1
|
Ammann M, Artiglia L. Solvation, Surface Propensity, and Chemical Reactions of Solutes at Atmospheric Liquid-Vapor Interfaces. Acc Chem Res 2022; 55:3641-3651. [PMID: 36472357 PMCID: PMC9774673 DOI: 10.1021/acs.accounts.2c00604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 12/12/2022]
Abstract
surface is covered by oceans, a large number of liquid aerosol particles fill the air, and clouds hold a tiny but critical fraction of Earth's water in the air to influence our climate and hydrology, enabling the lives of humans and ecosystems. The surfaces of these liquids provide the interface for the transfer of gases, for nucleation processes, and for catalyzing important chemical reactions. Coupling a range of spectroscopic tools to liquid microjets has become an important approach to better understanding dynamics, structure, and chemistry at liquid interfaces. Liquid microjets offer stability in vacuum and ambient pressure environments, thus also allowing X-ray photoelectron spectroscopy (XPS) with manageable efforts in terms of differential pumping. Liquid microjets are operated at speeds sufficient to allow for a locally equilibrated surface in terms of water dynamics and solute surface partitioning. XPS is based on the emission of core-level electrons, the binding energy of which is selective for the element and its chemical environment. Inelastic scattering of electrons establishes the probing depth of XPS in the nanometer range and thus its surface sensitivity.In this Account, we focus on aqueous solutions relevant to the surface of oceans, aqueous aerosols, or cloudwater. We are interested in understanding solvation and acid dissociation at the interface, interfacial aspects of reactions with gas-phase reactants, and the interplay of ions with organic molecules at the interface. The strategy is to obtain a link between the molecular-level picture and macroscopic properties and reactivity in the atmospheric context.We show consistency between surface tension and XPS for a range of surface-active organic species as an important proof for interrogating an equilibrated liquid surface. Measurements with organic acids and amines offer important insight into the question of apparent acidity or basicity at the interface. Liquid microjet XPS has settled the debate of the surface enhancement of halide ions, shown using the example of bromide and its oxidation products. Despite the absence of a strong enhancement for the bromide ion, its rate of oxidation by ozone is surface catalyzed through the stabilization of the bromide ozonide intermediate at the interface. In another reaction system, the one between Fe2+ and H2O2, a similar intermediate in the form of highly valent iron species could not be detected by XPS under the experimental conditions employed, shedding light on the abundance of this intermediate in the environment but also on the constraints within which surface species can be detected. Emphasizing the importance of electrostatic effects, we show how a cationic surfactant attracts charged bromide anions to the interface, accompanied by enhanced oxidation rates by ozone, overriding the role of surfactants as a barrier for the access of gas-phase reactants. The reactivity and structure at interfaces thus result from a subtle balance between hygroscopic and hydrophobic interactions, electrostatic effects, and the structural properties of both liquids and solutes.
Collapse
Affiliation(s)
- Markus Ammann
- Laboratory of Environmental
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Luca Artiglia
- Laboratory of Environmental
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
2
|
Sahraeian T, Kulyk DS, Fernandez JP, Hadad CM, Badu-Tawiah AK. Capturing Fleeting Intermediates in a Claisen Rearrangement Using Nonequilibrium Droplet Imbibition Reaction Conditions. Anal Chem 2022; 94:15093-15099. [PMID: 36251285 DOI: 10.1021/acs.analchem.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Claisen rearrangement of aromatic allyl phenyl ether to 2-allyl phenol is known to be induced by heat, acid, and air-water interfacial (on-water) effects. In this work, we show that the combination of acid and interfacial effects in an "on-droplet" experiment accelerates this reaction even further (by a factor >10×). The reaction acceleration was achieved through a droplet imbibition mass spectrometry (MS) experiment that allows reactants to be deposited on rapidly moving (100 m/s), charged microdroplets while avoiding turbulent mixing. In this case, reactants are concentrated mainly at the surface of the short-lived microdroplets (microseconds), enabling enhanced interfacial effects. By doping n-butylamine in the spray solvent and subsequently exposing the resultant electrosprayed microdroplets to formic acid vapor, the ketone intermediate, 6-allylcyclohexa-2,4-dien-1-one, involved in this Claisen rearrangement was captured and characterized by tandem MS, successfully differentiating it from the corresponding isobaric reactant (allyl phenyl ether) and product (2-allyl phenol). Similar results showing rate acceleration and subsequent capture of the ketone intermediate via an instantaneous reaction with n-butylamine were demonstrated for p-methyl and p-nitro substituted allyl phenyl ether. Density functional theory calculations confirmed that the on-droplet reaction condition, with a high abundance of proton sources, is different from the neutral rearrangement. With a calculated free energy of activation of 5.2 kcal mol-1 for the protonated reactant, the on-droplet experimental condition provides a unique mechanism for catalyzing the Claisen rearrangement on the microsecond lifetime of the droplets. This experiment marks the first direct capture and detection of a short-lived ketone intermediate in the Claisen rearrangement, a task that is challenged by a thermodynamically favorable tautomerization step to give a more stabilized product (by 20 kcal/mol).
