the C-H alkylation reactions of naphthylamines and α-diazo esters, leading to the synthesis of α-naphthyl functionalized acetates via C-C bond construction under mild reaction conditions and under solvent-free conditions. The light irradiation has been proven to play a pivotal role in the reactions, probably by promoting the generation of active carbene species from α-diazo esters.
Collapse
Affiliation(s)
- Baoli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Haifeng Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fengxuan Jiang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
14
|
Liu Q, Ding Y, Gao Y, Yang Y, Gao L, Pan Z, Xia C. Decatungstate Catalyzed Photochemical Acetylation of C(sp 3)–H Bonds. Org Lett 2022; 24:7983-7987. [DOI: 10.1021/acs.orglett.2c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuxi Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| |
Collapse
|
15
|
Ding Y, Huang R, Zhang W, Huang H. Nickel-Catalyzed Oxidative Carbonylation of Alkylarenes to Arylacetic Acids. Org Lett 2022; 24:7972-7977. [DOI: 10.1021/acs.orglett.2c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongzheng Ding
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Renbin Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Zhang
- Research Institute of Yanchang Petroleum (Group) Company, Ltd, Xi’an 710075, P. R. China
| | - Hanmin Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
Forni JA, Gandhi VH, Polyzos A. Carbonylative Hydroacylation of Styrenes with Alkyl Halides by Multiphoton Tandem Photoredox Catalysis in Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- José A. Forni
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vir H. Gandhi
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Dr A. Polyzos CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
17
|
Sreedharan R, Pal PK, Panyam PKR, Priyakumar UD, Gandhi T. Synthesis of α‐aryl ketones by harnessing the non‐innocence of toluene and its derivatives: Enhancing the acidity of methyl arenes by a Brønsted base and their mechanistic aspects. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramdas Sreedharan
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - Pradeep Kumar Pal
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Pradeep Kumar Reddy Panyam
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - U Deva Priyakumar
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Thirumanavelan Gandhi
- VIT University Materials Chemistry Division, School of Advanced Sciences VIT University 632014 Vellore INDIA
| |
Collapse
|
18
|
Kawamoto T, Fukuyama T, Picard B, Ryu I. New directions in radical carbonylation chemistry: combination with electron catalysis, photocatalysis and ring-opening. Chem Commun (Camb) 2022; 58:7608-7617. [PMID: 35758516 DOI: 10.1039/d2cc02700c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical carbonylation offers potent methods for introducing carbon monoxide into organic molecules. This feature article focuses on our current efforts to develop new strategies for radical carbonylation, which include electron-transfer carbonylation, site-selective C(sp3)-H carbonylation by a photocatalyst and ring-opening carbonylation.
Collapse
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan
| | - Baptiste Picard
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan.
| | - Ilhyong Ryu
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan. .,Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| |
Collapse
|
19
|
Xu JX, Kuai CS, Wu XF. Cobalt-Catalyzed Four-Component Carbonylation of Methylarenes with Ethylene and Alcohols. J Org Chem 2022; 87:6371-6377. [PMID: 35468297 DOI: 10.1021/acs.joc.2c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct conversion of raw materials to fine chemicals is greatly economically influential. We developed a non-expensive cobalt-catalyzed multicomponent carbonylative reaction for the synthesis of γ-aryl carboxylic acid esters from readily available methylarene, ethylene, and CO, which are widely found in multiple FDA-approved drugs.
Collapse
Affiliation(s)
- Jian-Xing Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China
| | - Chang-Sheng Kuai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
20
|
Wang YT, Shih YL, Wu YK, Ryu I. Site‐Selective C(sp3)‐H Alkenylation Using Decatungstate Anion as Photocatalyst. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Yi-Lun Shih
- National Yang Ming Chiao Tung University TAIWAN
| | - Yen-Ku Wu
- National Chiao Tung University TAIWAN
| | | |
Collapse
|
21
|
Wang D, Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem Sci 2022; 13:7256-7263. [PMID: 35799820 PMCID: PMC9214884 DOI: 10.1039/d2sc02277j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)–H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope. Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis.![]()
Collapse
Affiliation(s)
- Dingyi Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Germany
| |
Collapse
|
22
|
Zhang X, Zeng R. Neutrally Photoinduced MgCl2-Catalyzed Alkenylation and Imidoylation of Alkanes. Org Chem Front 2022. [DOI: 10.1039/d2qo01003h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a practical protocol for oxidation of the chloride ion (Cl-) to chlorine radical (Cl.) via a photoinduced MgCl2 catalysis, avoiding the use of strong acid, formal oxidant, and...
