1
|
Trotta AM, Mazzarella V, Roggia M, D'Aniello A, Del Bene A, Vetrei C, Di Maiolo G, Campagna E, Natale B, Rea G, Santagata S, D'Alterio C, Cutolo R, Mottola S, Merlino F, Benedetti R, Altucci L, Messere A, Cosconati S, Tomassi S, Scala S, Di Maro S. Comprehensive structural investigation of a potent and selective CXCR4 antagonist via crosslink modification. Eur J Med Chem 2024; 279:116911. [PMID: 39348763 DOI: 10.1016/j.ejmech.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Macrocyclization presents a valuable strategy for enhancing the pharmacokinetic and pharmacodynamic profiles of short bioactive peptides. The exploration of various macrocyclic characteristics, such as crosslinking tethers, ring size, and orientation, is generally conducted during the early stages of development. Herein, starting from a potent and selective C-X-C chemokine receptor 4 (CXCR4) cyclic heptapeptide antagonist mimicking the N-terminal region of CXCL12, we demonstrated that the disulfide bridge could be successfully replaced with a side-chain to side-chain lactam bond, which is commonly not enlisted among the conventional disulfide mimetics. An extensive investigation was carried out to explore the chemical space of the resulting peptides, including macrocyclization width, stereochemical configuration, and lactam orientation, all of which were correlated with biochemical activity. We identified a novel heptapeptide that fully replicates the pharmacological profile of the parent peptide on CXCR4, including its potency, selectivity, and antagonistic activity, while demonstrating enhanced stability in a reductive environment. At this stage, computational studies were instructed to shed light on how the lactam cyclization features influenced the overall structure of 21 and, in turn, its ability to interact with the receptor. We envisage that these findings can give new momentum to the use of lactam cyclization as a disulfide bond mimetic and contribute to the enhancement of the repertoire for peptide-based drug development, thereby paving the way for novel avenues in therapeutic innovation.
Collapse
Affiliation(s)
- Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Michele Roggia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Cinzia Vetrei
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gaetana Di Maiolo
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Benito Natale
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy; Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131, Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Stefano Tomassi
- Department of Life Science, Health, and Health Professions, LINK Campus University, Via del Casale di San Pio V, 44, 00165, Rome, Italy.
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy.
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy.
| |
Collapse
|
2
|
Shepperson OA, Harris PWR, Brimble MA, Cameron AJ. The Antimicrobial Peptide Capitellacin: Chemical Synthesis of Analogues to Probe the Role of Disulphide Bridges and Their Replacement with Vinyl Sulphides. Antibiotics (Basel) 2024; 13:615. [PMID: 39061298 PMCID: PMC11273936 DOI: 10.3390/antibiotics13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Capitellacin (1) is a 20-residue antimicrobial β-hairpin, produced by the marine polychaeta (segmented worms) Capitella teletai. Since its discovery in 2020, only very limited studies have been undertaken to understand capitellacin's structure-activity relationship (SAR). Using fast-flow Fmoc-SPPS, a focused library of capitellacin analogues was prepared to systematically study the influence of the two disulphide bridges on its structure and activity, and their replacement with a vinyl sulphide as a potential bioisostere. Upon studying the resulting peptides' antimicrobial activity and secondary structure, the most terminal disulphide emerged as the most critical element for maintaining both bioactivity and the secondary structure, properties which were demonstrated to be closely interlinked. The removal of the innermost disulphide bridge or disulphide replacement with a vinyl sulphide emerged as strategies with which to tune the activity spectrum, producing selectivity towards E. coli. Additionally, an enantiomeric d-capitellacin analogue revealed mechanistic insights, suggesting that chirality may be an inherent property of capitellacin's bacterial membrane target, or that a hitherto unknown secondary mechanism of action may exist. Additionally, we propose the Alloc protecting group as a more appropriate alternative to the common Dde group during fast-flow Fmoc-SPPS, in particular for short-chain diamino acids.
Collapse
Affiliation(s)
- Oscar A. Shepperson
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Alan J. Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Bio-Discovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| |
Collapse
|
3
|
Nuti F, Larregola M, Staśkiewicz A, Retzl B, Tomašević N, Macchia L, Street ME, Jewgiński M, Lequin O, Latajka R, Rovero P, Gruber CW, Chorev M, Papini AM. Design, synthesis, conformational analysis, and biological activity of Cα 1-to-Cα 6 1,4- and 4,1-disubstituted 1 H-[1,2,3]triazol-1-yl-bridged oxytocin analogues. J Enzyme Inhib Med Chem 2023; 38:2254019. [PMID: 37735942 PMCID: PMC10519257 DOI: 10.1080/14756366.2023.2254019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I β-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.
Collapse
Affiliation(s)
- Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maud Larregola
- CNRS, BioCIS, CY Cergy Paris Université, Cergy Pontoise and Paris Saclay Université, Orsay, France
| | - Agnieszka Staśkiewicz
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Bernhard Retzl
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nataša Tomašević
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Macchia
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maria E. Street
- Dipartimento di Medicina e Chirurgia, Università di Parma e Clinica Pediatrica, AOU di Parma, Parma, Italy
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Olivier Lequin
- Laboratoire des Biomolécules, Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Paris, France
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Christian W. Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Chorev
- Laboratory for Translational Research, Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
4
|
Lamouroux A, Tournier M, Iaculli D, Caufriez A, Rusiecka OM, Martin C, Bes V, Carpio LE, Girardin Y, Loris R, Tabernilla A, Molica F, Gozalbes R, Mayán MD, Vinken M, Kwak BR, Ballet S. Structure-Based Design and Synthesis of Stapled 10Panx1 Analogues for Use in Cardiovascular Inflammatory Diseases. J Med Chem 2023; 66:13086-13102. [PMID: 37703077 PMCID: PMC10544015 DOI: 10.1021/acs.jmedchem.3c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/14/2023]
Abstract
Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.