Collapse
Affiliation(s)
- Taghi Sahraeian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dmytro S Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph P Fernandez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Sun J, Yin Y, Li W, Jin O, Na N. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:70-99. [PMID: 33259644 DOI: 10.1002/mas.21668] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Chemical reactions conducted in different media (liquid phase, gas phase, or surface) drive developments of versatile techniques for the detection of intermediates and prediction of reasonable reaction pathways. Without sample pretreatment, ambient mass spectrometry (AMS) has been applied to obtain structural information of reactive molecules that differ in polarity and molecular weight. Commercial ion sources (e.g., electrospray ionization, atmospheric pressure chemical ionization, and direct analysis in real-time) have been reported to monitor substrates and products by offline reaction examination. While the interception or characterization of reactive intermediates with short lifetime are still limited by the offline modes. Notably, online ionization technologies, with high tolerance to salt, buffer, and pH, can achieve direct sampling and ionization of on-going reactions conducted in different media (e.g., liquid phase, gas phase, or surface). Therefore, short-lived intermediates could be captured at unprecedented timescales, and the reaction dynamics could be studied for mechanism examinations without sample pretreatments. In this review, via various AMS methods, chemical reaction monitoring and mechanism elucidation for different classifications of reactions have been reviewed. The developments and advances of common ionization methods for offline reaction monitoring will also be highlighted.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weixiang Li
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ouyang Jin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Indelicato S, Bongiorno D, Ceraulo L. Recent Approaches for Chemical Speciation and Analysis by Electrospray Ionization (ESI) Mass Spectrometry. Front Chem 2021; 8:625945. [PMID: 33553108 PMCID: PMC7855954 DOI: 10.3389/fchem.2020.625945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
In recent years, the chemical speciation of several species has been increasingly monitored and investigated, employing electrospray ionization mass spectrometry (ESI-MS). This soft ionization technique gently desolvates weak metal–ligand complexes, taking them in the high vacuum sectors of mass spectrometric instrumentation. It is, thus, possible to collect information on their structure, energetics, and fragmentation pathways. For this reason, this technique is frequently chosen in a synergistic approach to investigate competitive ligand exchange-adsorption otherwise analyzed by cathodic stripping voltammetry (CLE-ACSV). ESI-MS analyses require a careful experimental design as measurement may face instrumental artifacts such as ESI adduct formation, fragmentation, and sometimes reduction reactions. Furthermore, ESI source differences of ionization efficiencies among the detected species can be misleading. In this mini-review are collected and critically reported the most recent approaches adopted to mitigate or eliminate these limitations and to show the potential of this analytical technique.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli studi di Palermo, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli studi di Palermo, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli studi di Palermo, Palermo, Italy
| |
Collapse
|
6
|
Kuleshov DO, Mazur DM, Gromov IA, Alekseyuk EN, Gall NR, Polyakova OV, Lebedev AT, Gall LN. Study of the Aniline and Acetone Condensation Reaction under Electrospray Ionization Conditions. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820130067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Zhu X, Xu F, Xing Z, Zhang S, Zhang X. Intermediates detection in the conversion of ethanol to butanol catalyzed by zirconium, cerium, titanium monoxide cations by inductively coupled plasma tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Choi S, Cha S. Investigation of Reactions Between Isothiazolinones and Cysteamine by Reactive Paper Spray Ionization Mass Spectrometry (Reactive PSI MS). B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soobin Choi
- Department of ChemistryHankuk University of Foreign Studies Yongin 17035 South Korea
| | - Sangwon Cha
- Department of ChemistryHankuk University of Foreign Studies Yongin 17035 South Korea
| |
Collapse
|
9
|
M Ribeiro FW, Rodrigues-Oliveira AF, C Correra T. Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates. J Phys Chem A 2019; 123:8179-8187. [PMID: 31483645 DOI: 10.1021/acs.jpca.9b05065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Benzoxazine formation is a fundamental step in the preparation of polybenzoxazine resins, and a detailed description of the mechanism governing the formation of benzoxazine and side products is vital for improving the properties and performance of these resins. Determination of the nature and properties of reaction intermediates is not trivial. Therefore, a Mannich-type condensation of aniline, formaldehyde, and phenol was evaluated as a potential method to form benzoxazine. Coupling positive mode electrospray ionization mass spectrometry (ESI(+)-MS) with infrared multiple photon dissociation (IRMPD) spectroscopy allowed unambiguous determination of an iminium-based mechanism and the direct observation of iminium intermediates. The benzoxazine formation mechanism was indirectly confirmed by the observation of side products that are relevant to the polymerization step, and directly confirmed by the identification of four distinct reaction intermediates that were completely characterized by IRMPD spectroscopy. The benzoxazine monomer was also shown to undergo isomerization under standard ESI-MS analysis conditions, suggesting the presence of a mixture of three isomers during their usual ESI-MS analysis.
Collapse
Affiliation(s)
- Francisco W M Ribeiro
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| | - André F Rodrigues-Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| | - Thiago C Correra
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo Av. Prof. Lineu Prestes, 748, Cidade Universitária , São Paulo , São Paulo 05508-000 , Brazil
| |
Collapse
|
10
|
Chen MM, Su HF, Xie Y, He LF, Lin SC, Zhang ML, Wang C, Xie SY, Huang RB, Zheng LS. Sniffing with mass spectrometry. Sci Bull (Beijing) 2018; 63:1351-1357. [PMID: 36658906 DOI: 10.1016/j.scib.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 01/21/2023]
Abstract
Gaseous compounds are usually on-line detectable on sensors. The limitations of conventional sensors are suffering from incapability for exactly identifying multiple components as well as incompatibility to possible toxicants in every odor sample. Herein, we discuss an inlet modification to the laboratory standard mass spectrometer, inspired by the sensitive olfactory systems of animals, for direct sniffing, established by connecting a mini pump to the nebulizer gas tubing. The modified mass spectrometry method-sniffing-mass spectrometry (sniffing-MS)-can acquire detailed fingerprint spectra of mixed odors and shows high tolerance to toxicants. Furthermore, the method has a low limit of detection in the order of parts per trillion and is a 'sampling-free' technique for analyzing various gaseous compounds simultaneously, thus offering versatility for smelling daily commodities, tracking diffusion, and locating position of odors. Sniffing-MS can mimic or even surpass the olfaction of animals and is applicable for analyzing gaseous/volatile compounds, especially those polar compounds, in a simple manner depending on the intrinsic molecular mass-to-charge ratio.