Collapse
|
23
|
Weigel WK, Dang HT, Feceu A, Martin DBC. Direct radical functionalization methods to access substituted adamantanes and diamondoids. Org Biomol Chem 2021; 20:10-36. [PMID: 34651636 DOI: 10.1039/d1ob01916c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adamantane derivatives have diverse applications in the fields of medicinal chemistry, catalyst development and nanomaterials, owing to their unique structural, biological and stimulus-responsive properties, among others. The synthesis of substituted adamantanes and substituted higher diamondoids is frequently achieved via carbocation or radical intermediates that have unique stability and reactivity when compared to simple hydrocarbon derivatives. In this review, we discuss the wide range of radical-based functionalization reactions that directly convert diamondoid C-H bonds to C-C bonds, providing a variety of products incorporating diverse functional groups (alkenes, alkynes, arenes, carbonyl groups, etc.). Recent advances in the area of selective C-H functionalization are highlighted with an emphasis on the H-atom abstracting species and their ability to activate the particularly strong C-H bonds that are characteristic of these caged hydrocarbons, providing insights that can be applied to the C-H functionalization of other substrate classes.
Collapse
Affiliation(s)
- William K Weigel
- Chemistry, University of Iowa, Iow City, Iowa, USA.,University of California Riverside, Riverside, California, USA.
| | - Hoang T Dang
- Chemistry, University of Iowa, Iow City, Iowa, USA
| | - Abigail Feceu
- University of California Riverside, Riverside, California, USA.
| | | |
Collapse
|
24
|
Cheng YY, Yu JX, Lei T, Hou HY, Chen B, Tung CH, Wu LZ. Direct 1,2-Dicarbonylation of Alkenes towards 1,4-Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021; 60:26822-26828. [PMID: 34586701 DOI: 10.1002/anie.202112370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/17/2022]
Abstract
1,4-Dicarbonyl compounds are intriguing motifs and versatile precursors in numerous pharmaceutical molecules and bioactive natural compounds. Direct incorporation of two carbonyl groups into a double bond at both ends is straightforward, but also challenging. Represented herein is the first example of 1,2-dicarbonylation of alkenes by photocatalysis. Key to success is that N(n-Bu)4 + not only associates with the alkyl anion to avoid protonation, but also activates the α-keto acid to undergo electrophilic addition. The α-keto acid is employed both for acyl generation and electrophilic addition. By tuning the reductive and electrophilic ability of the acyl precursor, unsymmetric 1,4-dicarbonylation is achieved for the first time. This metal-free, redox-neutral and regioselective 1,2-dicarbonylation of alkenes is executed by a photocatalyst for versatile substrates under extremely mild conditions and shows great potential in biomolecular and drug molecular derivatization.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Cheng Y, Yu J, Lei T, Hou H, Chen B, Tung C, Wu L. Direct 1,2‐Dicarbonylation of Alkenes towards 1,4‐Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hong‐Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
26
|
Ye Z, Lei Z, Ye X, Zhou L, Wang Y, Yuan Z, Gao F, Britton R. Decatungstate Catalyzed Synthesis of Trifluoromethylthioesters from Aldehydes via a Radical Process. J Org Chem 2021; 87:765-775. [PMID: 34882428 DOI: 10.1021/acs.joc.1c02244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a mild and general method for the trifluoromethylthiolation of aldehydes using N-trifluoromethylthiosaccharin as the CF3S radical source and sodium decatungstate (NaDT) as the photocatalyst. This reaction proceeds via hydrogen atom abstraction by photoactivated DT and features good functional groups and substrate tolerance. Generally, electron-rich aldehydes demonstrate better reactivity than electron-deficient ones and good selectivity is observed for the trifluoromethylthiolation of aldehydic C-H bonds over tertiary and benzylic C-H bonds. Preliminary mechanistic studies have shown that a free radical process is involved.