Collapse
Affiliation(s)
- Arthur Lamouroux
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Malaury Tournier
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Debora Iaculli
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Anne Caufriez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Olga M. Rusiecka
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Viviane Bes
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Laureano E. Carpio
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
| | - Yana Girardin
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrés Tabernilla
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Filippo Molica
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Rafael Gozalbes
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
- MolDrug
AI Systems SL, c/Olimpia
Arozena 45, 46018 Valencia, Spain
| | - María D. Mayán
- CellCOM
Research Group, Instituto de Investigación Biomédica
de A Coruña, Servizo Galego de Saúde, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mathieu Vinken
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Brenda R. Kwak
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
5
|
Cui T, Li WJ, Chen J, Zhao R, Li YM. Development of an o-aminoanilide-mediated native chemical ligation-assisted DADA strategy for the synthesis of disulfide surrogate peptides. Org Biomol Chem 2023; 21:533-537. [PMID: 36533871 DOI: 10.1039/d2ob01966c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hydrazide-based native chemical ligation-assisted diaminodiacid (DADA) strategy is an efficient method for synthesizing large-span disulfide bridge surrogates. However, it is difficult to synthesize disulfide bond surrogates at Gln-Cys or Asn-Cys ligation sites using this strategy. Herein, we report a peptide o-aminoanilide-mediated NCL-assisted DADA strategy that enables the synthesis of large-span peptide disulfide bridge surrogates containing only Gln-Cys or Asn-Cys ligation sites. Through this strategy, we successfully synthesized disulfide bond surrogates of conotoxin vil14a and κ-hefutoxin 1. This strategy provides a new option to obtain large-span peptide disulfide bridge substitutes for native chemical ligation at Gln-Cys and Asn-Cys sites.
Collapse
Affiliation(s)
- Tingting Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Wen-Jie Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Junyou Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Rui Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Lu S, Lin J, Jin J, Zhang L, Guan Y, Chen H, Wu Y, Zhang W, Luan X. Tachyplesin I and its derivatives: A pharmaco-chemical perspective on their antimicrobial and antitumor potential. Expert Opin Drug Discov 2022; 17:1407-1423. [PMID: 36503335 DOI: 10.1080/17460441.2023.2157402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Increasing evidence suggests that intratumor microbiota are an intrinsic component in the tumor microenvironment across multiple cancer types, and that there is a close relationship between microbiota and tumor progression. Therefore, how to address the interaction between bacteria and malignances has become a growing concern. Tachyplesin I (TPI), a peptide with dual antimicrobial and antitumor effects, holds great promise as a therapeutic alternative for the aforementioned diseases, with the advantage of broad-spectrum activities, quick killing efficacy, and a low tendency to induce resistance. AREAS COVERED This review comprehensively summarizes the pharmacological mechanisms of TPI with an emphasis on its antimicrobial and antitumor potential. Furthermore, it presents advances in TPI derivatives and gives a perspective on their future development. The article is based on literature searches using PubMed and SciFinder to retrieve the most up-to-date information of TPI. EXPERT OPINION Bacterial infections and cancer both pose a serious threat to health due to their symbiotic interactions and drug resistance. TPI is anticipated to be a novel agent to control pathogenic bacteria and various tumors through multiple mechanisms of action. Indeed, the continuous advancements in chemical modification and innovative applications of TPI give hope for future improvements in therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Yingyun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Municipality, Shanghai, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China.,School of Pharmacy, Naval Medical University, Municipality, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| |
Collapse
|
7
|
Li Petri G, Di Martino S, De Rosa M. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. J Med Chem 2022; 65:7438-7475. [PMID: 35604326 DOI: 10.1021/acs.jmedchem.2c00123] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.
Collapse
Affiliation(s)
| | | | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
8
|
Cui JB, Wei XX, Zhao R, Zhu H, Shi J, Bierer D, Li YM. Chemical synthesis of disulfide surrogate peptides by using beta-carbon dimethyl modified diaminodiacids. Org Biomol Chem 2021; 19:9021-9025. [PMID: 34611692 DOI: 10.1039/d1ob01715b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The replacement of disulfide bridges with metabolically stable isosteres is a promising strategy to improve the stability of disulfide-rich polypeptides towards reducing agents and isomerases. A diaminodiacid-based strategy is one of the most effective methods to construct disulfide bond mimics, but modified diaminodiacids have not been developed till now. Inspired by the fact that alkylation of disulfide bonds can regulate the activity of polypeptides, herein, we report the first example of thioether bridged diaminodiacids incorporating Cys Cβ dimethyl modification, obtained by penicillamine (Pen)-based thiol alkylation. The utility of these new diaminodiacids was demonstrated by the synthesis of disulfide surrogates of oxytocin containing a short-span disulfide bond and of KIIIA with large-span disulfide bonds. This new type of synthetic bridge further extends the diaminodiacid toolbox to facilitate the study of the structure-activity relationship of disulfide-rich peptides.
Collapse
Affiliation(s)
- Ji-Bin Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Xiao-Xiong Wei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Rui Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Huixia Zhu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, 42096 Wuppertal, Germany
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. .,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Wendt M, Bellavita R, Gerber A, Efrém NL, van Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez-Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β-Sheet Mimetics that Target the Transcriptional Coactivator β-Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021; 60:13937-13944. [PMID: 33783110 PMCID: PMC8252567 DOI: 10.1002/anie.202102082] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein-protein interactions (PPIs). Even though β-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of β-sheet mimetics targeting the intracellular protein β-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of β-catenin, a macrocyclic peptide was designed and its crystal structure in complex with β-catenin obtained. Using this structure, we designed a library of bicyclic β-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to β-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other β-sheet-mediated PPIs.