Collapse
Affiliation(s)
- Miao-Miao Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Feng Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li-Fang He
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shui-Chao Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mei-Lin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Rong-Bin Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
van Geenen FAG, Franssen MCR, Zuilhof H, Nielen MWF. Reactive Laser Ablation Electrospray Ionization Time-Resolved Mass Spectrometry of Click Reactions. Anal Chem 2018; 90:10409-10416. [PMID: 30063331 PMCID: PMC6127799 DOI: 10.1021/acs.analchem.8b02290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Reactions in confined compartments like charged microdroplets are of increasing interest, notably because of their substantially increased reaction rates. When combined with ambient ionization mass spectrometry (MS), reactions in charged microdroplets can be used to improve the detection of analytes or to study the molecular details of the reactions in real time. Here, we introduce a reactive laser ablation electrospray ionization (reactive LAESI) time-resolved mass spectrometry (TRMS) method to perform and study reactions in charged microdroplets. We demonstrate this approach with a class of reactions new to reactive ambient ionization MS: so-called click chemistry reactions. Click reactions are high-yielding reactions with a high atom efficiency, and are currently drawing significant attention from fields ranging from bioconjugation to polymer modification. Although click reactions are typically at least moderately fast (time scale of minutes to a few hours), in a reactive LAESI approach a substantial increase of reaction time is required for these reactions to occur. This increase was achieved using microdroplet chemistry and followed by MS using the insertion of a reaction tube-up to 1 m in length-between the LAESI source and the MS inlet, leading to near complete conversions due to significantly extended microdroplet lifetime. This novel approach allowed for the collection of kinetic data for a model (strain-promoted) click reaction between a substituted tetrazine and a strained alkyne and showed in addition excellent instrument stability, improved sensitivity, and applicability to other click reactions. Finally, the methodology was also demonstrated in a mass spectrometry imaging setting to show its feasibility in future imaging experiments.
Collapse
Affiliation(s)
- Fred A.
M. G. van Geenen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
| | - Michel W. F. Nielen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
12
|
Yan X, Bain RM, Cooks RG. Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry. Angew Chem Int Ed Engl 2018; 55:12960-12972. [PMID: 27530279 DOI: 10.1002/anie.201602270] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/10/2022]
Abstract
The striking finding that reaction acceleration occurs in confined-volume solutions sets up an apparent conundrum: Microdroplets formed by spray ionization can be used to monitor the course of bulk-phase reactions and also to accelerate reactions between the reagents in such a reaction. This Minireview introduces droplet and thin-film acceleration phenomena and summarizes recent methods applied to study accelerated reactions in confined-volume, high-surface-area solutions. Conditions that dictate either simple monitoring or acceleration are reconciled in the occurrence of discontinuous and complete desolvation as the endpoint of droplet evolution. The contrasting features of microdroplet and bulk-solution reactions are described together with possible mechanisms that drive reaction acceleration in microdroplets. Current applications of droplet microreactors are noted as is reaction acceleration in confined volumes and possible future scale-up.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Ryan M Bain
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Cooks RG, Yan X. Mass Spectrometry for Synthesis and Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:1-28. [PMID: 29894228 DOI: 10.1146/annurev-anchem-061417-125820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging. Our special interest in chirality and the chemistry behind the origins of life is also featured together with the exciting area of tissue diagnostics.
Collapse
Affiliation(s)
- R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
| | - Xin Yan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
- Current affiliation: Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
14
|
Lu M, Su Y, Zhao P, Ye X, Cai Y, Shi X, Masson E, Li F, Campbell JL, Chen H. Direct Evidence for the Origin of Bis-Gold Intermediates: Probing Gold Catalysis with Mass Spectrometry. Chemistry 2018; 24:2144-2150. [PMID: 29131927 PMCID: PMC6139295 DOI: 10.1002/chem.201703666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/11/2022]
Abstract
Gold-catalyzed alkyne hydration was studied by using in situ reacting mass spectrometry (MS) technology. By monitoring the reaction process in solution under different conditions (regular and very diluted catalyst concentrations, different pH values) and examining the reaction occurrence in the early reaction stage (1-2 ms after mixing) with MS, we collected a series of experimental evidence to support that the bis-gold complex is a potential key reaction intermediate. Furthermore, both experimental and computational studies confirmed that the σ,π-bis-gold complexes are not active intermediates toward nucleophilic addition. Instead, formation of geminally diaurated complex C is crucial for this catalytic process.