Collapse
Affiliation(s)
- Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Xiaodong Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
27
|
Sudharsan M, Nethaji M, Bhuvanesh NS, Suresh D. Heteroleptic Palladium(II) Complexes of Thiazolinyl‐picolinamide Derived N
∩
N
∩
N Pincer Ligand: An Efficient Catalyst for Acylative Suzuki Coupling Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Murugesan Sudharsan
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| | - Munirathinam Nethaji
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | | | - Devarajan Suresh
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| |
Collapse
|
28
|
Chen L, Hou J, Zheng M, Zhan LW, Tang WY, Li BD. Carbonylative coupling of simple alkanes and alkenes enabled by organic photoredox catalysis. Chem Commun (Camb) 2021; 57:10210-10213. [PMID: 34523655 DOI: 10.1039/d1cc04138j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-driven direct carbonylative coupling of simple alkanes and alkenes via the combination of a hydrogen atom transfer process and photoredox catalysis has been demonstrated. Employing the N-alkoxyazinium salt as the oxidant and the precursor of an oxygen radical, a variety of α,β-unsaturated ketones could be obtained in a metal-free fashion.
Collapse
Affiliation(s)
- Ling Chen
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ming Zheng
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wan-Ying Tang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
29
|
Cai B, Cheo HW, Liu T, Wu J. Light‐Promoted Organic Transformations Utilizing Carbon‐Based Gas Molecules as Feedstocks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bin Cai
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Han Wen Cheo
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Tao Liu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Jie Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
30
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
31
|
Wang Z, Zeng L, He C, Duan C. Photocatalytic C-H Activation with Alcohol as a Hydrogen Atom Transfer Agent in a 9-Fluorenone Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25898-25905. [PMID: 34043310 DOI: 10.1021/acsami.1c03098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen atom transfer (HAT) has become an attractive strategy for the activation of hydrocarbon feedstocks. Alcohols, as inexpensive and efficient hydrogen transfer reagents, have limited application in C-H functionalization due to the difficulty in the alkoxy radical acquisition. 9-Fluorenone moieties were incorporated into the metal-organic framework (MOF) as a photocatalyst; through the formation of hydrogen bonds between the carbonyl group of a ligand and alcohol, alkoxy radicals could be obtained by the visible-light-driven oxidation of 2,2,2-trichloroethanol via proton-coupled electron transfer (PCET). Effectively photocatalyzed intermolecular coupling reactions between phenyl vinyl sulfone and aldehyde or cyclic ether were realized through the HAT pathway. Compared to homogeneous catalysts, the heterogeneous MOF photocatalyst improved the catalytic efficiency and could be recycled at least five times. The microenvironment of the Zn-OFDC channel was beneficial for the formation of hydrogen bonds and stability of alkoxy radicals.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
32
|
Yang B, Zhang H, Wan F, Deng Y, Jiang D, Zhang Q, Liu Y, Zhang C, Fu Z. Molybdenum Isomorphously Substituted Decatungstates as Robust and Renewable Photocatalysts for Visible Light‐Driven Oxidation of Hydrocarbons by Molecular Oxygen. ChemCatChem 2021. [DOI: 10.1002/cctc.202002037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Yang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Huanhuan Zhang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Feifei Wan
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Youer Deng
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Dabo Jiang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Qiao Zhang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Yachun Liu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Chao Zhang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| | - Zaihui Fu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 P.R. China
| |
Collapse
|
33
|
Shi D, Wang S, Cui C, Zhou Q, Du J, Chen D. A Decatungstate Incorporated MOF for Visible-Light-Driven Photocatalytic Oxidation of Cyclohexane by Molecular Oxygen. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Xie P, Shi S, Hu X, Xue C, Du D. Sunlight Photocatalytic Synthesis of Aryl Hydrazides by Decatungstate‐Promoted Acylation under Room Temperature. ChemistrySelect 2021. [DOI: 10.1002/slct.202100808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Xueqing Hu
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| |
Collapse
|
35
|
Zhao F, Ai H, Wu X. Radical Carbonylation under Low
CO
Pressure: Synthesis of Esters from Activated Alkylamines at Transition
Metal‐Free
Conditions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fengqian Zhao