Collapse
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nina-Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Thirza van Ramshorst
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas M Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Paul R J Davey
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Isabel Everard
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Staśkiewicz A, Ledwoń P, Rovero P, Papini AM, Latajka R. Triazole-Modified Peptidomimetics: An Opportunity for Drug Discovery and Development. Front Chem 2021; 9:674705. [PMID: 34095086 PMCID: PMC8172596 DOI: 10.3389/fchem.2021.674705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Peptidomimetics play a fundamental role in drug design due to their preferential properties regarding natural peptides. In particular, compounds possessing nitrogen-containing heterocycles have been intensively studied in recent years. The triazolyl moiety incorporation decreases the molecule susceptibility to enzymatic degradation, reduction, hydrolysis, and oxidation. In fact, peptides containing triazole rings are a typical example of peptidomimetics. They have all the advantages over classic peptides. Both efficient synthetic methods and biological activity make these systems an interesting and promising object of research. Peptide triazole derivatives display a diversity of biological properties and can be obtained via numerous synthetic strategies. In this review, we have highlighted the importance of the triazole-modified peptidomimetics in the field of drug design. We present an overview on new achievements in triazolyl-containing peptidomimetics synthesis and their biological activity as inhibitors of enzymes or against cancer, viruses, bacteria, or fungi. The relevance of above-mentioned compounds was confirmed by their comparison with unmodified peptides.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
11
|
Amri N, Wirth T. Recent Advances in the Electrochemical Synthesis of Organosulfur Compounds. CHEM REC 2021; 21:2526-2537. [PMID: 33960607 DOI: 10.1002/tcr.202100064] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Indexed: 11/08/2022]
Abstract
Organosulfur compounds are being widely used in medicinal chemistry, as well as in organic transformations and in synthetic applications. Because of their interest in many areas, the development of sustainable and green synthetic methods to access various organosulfur compounds has a high influence on the chemistry community. Electroorganic synthesis has become a very valuable methodology for the synthesis of organosulfur compounds during the last decade. The use of electrochemical technology offers a green, sustainable and safe alternative to prepare and modify such compounds. This review summarises recent developments in the preparation of organosulfur compounds such as sulfoxides, sulfones, sulfinic esters, sulfonamides, thiosulfonates, sulfonyl fluorides and sulfoximines under electrochemical reaction conditions.
Collapse
Affiliation(s)
- Nasser Amri
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| |
Collapse
|
12
|
Wendt M, Bellavita R, Gerber A, Efrém N, Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez‐Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β‐Sheet Mimetics that Target the Transcriptional Coactivator β‐Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nina‐Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Thirza Ramshorst
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | | | - Isabel Everard
- Mechanistic Biology and Profiling Discovery Sciences, R&D AstraZeneca Cambridge UK
| | | | | | - Paolo Grieco
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
13
|
Saini P, Sonika, Singh G, Kaur G, Singh J, Singh H. Robust and Versatile Cu(I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions: Review. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Kandler R, Das S, Nag A. Copper-ligand clusters dictate size of cyclized peptide formed during alkyne-azide cycloaddition on solid support. RSC Adv 2021; 11:4842-4852. [PMID: 34377440 PMCID: PMC8351437 DOI: 10.1039/d0ra07491h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peptide and peptidomimetic cyclization by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction have been used to mimic disulfide bonds, alpha helices, amide bonds, and for one-bead-one-compound (OBOC) library development. A limited number of solid-supported CuAAC cyclization methods resulting in monomeric cyclic peptide formation have been reported for specific peptide sequences, but there exists no general study on monocyclic peptide formation using CuAAC cyclization. Since several cyclic peptides identified from an OBOC CuAAC cyclized library has been shown to have important biological applications, we discuss here an efficient method of alkyne-azide 'click' catalyzed monomeric cyclic peptide formation on a solid support. The reason behind the efficiency of the method is explored. CuAAC cyclization of a peptide sequence with azidolysine and propargylglycine is performed under various reaction conditions, with different catalysts, in the presence or absence of an organic base. The results indicate that piperidine plays a critical role in the reaction yield and monomeric cycle formation by coordinating to Cu and forming Cu-ligand clusters. A previously synthesized copper compound containing piperidine, [Cu4I4(pip)4], is found to catalyze the CuAAC cyclization of monomeric peptide effectively. The use of 1.5 equivalents of CuI and the use of DMF as solvent is found to give optimal CuAAC cyclized monomer yields. The effect of the peptide sequence and peptide length on monomer formation are also investigated by varying either parameter systemically. Peptide length is identified as the determining factor for whether the monomeric or dimeric cyclic peptide is the major product. For peptides with six, seven, or eight amino acids, the monomer is the major product from CuAAC cyclization. Longer and shorter peptides on cyclization show less monomer formation. CuAAC peptide cyclization of non-optimal peptide lengths such as pentamers is affected significantly by the amino acid sequence and give lower yields.
Collapse
Affiliation(s)
- Rene Kandler
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Samir Das
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| |
Collapse
|
15
|
Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 2020; 49:2039-2059. [PMID: 32142086 DOI: 10.1039/c9cs00366e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne-azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C-H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.