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701, USA
| | - Yijin Su
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Pengyi Zhao
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701, USA
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Yi Cai
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Eric Masson
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701, USA
| | - Fengyao Li
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701, USA
| | - J Larry Campbell
- AB Sciex, 71 Four Valley Drive, Concord, Ontario, L4K 4V8, Canada
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
15
|
Xu S, Veach JJ, Oloo WN, Peters KC, Wang J, Perry RH, Que L. Detection of a transient FeV(O)(OH) species involved in olefin oxidation by a bio-inspired non-haem iron catalyst. Chem Commun (Camb) 2018; 54:8701-8704. [PMID: 30028454 DOI: 10.1039/c8cc03990a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we provide direct evidence for the formation of an FeV(O)(OH) species in non-haem iron catalysis using ambient mass spectrometry.
Collapse
Affiliation(s)
- Shuangning Xu
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| | | | - Williamson N. Oloo
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| | | | - Junyi Wang
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| | - Richard H. Perry
- Department of Chemistry
- University of Illinois
- Urbana
- USA
- Department of Chemistry and Physics
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
16
|
Banerjee S, Sathyamoorthi S, Du Bois J, Zare RN. Mechanistic analysis of a copper-catalyzed C-H oxidative cyclization of carboxylic acids. Chem Sci 2017; 8:7003-7008. [PMID: 29147527 PMCID: PMC5642147 DOI: 10.1039/c7sc02240a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/16/2017] [Indexed: 11/21/2022] Open
Abstract
We recently reported that carboxylic acids can be oxidized to lactone products by potassium persulfate and catalytic copper acetate. Here, we unravel the mechanism for this C-H functionalization reaction using desorption electrospray ionization, online electrospray ionization, and tandem mass spectrometry. Our findings suggest that electron transfer from a transient benzylic radical intermediate reduces Cu(ii) to Cu(i), which is then re-oxidized to Cu(ii) in the catalytic cycle. The resulting benzylic carbocation is trapped by the pendant carboxylate group to give the lactone product. Formation of the putative benzylic carbocation is supported by Hammett analysis. The proposed mechanism for this copper-catalyzed oxidative cyclization process differs from earlier reports of analogous reactions, which posit a substrate carboxylate radical as the reactive oxidant.
Collapse
Affiliation(s)
- Shibdas Banerjee
- Stanford University , Department of Chemistry , 333 Campus Drive , Stanford , CA 94305-4401 , USA .
| | - Shyam Sathyamoorthi
- Stanford University , Department of Chemistry , 333 Campus Drive , Stanford , CA 94305-4401 , USA .
| | - J Du Bois
- Stanford University , Department of Chemistry , 333 Campus Drive , Stanford , CA 94305-4401 , USA .
| | - Richard N Zare
- Stanford University , Department of Chemistry , 333 Campus Drive , Stanford , CA 94305-4401 , USA .
| |
Collapse
|
17
|
Walker KL, Dornan LM, Zare RN, Waymouth RM, Muldoon MJ. Mechanism of Catalytic Oxidation of Styrenes with Hydrogen Peroxide in the Presence of Cationic Palladium(II) Complexes. J Am Chem Soc 2017; 139:12495-12503. [DOI: 10.1021/jacs.7b05413] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Katherine L. Walker
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. Dornan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, Northern Ireland, BT9 5AG, United Kingdom
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mark J. Muldoon
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, Northern Ireland, BT9 5AG, United Kingdom
| |
Collapse
|
18
|
Cai Y, Wang J, Zhang Y, Li Z, Hu D, Zheng N, Chen H. Detection of Fleeting Amine Radical Cations and Elucidation of Chain Processes in Visible-Light-Mediated [3 + 2] Annulation by Online Mass Spectrometric Techniques. J Am Chem Soc 2017; 139:12259-12266. [PMID: 28786686 DOI: 10.1021/jacs.7b06319] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light-mediated photoredox reactions have recently emerged as a powerful means for organic synthesis and thus have generated significant interest from the organic chemistry community. Although the mechanisms of these reactions have been probed by a number of techniques such as NMR, fluorescence quenching, and laser flash photolysis and various degrees of success has been achieved, mechanistic ambiguity still exists (for instance, the involvement of the chain mechanism is still under debate) because of the lack of structural information about the proposed and short-lived intermediates. Herein, we present the detection of transient amine radical cations involved in the intermolecular [3 + 2] annulation reaction of N-cyclopropylaniline (CPA, 1) and styrene 2 by electrospray ionization mass spectrometry (ESI-MS) in combination with online laser irradiation of the reaction mixture. In particular, the reactive CPA radical cation 1+•, the reduced photocatalyst Ru(I)(bpz)3+, and the [3 + 2] annulation product radical cation 3+• are all successfully detected and confirmed by high-resolution MS. More importantly, the post-irradiation reaction with an additional substrate, isotope-labeled CPA, following photolysis of 1, 2, and Ru catalyst provides strong evidence to support the chain mechanism in the [3 + 2] annulation reaction. Furthermore, the key step of the proposed chain reaction, the oxidation of CPA 1 to amine radical cation 1+• by product radical cation 3+• (generated using online electrochemical oxidation of 3), is successfully established. Additionally, the coupling of ESI-MS with online laser irradiation has been successfully applied to probe the photostability of photocatalysts.