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock Albert‐Einstein‐Straße 29a 18059 Rostock Germany
| | - Han‐Jun Ai
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock Albert‐Einstein‐Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock Albert‐Einstein‐Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Liaoning 116023 China
| |
Collapse
|
36
|
Cai B, Cheo HW, Liu T, Wu J. Light-Promoted Organic Transformations Utilizing Carbon-Based Gas Molecules as Feedstocks. Angew Chem Int Ed Engl 2021; 60:18950-18980. [PMID: 33002315 DOI: 10.1002/anie.202010710] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Carbon-based gas molecules are readily available feedstocks and are widely used in industry as building blocks or fuels. However, their application in the synthesis of fine chemicals has been hampered due to operational complexity, poor reaction efficiency and selectivity. Recent development of photoredox-promoted transformations using such gaseous reagents has received considerable attention from the synthetic community. In this review, efforts in developing light-promoted organic transformations using carbon-based natural gases as C1 or C2 feedstocks and to overcome the associated challenges are briefly summarized.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Han Wen Cheo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
37
|
Trost BM, Zuo Z, Wang Y. Pd(0)-Catalyzed Diastereo- and Enantioselective Intermolecular Cycloaddition for Rapid Assembly of 2-Acyl-methylenecyclopentanes. Org Lett 2021; 23:979-983. [PMID: 33443429 DOI: 10.1021/acs.orglett.0c04169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regio-, diastereo-, and enantioselective trimethylenemethane (TMM) cycloaddition reaction for the rapid assembly of 2-acyl-methylenecyclopentane in an atom-economic fashion is described. This intermolecular protocol allows for facile and divergent access to an array of structurally attractive cyclic adducts. The choice of a robust chiral diamidophosphite ligand, developed by our group, proved to be crucial for the success of this transformation.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Zhijun Zuo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Youliang Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
38
|
Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angew Chem Int Ed Engl 2020; 59:18646-18654. [PMID: 32621297 DOI: 10.1002/anie.202006720] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/18/2022]
Abstract
We report a new visible-light-mediated carbonylative amidation of aryl, heteroaryl, and alkyl halides. A tandem catalytic cycle of [Ir(ppy)2 (dtb-bpy)]+ generates a potent iridium photoreductant through a second catalytic cycle in the presence of DIPEA, which productively engages aryl bromides, iodides, and even chlorides as well as primary, secondary, and tertiary alkyl iodides. The versatile in situ generated catalyst is compatible with aliphatic and aromatic amines, shows high functional-group tolerance, and enables the late-stage amidation of complex natural products.
Collapse
Affiliation(s)
- José A Forni
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nenad Micic
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Timothy U Connell
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Geethika Weragoda
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| |
Collapse
|
39
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
40
|
Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- José A. Forni
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
| | - Nenad Micic
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
| | | | | | - Anastasios Polyzos
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| |
Collapse
|
41
|
Kuang Y, Cao H, Tang H, Chew J, Chen W, Shi X, Wu J. Visible light driven deuteration of formyl C-H and hydridic C(sp 3)-H bonds in feedstock chemicals and pharmaceutical molecules. Chem Sci 2020; 11:8912-8918. [PMID: 34123145 PMCID: PMC8163369 DOI: 10.1039/d0sc02661a] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Deuterium labelled compounds are of significant importance in chemical mechanism investigations, mass spectrometric studies, diagnoses of drug metabolisms, and pharmaceutical discovery. Herein, we report an efficient hydrogen deuterium exchange reaction using deuterium oxide (D2O) as the deuterium source, enabled by merging a tetra-n-butylammonium decatungstate (TBADT) hydrogen atom transfer photocatalyst and a thiol catalyst under light irradiation at 390 nm. This deuteration protocol is effective with formyl C-H bonds and a wide range of hydridic C(sp3)-H bonds (e.g. α-oxy, α-thioxy, α-amino, benzylic, and unactivated tertiary C(sp3)-H bonds). It has been successfully applied to the high incorporation of deuterium in 38 feedstock chemicals, 15 pharmaceutical compounds, and 6 drug precursors. Sequential deuteration between formyl C-H bonds of aldehydes and other activated hydridic C(sp3)-H bonds can be achieved in a selective manner.