Collapse
Affiliation(s)
- Daniel G Rivera
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Gerardo M Ojeda-Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
16
|
Monti A, Sturlese M, Caporale A, Roger JDA, Mascanzoni F, Ruvo M, Doti N. Design, synthesis, structural analysis and biochemical studies of stapled AIF(370-394) analogues as ligand of CypA. Biochim Biophys Acta Gen Subj 2020; 1864:129717. [PMID: 32861757 DOI: 10.1016/j.bbagen.2020.129717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The neuronal apoptotic process requires the nuclear translocation of Apoptosis Inducing Factor (AIF) in complex with Cyclophilin A (CypA) with consequent chromatin condensation and DNA degradation events. Targeting CypA by delivering an AIF-blocking peptide (AIF(370-394)) provides a significant neuroprotection, demonstrating the biological relevance of the AIF/CypA complex. To date pharmaceutical compounds targeting this complex are missing. METHODS We designed and synthesized a set of mono and bicyclic AIF(370-394) analogs containing both disulfide and 1,2,3-triazole bridges, in the attempt to both stabilize the peptide conformation and improve its binding affinity to CypA. Peptide structures in solution and in complex with CypA have been studied by circular dichroism (CD), Nuclear Magnetic Resonance (NMR) and molecular modeling. The ability of stapled peptides to interact with CypA was evaluated by using Epic Corning label free technique and Isothermal Titration Calorimetry experiments. RESULTS We identified a stapled peptide analogue of AIF(370-394) with a ten-fold improved affinity for CypA. Molecular modeling studies reveal that the new peptide acquires β-turn/β-fold structures and shares with the parent molecule the same binding region on CypA. CONCLUSIONS Data obtained provide invaluable assistance in designing new ligand of CypA for therapeutic approaches in neurodegenerative diseases. GENERAL SIGNIFICANCE Due to the crucial role of AIF/CypA complex formation in neurodegeneration, identification of selective inhibitors is of high importance for targeted therapies. We describe new bicyclic peptide inhibitors with improved affinity for CypA, investigating the kinetic, thermodynamic and structural effects of conformational constraints on the protein-ligand interaction, and their utility for drug design.
Collapse
Affiliation(s)
- Alessandra Monti
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy; DISTABIF, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, CE, Italy
| | - Mattia Sturlese
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Andrea Caporale
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Jessica De Almeida Roger
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Fabiola Mascanzoni
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy.
| |
Collapse
|
17
|
Qi Y, Qu Q, Bierer D, Liu L. A Diaminodiacid (DADA) Strategy for the Development of Disulfide Surrogate Peptides. Chem Asian J 2020; 15:2793-2802. [DOI: 10.1002/asia.202000609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yun‐Kun Qi
- Department of Medicinal Chemistry School of Pharmacy Qingdao University Qingdao 266021 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Donald Bierer
- Bayer AG Department of Medicinal Chemistry Aprather Weg 18A 42096 Wuppertal Germany
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Luan X, Wu Y, Shen YW, Zhang H, Zhou YD, Chen HZ, Nagle DG, Zhang WD. Cytotoxic and antitumor peptides as novel chemotherapeutics. Nat Prod Rep 2020; 38:7-17. [PMID: 32776055 DOI: 10.1039/d0np00019a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to 2020Treatment resistance and drug-induced refractory malignancies pose significant challenges for current chemotherapy drugs. There have been increasing research efforts aimed at developing novel chemotherapeutics, especially from natural products and related derivatives. Natural cytotoxic peptides, an emerging source of chemotherapeutics, have exhibited the advantage of overcoming drug resistance and displayed broad-spectrum antitumor activities in the clinic. This highlight examines the increasingly popular cytotoxic peptides from isolated natural products. In-depth review of several peptides provides examples for how this novel strategy can lead to the improved anti-tumor effects. The mechanisms and current application of representative natural cytotoxic peptides (NCPs) have also been discussed, with a particular focus on future directions for interdisciplinary research.
Collapse
Affiliation(s)
- Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kennedy AC, Belgi A, Husselbee BW, Spanswick D, Norton RS, Robinson AJ. α-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia. Toxins (Basel) 2020; 12:E505. [PMID: 32781580 PMCID: PMC7472027 DOI: 10.3390/toxins12080505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Several analgesic α-conotoxins have been isolated from marine cone snails. Structural modification of native peptides has provided potent and selective analogues for two of its known biological targets-nicotinic acetylcholine and γ-aminobutyric acid (GABA) G protein-coupled (GABAB) receptors. Both of these molecular targets are implicated in pain pathways. Despite their small size, an incomplete understanding of the structure-activity relationship of α-conotoxins at each of these targets has hampered the development of therapeutic leads. This review scrutinises the N-terminal domain of the α-conotoxin family of peptides, a region defined by an invariant disulfide bridge, a turn-inducing proline residue and multiple polar sidechain residues, and focusses on structural features that provide analgesia through inhibition of high-voltage-activated Ca2+ channels. Elucidating the bioactive conformation of this region of these peptides may hold the key to discovering potent drugs for the unmet management of debilitating chronic pain associated with a wide range of medical conditions.