Collapse
Affiliation(s)
- Yi Cai
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - Jiang Wang
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Yuexiang Zhang
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - Zhi Li
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - David Hu
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Hao Chen
- Department of Chemistry and Biochemistry, Center of Intelligent Chemical Instrumentation, Edison Biotechnology Institute, Ohio University , Athens, Ohio 45701, United States
| |
Collapse
|
19
|
Jansson ET, Lai YH, Santiago JG, Zare RN. Rapid Hydrogen-Deuterium Exchange in Liquid Droplets. J Am Chem Soc 2017; 139:6851-6854. [PMID: 28481522 DOI: 10.1021/jacs.7b03541] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate of hydrogen-deuterium exchange (HDX) in aqueous droplets of phenethylamine has been determined with submillisecond temporal resolution by mass spectrometry using nanoelectrospray ionization with a theta-capillary. The average speed of the microdroplets is measured using microparticle image velocimetry. The droplet travel time is varied from 20 to 320 μs by changing the distance between the emitter and the heated inlet to the mass spectrometer and the voltage applied to the emitter source. The droplets were found to accelerate by ∼30% during their observable travel time. Our droplet imaging shows that the theta-capillary produces two Taylor cone-jets (one per channel), causing mixing to take place from droplet fusion in the Taylor spray zone. Phenethylamine (ϕCH2CH2NH2) was chosen to study because it has only one functional group (-NH2) that undergoes rapid HDX. We model the HDX with a system of ordinary differential equations. The rate constant for the formation of -NH2D+ from -NH3+ is 3660 ± 290 s-1, and the rate constant for the formation of -NHD2+ from -NH2D+ is 3330 ± 270 s-1. The observed rates are about 3 times faster than what has been reported for rapidly exchangeable peptide side-chain groups in bulk measurements using stopped-flow kinetics and NMR spectroscopy. We also applied this technique to determine the HDX rates for a small 10-residue peptide, angiotensin I, in aqueous droplets, from which we found a 7-fold acceleration of HDX in the droplet compared to that in bulk solution.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University , SE-751 24 Uppsala, Sweden.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Yin-Hung Lai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
20
|
Meher AK, Chen YC. Electrospray Modifications for Advancing Mass Spectrometric Analysis. ACTA ACUST UNITED AC 2017; 6:S0057. [PMID: 28573082 DOI: 10.5702/massspectrometry.s0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022]
Abstract
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented.
Collapse
Affiliation(s)
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
21
|
Cheng H, Yan X, Zare RN. Two New Devices for Identifying Electrochemical Reaction Intermediates with Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:3191-3198. [DOI: 10.1021/acs.analchem.6b05124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heyong Cheng
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
- College
of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xin Yan
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
22
|
Cheng S, Wu Q, Xiao H, Chen H. Online Monitoring of Enzymatic Reactions Using Time-Resolved Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:2338-2344. [DOI: 10.1021/acs.analchem.6b03975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Si Cheng
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
| | - Qiuhua Wu
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
- Department
of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - He Xiao
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
| |
Collapse
|
23
|
Lento C, Wilson DJ. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry. Analyst 2017; 142:1640-1653. [DOI: 10.1039/c7an00338b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many important chemical and biochemical phenomena proceed on sub-second time scales.
Collapse
Affiliation(s)
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Centre for Research of Biomolecular Interactions
| |
Collapse
|
24
|
Huang Y, Li W, Qin M, Zhou H, Zhang X, Li F, Song Y. Printable Functional Chips Based on Nanoparticle Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1503339. [PMID: 28102576 DOI: 10.1002/smll.201503339] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/04/2016] [Indexed: 05/18/2023]
Abstract
With facile manufacturability and modifiability, impressive nanoparticles (NPs) assembly applications were performed for functional patterned devices, which have attracted booming research attention due to their increasing applications in high-performance optical/electrical devices for sensing, electronics, displays, and catalysis. By virtue of easy and direct fabrication to desired patterns, high throughput, and low cost, NPs assembly printing is one of the most promising candidates for the manufacturing of functional micro-chips. In this review, an overview of the fabrications and applications of NPs patterned assembly by printing methods, including inkjet printing, lithography, imprinting, and extended printing techniques is presented. The assembly processes and mechanisms on various substrates with distinct wettabilities are deeply discussed and summarized. Via manipulating the droplet three phase contact line (TCL) pinning or slipping, the NPs contracted in ink are controllably assembled following the TCL, and generate novel functional chips and correlative integrate devices. Finally, the perspective of future developments and challenges is presented and widely exhibited.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Wenbo Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Meng Qin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Haihua Zhou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Xingye Zhang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Fengyu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street No. 2, 100190, Beijing, PR China
| |
Collapse
|
25
|
Wang Z, Zhang Y, Liu B, Wu K, Thevuthasan S, Baer DR, Zhu Z, Yu XY, Wang F. In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode–Electrolyte Interface: a SIMS Approach. Anal Chem 2016; 89:960-965. [DOI: 10.1021/acs.analchem.6b04189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhaoying Wang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Zhang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Kui Wu
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | - Fuyi Wang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
26
|
Boeser C. Reaktionen auf der Spur. CHEM UNSERER ZEIT 2016. [DOI: 10.1002/ciuz.201600694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Stolz F, Appun J, Naumov S, Schneider C, Abel B. A Complex Catalytic Reaction Caught in the Act: Intermediates and Products Sampling Online by Liquid μ-Beam Mass Spectrometry and Theoretical Modeling. Chempluschem 2016; 82:233-240. [PMID: 31961544 DOI: 10.1002/cplu.201600347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/25/2016] [Indexed: 11/08/2022]
Abstract
Liquid-beam IR-laser desorption mass spectrometry has been used to monitor the reactants, intermediates, and products of a complex organic signature reaction in real time on multiple timescales directly from the liquid phase. The reaction was chosen because it has advantages in medicinal chemistry applications, and the three-component, modular construction provides a means to generate molecular diversity rapidly. Under Lewis acid catalysis, a vinylogous Mannich reaction was monitored as it generated a δ-amino-α-silyloxy-α,β-unsaturated ester, which upon hydrolysis to the corresponding α-keto ester spontaneously reacted in a [3+2] cycloannulation to the final pyrrolo[2,1-b]benzoxazole. The kinetic data were compared with predictions of quantum chemical calculations to elucidate and verify or exclude reaction pathways and mechanisms for a possible rational optimization of the reaction. The simplicity and rapid response of this approach make it a very powerful technique for online characterization of chemical reactions on timescales spanning several orders of magnitude. This enables full control over chemical reactions, thereby maximizing the product yield. This combined experimental and theoretical approach opens up a new route for the study of novel chemistry in liquid-phase reactions.