Collapse
Affiliation(s)
- Yulong Kuang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Republic of Singapore
| | - Hui Cao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Republic of Singapore
| | - Haidi Tang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Republic of Singapore
| | - Junhong Chew
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Republic of Singapore
| | - Wei Chen
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Republic of Singapore
| | - Xiangcheng Shi
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Republic of Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Republic of Singapore
| |
Collapse
|
42
|
Wang Y, Wang N, Zhao J, Sun M, You H, Fang F, Liu ZQ. Visible-Light-Promoted Site-Specific and Diverse Functionalization of a C(sp3)–C(sp3) Bond Adjacent to an Arene. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01495] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Nengyong Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Jianyou Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Minzhi Sun
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Huichao You
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Fang Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| |
Collapse
|
43
|
Fan P, Zhang C, Zhang L, Wang C. Acylation of Aryl Halides and α-Bromo Acetates with Aldehydes Enabled by Nickel/TBADT Cocatalysis. Org Lett 2020; 22:3875-3878. [DOI: 10.1021/acs.orglett.0c01121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pei Fan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chang Zhang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Linchuan Zhang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
44
|
Krach PE, Dewanji A, Yuan T, Rueping M. Synthesis of unsymmetrical ketones by applying visible-light benzophenone/nickel dual catalysis for direct benzylic acylation. Chem Commun (Camb) 2020; 56:6082-6085. [PMID: 32352104 DOI: 10.1039/d0cc01480j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report a dual catalytic system for the direct benzylic C-H acylation reaction furnishing a variety of unsymmetrical ketones. A benzophenone-derived photosensitizer combined with a nickel catalyst has been established as the catalytic system. Both acid chlorides and anhydrides are able to acylate the benzylic position of toluene and other methylbenzenes. The method offers a valuable alternative to late transition metal catalyzed C-H acylation reactions.
Collapse
Affiliation(s)
- Patricia E Krach
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
45
|
Yahata K, Yoshioka S, Hori S, Sakurai S, Kaneko Y, Hasegawa K, Akai S. One-Pot Formal Dehydrogenative Ketone Synthesis from Aldehydes and Non-activated Hydrocarbons. Chem Pharm Bull (Tokyo) 2020; 68:336-338. [PMID: 32074521 DOI: 10.1248/cpb.c20-00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ketones are a fundamental functionality found throughout a range of natural and synthetic compounds, making their synthesis essential throughout the chemical disciplines. Herein, we describe a one-pot synthesis of ketones via decatungstate-mediated formal dehydrogenative coupling between aldehydes and non-activated hydrocarbons. A variety of substituted benzaldehydes and cycloalkanes could be used in the optimized reaction to produce the desired ketones in moderate yields. The decatungstate photocatalyst functions in two reactions in this synthesis, catalyzing both the coupling and oxidation steps of the process. Notably, the reaction displays both high atom economy and sustainability, as it uses light and oxygen as key energy sources.
Collapse
Affiliation(s)
- Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shin Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shuhei Hori
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shu Sakurai
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yuki Kaneko
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kai Hasegawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
46
|
Yahata K, Sakurai S, Hori S, Yoshioka S, Kaneko Y, Hasegawa K, Akai S. Coupling Reaction between Aldehydes and Non-Activated Hydrocarbons via the Reductive Radical-Polar Crossover Pathway. Org Lett 2020; 22:1199-1203. [DOI: 10.1021/acs.orglett.0c00096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shu Sakurai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuhei Hori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneko
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kai Hasegawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Zhao F, Li CL, Wu XF. Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions. Chem Commun (Camb) 2020; 56:9182-9185. [DOI: 10.1039/d0cc04062b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transition-metal-free deaminative carbonylation through C–N bonds activation via Katritzky salts has been successful developed. Various α,β-unsaturated ketones were obtained in moderate to good yields with alkylamines and styrenes as the substrates.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Chong-Liang Li
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
- Department of Chemistry
- Zhejiang Sci-Tech University
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
- Department of Chemistry
- Zhejiang Sci-Tech University
| |
Collapse
|
48
|
Sharma N, Lee Y, Nam W, Fukuzumi S. Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High C−H Bond Dissociation Energies. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
- Graduate School of Science and EngineeringMeijo University, Nagoya Aichi 468-8502 Japan
| |
Collapse
|
49
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
50
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 426] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|