Collapse
Affiliation(s)
- Adam C. Kennedy
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - Alessia Belgi
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - Benjamin W. Husselbee
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - David Spanswick
- Biomedicine Discovery Institute and the Department of Physiology, Monash University, Victoria 3800, Australia;
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NeuroSolutions Ltd., Coventry CV4 7AL, UK
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia;
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Andrea J. Robinson
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| |
Collapse
|
20
|
Tomassi S, Trotta AM, Ieranò C, Merlino F, Messere A, Rea G, Santoro F, Brancaccio D, Carotenuto A, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Marinelli L, Scala S, Di Maro S. Disulfide Bond Replacement with 1,4‐ and 1,5‐Disubstituted [1,2,3]‐Triazole on C‐X‐C Chemokine Receptor Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chemistry 2020; 26:10113-10125. [DOI: 10.1002/chem.202002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Maria Trotta
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Caterina Ieranò
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Messere
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Giuseppina Rea
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Federica Santoro
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Diego Brancaccio
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Ettore Novellino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Sandro Cosconati
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Luciana Marinelli
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Stefania Scala
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Salvatore Di Maro
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
21
|
Zhao R, Shi P, Chen J, Sun S, Chen J, Cui J, Wu F, Fang G, Tian C, Shi J, Bierer D, Liu L, Li YM. Chemical synthesis and biological activity of peptides incorporating an ether bridge as a surrogate for a disulfide bond. Chem Sci 2020; 11:7927-7932. [PMID: 34094161 PMCID: PMC8163063 DOI: 10.1039/d0sc02374d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disulfide bridges contribute to the definition and rigidity of polypeptides, but they are inherently unstable in reducing environments and in the presence of isomerases and nucleophiles. Strategies to address these deficiencies, ideally without significantly perturbing the structure of the polypeptide, would be of great interest. One possible surrogate for the disulfide bridge is a simple thioether, but these are susceptible to oxidation. We report the introduction of an ether linkage into the biologically active, disulfide-rich peptides oxytocin, tachyplesin I, and conotoxin α-ImI, using an ether-containing diaminodiacid as the key building block, obtained by the stereoselective ring-opening addition reaction of an aziridine skeleton with a hydroxy group. NMR studies indicated that the derivatives with an ether surrogate bridge exhibited very small change of their three-dimensional structures. The analogs obtained using this novel substitution strategy were found to be more stable than the original peptide in oxidative and reductive conditions; without a loss of bioactivity. This strategy is therefore proposed as a practical and versatile solution to the stability problems associated with cysteine-rich peptides. We report the first introduction of an ether linkage as surrogate into the disulfide-rich peptides using ether-containing diaminodiacid.![]()
Collapse
Affiliation(s)
- Rui Zhao
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, School of Life Sciences, University of Science and Technology of China Hefei Anhui 230009 China .,School of Food and Biological Engineering, Hefei University of Technology Hefei Anhui 230009 China
| | - Pan Shi
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, School of Life Sciences, University of Science and Technology of China Hefei Anhui 230009 China
| | - Junyou Chen
- School of Food and Biological Engineering, Hefei University of Technology Hefei Anhui 230009 China
| | - Shuaishuai Sun
- School of Food and Biological Engineering, Hefei University of Technology Hefei Anhui 230009 China
| | - Jingnan Chen
- School of Food and Biological Engineering, Hefei University of Technology Hefei Anhui 230009 China
| | - Jibin Cui
- School of Food and Biological Engineering, Hefei University of Technology Hefei Anhui 230009 China
| | - Fangming Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences Hefei 230031 China
| | - Gemin Fang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Changlin Tian
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, School of Life Sciences, University of Science and Technology of China Hefei Anhui 230009 China
| | - Jing Shi
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, School of Life Sciences, University of Science and Technology of China Hefei Anhui 230009 China
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG Aprather Weg 18A 42096 Wuppertal Germany
| | - Lei Liu
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology Hefei Anhui 230009 China
| |
Collapse
|
22
|
|
23
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin‐2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Claudia E. Murar
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Ufuk Karakus
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Onur Boyman
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
24
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin-2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020; 59:8425-8429. [PMID: 32032465 DOI: 10.1002/anie.201916053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Chemical protein synthesis allows the construction of well-defined structural variations and facilitates the development of deeper understanding of protein structure-function relationships and new protein engineering strategies. Herein, we report the chemical synthesis of interleukin-2 (IL-2) variants on a multimilligram scale and the formation of non-natural disulfide mimetics that improve stability against reduction. The synthesis was accomplished by convergent KAHA ligations; the acidic conditions of KAHA ligation proved to be valuable for the solubilization of the hydrophobic segments of IL-2. The bioactivity of the synthetic IL-2 and its analogues were shown to be equipotent to recombinant IL-2 and exhibit improved stability against reducing agents.
Collapse
Affiliation(s)
- Claudia E Murar
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Ufuk Karakus
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
25
|
Chen J, Sun S, Zhao R, Xi C, Qiu W, Wang N, Wang Y, Bierer D, Shi J, Li Y. Chemical Synthesis of Six‐Atom Thioether Bridged Diaminodiacid for Solid‐Phase Synthesis of Peptide Disulfide Bond Mimics. ChemistrySelect 2020. [DOI: 10.1002/slct.201904042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Junyou Chen
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Shuaishuai Sun
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Rui Zhao
- Department of ChemistryUniversity of Science and Techmology of China Hefei 230026 China
| | - Chen‐Peng Xi
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Wenjie Qiu
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Ning Wang
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Ya Wang
- School of Life ScienceAnhui University Hefei 230601 China
| | - Donald Bierer
- Department of Medicinal ChemistryBayer AG Aprather Weg 18 A 42096 Wuppertal Germany
| | - Jing Shi
- Department of ChemistryUniversity of Science and Techmology of China Hefei 230026 China
| | - Yi‐Ming Li
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| |
Collapse
|
26
|
Zuo C, Yan BJ, Zhu HY, Shi WW, Xi TK, Shi J, Fang GM. Robust synthesis of C-terminal cysteine-containing peptide acids through a peptide hydrazide-based strategy. Org Biomol Chem 2020; 17:5698-5702. [PMID: 31135013 DOI: 10.1039/c9ob01114e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new robust strategy was reported for the epimerization-free synthesis of C-terminal Cys-containing peptide acids through mercaptoethanol-mediated hydrolysis of peptide thioesters prepared in situ from peptide hydrazides. This simple-to-operate and highly efficient method avoids the use of derivatization reagents for resin modification, thus providing a practical avenue for the preparation of C-terminal Cys-containing peptide acids.