Collapse
Affiliation(s)
- Ferdinand Stolz
- Leibniz Institute of Surface Modification, Permoserstrasse 15, 04317, Leipzig, Germany
| | - Johannes Appun
- Institut für Organische Chemie, Universität Leipzig, Johannisalle 29, 04103, Leipzig, Germany
| | - Sergej Naumov
- Leibniz Institute of Surface Modification, Permoserstrasse 15, 04317, Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisalle 29, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz Institute of Surface Modification, Permoserstrasse 15, 04317, Leipzig, Germany.,Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| |
Collapse
|
28
|
Qiu R, Zhang X, Luo H, Shao Y. Mass spectrometric snapshots for electrochemical reactions. Chem Sci 2016; 7:6684-6688. [PMID: 28451110 PMCID: PMC5355862 DOI: 10.1039/c6sc01978a] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/06/2016] [Indexed: 11/29/2022] Open
Abstract
A hybrid ultramicroelectrode containing one micro-carbon electrode and one empty micro-channel was employed to be a micro-electrochemical cell and a mass spectrometric nanospray emitter. This setup can combine MS with an electrode directly and provide in situ information about an electrochemical reaction. The mechanisms proposed by Bard et al. for a Ru(bpy)32+ (bpy = 2,2'-bipyridine) electrochemiluminescence (ECL) system were confirmed by the MS detection of key intermediates. The short-lived diimine intermediate of electrochemical oxidation of uric acid was also detected, which affirms that the novel technique is able to catch fleeting intermediates. These experimental results demonstrate that this new method is simple, easy to implement and can be coupled with many commercial mass spectrometric instruments to provide very useful information about electrochemical reactions.
Collapse
Affiliation(s)
- Ran Qiu
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| | - Hai Luo
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China . ;
| |
Collapse
|
29
|
Chingin K, Barylyuk K, Chen H. On the preservation of non-covalent protein complexes during electrospray ionization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0377. [PMID: 27644969 PMCID: PMC5031642 DOI: 10.1098/rsta.2015.0377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
The application range of electrospray ionization mass spectrometry for the quantitative determination of stoichiometries and binding constants for non-covalent protein complexes is broadly discussed. The underlying fundamental question is whether or not the original molecular equilibrium can be preserved during the ionization process and be revealed by subsequent mass spectrometry analysis. Here, we take a new look at this question by discussing recent studies in droplet chemistry.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Road 418, Nanchang, Jiangxi 330013, People's Republic of China
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Road 418, Nanchang, Jiangxi 330013, People's Republic of China
| |
Collapse
|
30
|
Yan X, Bain RM, Cooks RG. Organische Reaktionen in Mikrotröpfchen: Analyse von Reaktionsbeschleunigungen durch Massenspektrometrie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Yan
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Ryan M. Bain
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - R. Graham Cooks
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
31
|
Theron R, Wu Y, Yunker LPE, Hesketh AV, Pernik I, Weller AS, McIndoe JS. Simultaneous Orthogonal Methods for the Real-Time Analysis of Catalytic Reactions. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01489] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin Theron
- Department
of Chemistry, University of Victoria, P.O. Box 3065 Victoria, British Columbia V8W3 V6, Canada
| | - Yang Wu
- Department
of Chemistry, University of Victoria, P.O. Box 3065 Victoria, British Columbia V8W3 V6, Canada
| | - Lars P. E. Yunker
- Department
of Chemistry, University of Victoria, P.O. Box 3065 Victoria, British Columbia V8W3 V6, Canada
| | - Amelia V. Hesketh
- Department
of Chemistry, University of Victoria, P.O. Box 3065 Victoria, British Columbia V8W3 V6, Canada
| | - Indrek Pernik
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrew S. Weller
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - J. Scott McIndoe
- Department
of Chemistry, University of Victoria, P.O. Box 3065 Victoria, British Columbia V8W3 V6, Canada
| |
Collapse
|
32
|
Abstract
Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1–15 μm in diameter corresponding to 0·5 pl – 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet–air interface may play a significant role in accelerating the reaction. We argue that this ‘microdroplet chemistry’ could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment.