Collapse
Affiliation(s)
- Chao Zuo
- School of Life Science, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
28
|
Sahoo SC, Pan SC. Synthesis of N-Formyl-2-benzoyl Benzothiazolines, 2-Substituted Benzothiazoles, and Symmetrical Disulfides from N-Phenacylbenzothiazolium Bromides. Org Lett 2019; 21:6208-6212. [PMID: 31343894 DOI: 10.1021/acs.orglett.9b01990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unusual aerobic hydrolysis-cascade reaction has been developed with N-phenacylbenzothiazolium bromides by treatment with organic and inorganic base. The corresponding N-formyl-2-benzoyl benzothiazoline and 2-substituted benzothiazole products were obtained in moderate to good yields under mild reaction conditions. Also, symmetrical disulfide was formed when keto group was replaced with ester. The scopes of the reactions are fairly broad tolerating aryl, heteroaryl, and alkyl groups.
Collapse
Affiliation(s)
- Subas Chandra Sahoo
- Department of Chemistry , Indian Institute of Technology Guwahati , North Guwahati , Assam 781039 , India
| | - Subhas Chandra Pan
- Department of Chemistry , Indian Institute of Technology Guwahati , North Guwahati , Assam 781039 , India
| |
Collapse
|
29
|
Parida A, Choudhuri K, Mal P. Unsymmetrical Disulfides Synthesis via Sulfenium Ion. Chem Asian J 2019; 14:2579-2583. [PMID: 31136094 DOI: 10.1002/asia.201900620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Indexed: 12/15/2022]
Abstract
An umpolung approach for the synthesis of unsymmetrical disulfides via sulfenium ion is reported. In situ generated electrophilic sulfenium ion from electron-rich thiols reacted with second thiols to yield unsymmetrical disulfides. Using an iodine catalyst and 4-dimethylaminopyridine (DMAP)/water as promoter, the target syntheses were achieved in one pot under aerobic condition.
Collapse
Affiliation(s)
- Amarchand Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
30
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
31
|
Sun SS, Chen J, Zhao R, Bierer D, Wang J, Fang GM, Li YM. Efficient synthesis of a side-chain extended diaminodiacid for solid-phase synthesis of peptide disulfide bond mimics. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Yagnam S, Rami Reddy E, Trivedi R, Krishna NV, Giribabu L, Rathod B, Prakasham RS, Sridhar B. 1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Swetha Yagnam
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Eda Rami Reddy
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Narra Vamshi Krishna
- Polymer and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Lingamallu Giribabu
- Polymer and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Balaji Rathod
- Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Reddy Shetty Prakasham
- Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| |
Collapse
|
33
|
Hu H, Kofoed C, Li M, Gonçalves JP, Hansen J, Wolfram M, Hansen AK, Friis Hansen CH, Diness F, Schoffelen S, Meldal M. Computational Evolution of Threonine-Rich β-Hairpin Peptides Mimicking Specificity and Affinity of Antibodies. ACS CENTRAL SCIENCE 2019; 5:259-269. [PMID: 30834314 PMCID: PMC6396188 DOI: 10.1021/acscentsci.8b00614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 05/07/2023]
Abstract
The development of recognition molecules with antibody-like properties is of great value to the biotechnological and bioanalytical communities. The recognition molecules presented here are peptides with a strong tendency to form β-hairpin structures, stabilized by alternate threonines, which are located at one face of the peptide. Amino acids at the other face of the peptide are available for interaction with the target molecule. Using this scaffold, we demonstrate that recognition molecules can efficiently be designed in silico toward four structurally unrelated proteins, GFP, IL-1β, IL-2, and IL-6. On solid support, 10 different antibody-mimetic recognition molecules were synthesized. They displayed high affinity and no cross-reactivity, as observed by fluorescence microscopy. Stabilized variants were readily obtained by incorporation of azido acids and propargylglycine followed by cyclization via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. As this new class of antibody mimics can be designed toward essentially any protein, the concept is believed to be useful to a wide range of technologies. Here, their use in protein separation and in the detection of proteins in a sandwich-type assay is demonstrated.