Collapse
|
33
|
Wang X, Zheng Y, Wang T, Yang H, Bai Z, Zhang Z. Catalyst Coated Paper Substrate Strategy: Development and Its Application for Copper-Catalysts Screening and Activity Studies. ChemistrySelect 2016. [DOI: 10.1002/slct.201600518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuan Wang
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Teng Wang
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Haijun Yang
- Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Zongquan Bai
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering; Xi'an Shiyou Unviersity; Xi'an 710065 China
| |
Collapse
|
34
|
Jansson ET, Dulay MT, Zare RN. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Anal Chem 2016; 88:6195-8. [PMID: 27249533 PMCID: PMC4917919 DOI: 10.1021/acs.analchem.6b01246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry, Stanford University , Stanford, California 94305, United States.,Department of Chemistry-BMC, Uppsala University , SE-75124 Uppsala, Sweden
| | - Maria T Dulay
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
35
|
Affiliation(s)
- Cristian Vicent
- Serveis
Centrals d’Instrumentació Cientı́fica, Universitat Jaume I, 12071 Castellón, Spain
| | - Dmitry G. Gusev
- Department
of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
36
|
Zhang JT, Wang HY, Zhang X, Zhang F, Guo YL. Study of short-lived and early reaction intermediates in organocatalytic asymmetric amination reactions by ion-mobility mass spectrometry. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01051b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of the reactive intermediates in organocatalytic asymmetric amination reactions by reactive SAESI coupled to ion-mobility mass spectrometry.
Collapse
Affiliation(s)
- Jun-Ting Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Hao-Yang Wang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Xiang Zhang
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310035
- China
| | - Fang Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Yin-Long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
37
|
Formation of anti- versus syn-dinuclear CuII complexes from bis-glycinamide ligands. Synergistic roles of a His/His dyad and supporting-ligand backbones in CuII binding. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2015.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Ingram AJ, Boeser CL, Zare RN. Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem Sci 2016; 7:39-55. [PMID: 28757996 PMCID: PMC5508663 DOI: 10.1039/c5sc02740c] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
There has been a burst in the number and variety of available ionization techniques to use mass spectrometry to monitor chemical reactions in and on liquids. Chemists have gained the capability to access chemistry at unprecedented timescales, and monitor reactions and detect intermediates under almost any set of conditions. Herein, recently developed ionization techniques that facilitate mechanistic studies of chemical processes are reviewed. This is followed by a discussion of our perspective on the judicious application of these and similar techniques in order to study reaction mechanisms.
Collapse
Affiliation(s)
- Andrew J Ingram
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | | | - Richard N Zare
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| |
Collapse
|
39
|
Zhang W, Huang G. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1947-1953. [PMID: 26443392 DOI: 10.1002/rcm.7300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). METHODS Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. RESULTS Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. CONCLUSIONS LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, 230026, P.R. China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, 230026, P.R. China
| |
Collapse
|
40
|
Zheng Q, Liu Y, Chen Q, Hu M, Helmy R, Sherer EC, Welch CJ, Chen H. Capture of Reactive Monophosphine-Ligated Palladium(0) Intermediates by Mass Spectrometry. J Am Chem Soc 2015; 137:14035-8. [DOI: 10.1021/jacs.5b08905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiuling Zheng
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Yong Liu
- Department of Process and Analytical Chemistry and Department of Structural Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qinghao Chen
- Department of Process and Analytical Chemistry and Department of Structural Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Meihong Hu
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Roy Helmy
- Department of Process and Analytical Chemistry and Department of Structural Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Edward C. Sherer
- Department of Process and Analytical Chemistry and Department of Structural Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christopher J. Welch
- Department of Process and Analytical Chemistry and Department of Structural Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
41
|
Banerjee S, Zare RN. Syntheses of Isoquinoline and Substituted Quinolines in Charged Microdroplets. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507805] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shibdas Banerjee
- Stanford University, Department of Chemistry, 333 Campus Drive ‐ Room 133, Stanford, CA 94305‐5080 (USA)
| | - Richard N. Zare
- Stanford University, Department of Chemistry, 333 Campus Drive ‐ Room 133, Stanford, CA 94305‐5080 (USA)
| |
Collapse
|
42
|
Banerjee S, Zare RN. Syntheses of Isoquinoline and Substituted Quinolines in Charged Microdroplets. Angew Chem Int Ed Engl 2015; 54:14795-9. [PMID: 26450661 DOI: 10.1002/anie.201507805] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/05/2015] [Indexed: 11/08/2022]
Abstract
A Pomeranz-Fritsch synthesis of isoquinoline and Friedländer and Combes syntheses of substituted quinolines were conducted in charged microdroplets produced by an electrospray process at ambient temperature and atmospheric pressure. In the bulk phase, all of these reactions are known to take a long time ranging from several minutes to a few days and to require very high acid concentrations. In sharp contrast, the present report provides clear evidence that all of these reactions occur on the millisecond timescale in the charged microdroplets without the addition of any external acid. Decreasing the droplet size and increasing the charge of the droplet both strongly contribute to reaction rate acceleration, suggesting that the reaction occurs in a confined environment on the charged surface of the droplet.
Collapse
Affiliation(s)
- Shibdas Banerjee
- Stanford University, Department of Chemistry, 333 Campus Drive - Room 133, Stanford, CA 94305-5080 (USA)
| | - Richard N Zare
- Stanford University, Department of Chemistry, 333 Campus Drive - Room 133, Stanford, CA 94305-5080 (USA).
| |
Collapse
|
43
|
Peters KC, Comi TJ, Perry RH. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1494-1501. [PMID: 26091888 DOI: 10.1007/s13361-015-1171-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM (n) -DESI, where n refers to the number of meshes; n = 2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM (n) -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times <1 ms) of the reduction of dichlorophenolindophenol by L-ascorbic acid suggest that TM (1) -DESI can access reaction times less than 1 ms. Multiple meshes allow sequential stages of desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment.