Collapse
|
34
|
Fischer J, Schönauer R, Els‐Heindl S, Bierer D, Koebberling J, Riedl B, Beck‐Sickinger AG. Adrenomedullin disulfide bond mimetics uncover structural requirements for AM1receptor activation. J Pept Sci 2019; 25:e3147. [DOI: 10.1002/psc.3147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jan‐Patrick Fischer
- Institut für Biochemie, Fakultät für Lebenswissenschaften, Universität Leipzig Leipzig Germany
| | - Ria Schönauer
- Institut für Biochemie, Fakultät für Lebenswissenschaften, Universität Leipzig Leipzig Germany
| | - Sylvia Els‐Heindl
- Institut für Biochemie, Fakultät für Lebenswissenschaften, Universität Leipzig Leipzig Germany
| | | | | | - Bernd Riedl
- Bayer AG, Aprather Weg 18A Wuppertal Germany
| | | |
Collapse
|
35
|
Antimicrobial coatings prepared from Dhvar-5-click-grafted chitosan powders. Acta Biomater 2019; 84:242-256. [PMID: 30528610 DOI: 10.1016/j.actbio.2018.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMP) are powerful components of the innate immune system, as they display wide activity spectrum and low tendency to induce pathogen resistance. Hence, the development of AMP-based coatings is a very promising strategy to prevent biomaterials-associated infections. This work aims to investigate if Dhvar-5-chitosan conjugates, previously synthesized by us via azide-alkyne "click" reaction, can be applied as antimicrobial coatings. Ultrathin coatings were prepared by spin coater after dissolving Dhvar-5-chitosan conjugate powder in aqueous acetic acid. Peptide orientation and exposure from the surface was confirmed by ellipsometry and contact angle measurements. Bactericidal activity was evaluated against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, the most prevalent pathogens in implant-associated infections. Results showed that Dhvar-5-chitosan coatings displayed bactericidal effect. Moreover, since Dhvar-5 has head-to-tail amphipathicity, it was clear that the bactericidal potency was dependent on which domain of the peptide (cationic or hydrophobic) was exposed. In this context, Dhvar-5 immobilized through its C-terminus (exposing its hydrophobic end) presented higher antimicrobial activity against Gram-positive bacteria and reduced adhesion of Gram-negative bacteria. This orientation-dependent antimicrobial activity was further corroborated by the anti-biofilm assay, as covalent immobilization of Dhvar-5 through its C-terminus provided anti-biofilm properties to the chitosan thin film. Immobilization of Dhvar-5 showed no cytotoxic effect against HFF-1 cells, as both metabolic activity and cell morphology were similar to control. In conclusion, Dhvar-5-chitosan coatings are promising antimicrobial surfaces without cytotoxic effects against human cells. STATEMENT OF SIGNIFICANCE: AMP-tethering onto ground biomaterial is still a poorly explored strategy in research. In this work, AMP-tethered ground chitosan is used to produce highly antibacterial ultrathin films. Powdered AMP-tethered chitosan appears as an alternative solution for antimicrobial devices production, as it is suitable for large scale production, being easier to handle for fabrication of different coatings and materials with antimicrobial properties and without inducing toxicity.
Collapse
|
36
|
Abstract
Macrocyclic peptides are a unique class of molecules that display a relatively constrained peptidic backbone as compared to their linear counterparts leading to the defined 3-D orientation of the constituent amino acids (pharmacophore). Although they are attractive candidates for lead discovery owing to the unique conformational features, their peptidic backbone is susceptible to proteolytic cleavage in various biological fluids that compromise their efficacy. In this chapter we review the various classical and contemporary chemical and biological approaches that have been utilized to combat the metabolic instability of macrocyclic peptides. We note that any chemical modification that helps in providing either local or global conformational rigidity to these macrocyclic peptides aids in improving their metabolic stability typically by slowing the cleavage kinetics by the proteases.
Collapse
Affiliation(s)
- Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
37
|
Liu C, Zou Y, Hu H, Jiang Y, Qin L. pDobz/pDobb protected diaminodiacid as a novel building block for peptide disulfide-bond mimic synthesis. RSC Adv 2019; 9:5438-5444. [PMID: 35515921 PMCID: PMC9060753 DOI: 10.1039/c8ra09761e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/04/2019] [Indexed: 12/03/2022] Open
Abstract
The diaminodiacid strategy has been widely studied in the chemical synthesis of peptide disulfide bond mimics. Diaminodiacid building blocks, which are key intermediates, are currently under the spotlight. However, one technical bottleneck inherent in existing building blocks is the contamination problem caused by the heavy metal reagents during the deprotection process, which makes the peptides less suitable for pharmaceutical use. Herein, we describe the successful development of a p-dihydroxyborylbenzyloxycarbonyl pinacol ester (pDobz)- and p-dihydroxyborylbenzyl pinacol ester (pDobb)-based novel diaminodiacid building block that can be easily deprotected via mild treatment with amine oxide. Its efficiency and practicability were also confirmed by the total synthesis of contryphan-Vn disulfide bond mimic. The results suggested that this novel diaminodiacid building block has satisfactory Fmoc SPPS compatibility, yet only required a facile, rapid, and metal-free deprotection process. We believe this novel diaminodiacid building block could promote further development of the diaminodiacid strategy. The total synthesis of a contryphan-Vn disulfide bond mimic utilizing a novel pDobz/pDobb based diaminodiacid building block via the diaminodiacid strategy.![]()
Collapse
Affiliation(s)
- Chao Liu
- College of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Yan Zou
- College of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Honggang Hu
- College of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | | | - Luping Qin
- College of Pharmacy
- Second Military Medical University
- Shanghai
- China
- College of Pharmaceutical Sciences
| |
Collapse
|
38
|
Vasco AV, Méndez Y, Porzel A, Balbach J, Wessjohann LA, Rivera DG. A Multicomponent Stapling Approach to Exocyclic Functionalized Helical Peptides: Adding Lipids, Sugars, PEGs, Labels, and Handles to the Lactam Bridge. Bioconjug Chem 2018; 30:253-259. [DOI: 10.1021/acs.bioconjchem.8b00906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aldrin V. Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Yanira Méndez
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Jochen Balbach
- Institute of Physics/Biophysics and Center for Structural and Dynamics of Proteins, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Daniel G. Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| |
Collapse
|
39
|
Shi J, So LY, Chen F, Liang J, Chow HY, Wong KY, Wan S, Jiang T, Yu R. Influences of disulfide connectivity on structure and antimicrobial activity of tachyplesin I. J Pept Sci 2018; 24:e3087. [PMID: 29870123 DOI: 10.1002/psc.3087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Tachyplesin I is a potent antimicrobial peptide with broad spectrum of antimicrobial activity. It has 2 disulfide bonds and can form 3 disulfide bond isomers. In this study, the structure and antimicrobial activity of 3 tachyplesin I isomers (tachyplesin I, 3C12C, 3C7C) were investigated using molecular dynamic simulations, circular dichroism structural study, as well as antimicrobial activity and hemolysis assay. Our results suggest that in comparison to the native peptide, the 2 isomers (3C12C, 3C7C) have substantial structural and activity variations. The native peptide is in the ribbon conformation, while 3C12C and 3C7C possess remarkably different secondary structures, which are referred as "globular" and "beads" isomers, respectively. The substantially decreased hemolysis effects for these 2 isomers is accompanied by significantly decreased anti-gram-positive bacterial activity.