Collapse
Affiliation(s)
- Kevin C Peters
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
44
|
|
45
|
Huang Y, Li F, Ye C, Qin M, Ran W, Song Y. A photochromic sensor microchip for high-performance multiplex metal ions detection. Sci Rep 2015; 5:9724. [PMID: 25853794 PMCID: PMC4389811 DOI: 10.1038/srep09724] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/16/2015] [Indexed: 11/09/2022] Open
Abstract
Current multi-analytes chips are limited with requiring numbers of sensors, complex synthesis and compounds screen. It is expected to develop new principles and techniques to achieve high-performance multi-analytes testing with facile sensors. Here, we investigated the correlative multi-states properties of a photochromic sensor (spirooxazine), which is capable of a selective and cross-reactive sensor array for discriminated multi-analytes (11 metal ions) detection by just one sensing compound. The multi-testing sensor array performed in dark, ultraviolet or visual stimulation, corresponding to different molecular states of spirooxazine metal ions coordination. The facile photochromic microchip contributes a multi-states array sensing method, and will open new opportunities for the development of advanced discriminant analysis for complex analytes.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences
| | - Fengyu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences
| | - Changqing Ye
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences
| | - Meng Qin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
| | - Wei Ran
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences
| |
Collapse
|
46
|
Baez NOD, Reisz JA, Furdui CM. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic Biol Med 2015; 80:191-211. [PMID: 25261734 PMCID: PMC4355329 DOI: 10.1016/j.freeradbiomed.2014.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers has been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses.
Collapse
Affiliation(s)
- Nelmi O Devarie Baez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julie A Reisz
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
47
|
Boeser CL, Holder JC, Taylor BLH, Houk KN, Stoltz BM, Zare RN. Mechanistic analysis of an asymmetric palladium-catalyzed conjugate addition of arylboronic acids to β-substituted cyclic enones. Chem Sci 2015; 6:1917-1922. [PMID: 25729560 PMCID: PMC4338963 DOI: 10.1039/c4sc03337j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/13/2014] [Indexed: 11/21/2022] Open
Abstract
An asymmetric palladium-catalyzed conjugate addition reaction of arylboronic acids to enone substrates was investigated mechanistically. Desorption electrospray ionization coupled to mass spectrometry was used to identify intermediates of the catalytic cycle and delineate differences in substrate reactivity. Our findings provide evidence for the catalytic cycle proceeding through formation of an arylpalladium(II) cation, subsequent formation of an arylpalladium-enone complex, and, ultimately, formation of the new C-C bond. Reaction monitoring in both positive and negative ion modes revealed that 4-iodophenylboronic acid formed a relatively stable trimeric species under the reaction conditions.
Collapse
Affiliation(s)
| | - Jeffrey C. Holder
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaCalifornia 91125USA
| | - Buck L. H. Taylor
- Department of Chemistry and Biochemistry, University of CaliforniaLos AngelesCalifornia 90095USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of CaliforniaLos AngelesCalifornia 90095USA
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaCalifornia 91125USA
| | - Richard N. Zare
- Department of Chemistry, Stanford UniversityStanfordCA 94305USA
| |
Collapse
|
48
|
He Q, Badu-Tawiah AK, Chen S, Xiong C, Liu H, Zhou Y, Hou J, Zhang N, Li Y, Xie X, Wang J, Mao L, Nie Z. In situ bioconjugation and ambient surface modification using reactive charged droplets. Anal Chem 2015; 87:3144-8. [PMID: 25688934 DOI: 10.1021/ac504111f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular ions are generated in induced electrospray ionization, and they can be transported to grounded ambient surfaces in the form of charged microdroplets. Efficient amide bonds formation between amines and carboxylic acids were observed inside charged droplets during transfer to the surface. Biomolecules derivatized using this method were self-assembled on a bare gold surface via Au-S bonds under the charged microdroplet environment. Cyclic voltammetric analysis of the self-assembled molecular film showed accelerated protein derivatization with cysteine, which allowed the covalent immobilization of the protein to the gold surface. Cytochrome C-functionalized electrodes prepared using the induced dual nanoelectrospray process showed bioactivity toward aqueous solutions of hydrogen peroxide below 50 μM. In effect, we have developed a method that allows derivatization of biomolecules and their immobilization at ambient surfaces in a single experimental step.
Collapse
Affiliation(s)
- Qing He
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Abraham K Badu-Tawiah
- ‡Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Suming Chen
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,‡Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Caiqiao Xiong
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yueming Zhou
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Hou
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Zhang
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yafeng Li
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaobo Xie
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianing Wang
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
49
|
Ramos PH, La Porta FA, de Resende EC, Giacoppo JOS, Guerreiro MC, Ramalho TC. Fe-DPA as Catalyst for Oxidation of Organic Contaminants: Evidence of Homogeneous Fenton Process. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201400578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Sun H, Jin Z, Quan H, Sun C, Pan Y. Gas phase chemistry of N-benzylbenzamides with silver(i) cations: characterization of benzylsilver cation. Org Biomol Chem 2015; 13:2561-5. [DOI: 10.1039/c4ob02355b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzylsilver cations are synthesized in the gas phase from the collisional dissociation of argentinated N-benzylbenzamides, when the carbonyl oxygen nucleophilically attacks an α-hydrogen.
Collapse
Affiliation(s)
- Hezhi Sun
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhe Jin
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Hong Quan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Cuirong Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Yuanjiang Pan
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|