Collapse
Affiliation(s)
- Juan Shi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Lok-Yan So
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| | - Fangling Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
40
|
Wang T, Fan J, Chen XX, Zhao R, Xu Y, Bierer D, Liu L, Li YM, Shi J, Fang GM. Synthesis of Peptide Disulfide-Bond Mimics by Using Fully Orthogonally Protected Diaminodiacids. Org Lett 2018; 20:6074-6078. [PMID: 30216082 DOI: 10.1021/acs.orglett.8b02459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new strategy was developed for the synthesis of peptide disulfide-bond mimics using fully orthogonally protected diaminodiacids. This method overcomes the previous problems of heavy-metal contamination and poor compatibility with Fmoc chemistry and provides a practical avenue for the efficient preparation of peptide disulfide-bond mimics.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Science, Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , P. R. China.,School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Jian Fan
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Xiao-Xu Chen
- School of Life Science, Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , P. R. China
| | - Rui Zhao
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Yang Xu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Donald Bierer
- Department of Medicinal Chemistry , Bayer AG , Aprather Weg 18A , 42096 Wuppertal , Germany
| | - Lei Liu
- Tsinghua University , Beijing 100084 , P. R. China
| | - Yi-Ming Li
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Jing Shi
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ge-Min Fang
- School of Life Science, Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , P. R. China
| |
Collapse
|
41
|
Abstract
Peptide secondary and tertiary structure motifs frequently serve as inspiration for the development of protein-protein interaction (PPI) inhibitors. While a wide variety of strategies have been used to stabilize or imitate α-helices, similar strategies for β-sheet stabilization are more limited. Synthetic scaffolds that stabilize reverse turns and cross-strand interactions have provided important insights into β-sheet stability and folding. However, these templates occupy regions of the β-sheet that might impact the β-sheet's ability to bind at a PPI interface. Here, we present the hydrogen bond surrogate (HBS) approach for stabilization of β-hairpin peptides. The HBS linkage replaces a cross-strand hydrogen bond with a covalent linkage, conferring significant conformational and proteolytic resistance. Importantly, this approach introduces the stabilizing linkage in the buried β-sheet interior, retains all side chains for further functionalization, and allows efficient solid-phase macrocyclization. We anticipate that HBS stabilization of PPI β-sheets will enhance the development of β-sheet PPI inhibitors and expand the repertoire of druggable PPIs.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
42
|
Fang GM, Chen XX, Yang QQ, Zhu LJ, Li NN, Yu HZ, Meng XM. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Tala SR, Singh A, Lensing CJ, Schnell SM, Freeman KT, Rocca JR, Haskell-Luevano C. 1,2,3-Triazole Rings as a Disulfide Bond Mimetic in Chimeric AGRP-Melanocortin Peptides: Design, Synthesis, and Functional Characterization. ACS Chem Neurosci 2018; 9:1001-1013. [PMID: 29257879 DOI: 10.1021/acschemneuro.7b00422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.
Collapse
Affiliation(s)
- Srinivasa R. Tala
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anamika Singh
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cody J. Lensing
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James R. Rocca
- Advanced Magnetic Resonance Imaging and Spectroscopy, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
44
|
Testa C, D'Addona D, Scrima M, Tedeschi AM, D'Ursi AM, Bernhard C, Denat F, Bello C, Rovero P, Chorev M, Papini AM. Design, synthesis, and conformational studies of [DOTA]‐Octreotide analogs containing [1,2,3]triazolyl as a disulfide mimetic. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chiara Testa
- French‐Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of FlorenceSesto Fiorentino50019 Italy
- Department of Chemistry “Ugo Schiff”University of Florence, Via della Lastruccia 13Sesto Fiorentino50019 Italy
- PeptLab@UCP and Laboratory of Chemical Biology EA4505Université Paris‐Seine, 5 Mail Gay‐LussacCergy‐Pontoise95031 France
| | - Debora D'Addona
- French‐Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of FlorenceSesto Fiorentino50019 Italy
- Department of Chemistry “Ugo Schiff”University of Florence, Via della Lastruccia 13Sesto Fiorentino50019 Italy
- ICMUB UMR6302, CNRS, Université Bourgogne Franche‐Comté, 9, Avenue Alain SavaryDijon21078 France
| | - Mario Scrima
- Department of Pharmaceutical SciencesUniversity of Salerno, Via Don Melillo 11CFisciano84084 Italy
| | - Anna Maria Tedeschi
- Department of Pharmaceutical SciencesUniversity of Salerno, Via Don Melillo 11CFisciano84084 Italy
| | - Anna Maria D'Ursi
- Department of Pharmaceutical SciencesUniversity of Salerno, Via Don Melillo 11CFisciano84084 Italy
| | - Claire Bernhard
- ICMUB UMR6302, CNRS, Université Bourgogne Franche‐Comté, 9, Avenue Alain SavaryDijon21078 France
| | - Franck Denat
- ICMUB UMR6302, CNRS, Université Bourgogne Franche‐Comté, 9, Avenue Alain SavaryDijon21078 France
| | - Claudia Bello
- French‐Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of FlorenceSesto Fiorentino50019 Italy
- Department of Chemistry “Ugo Schiff”University of Florence, Via della Lastruccia 13Sesto Fiorentino50019 Italy
| | - Paolo Rovero
- French‐Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of FlorenceSesto Fiorentino50019 Italy
- Department of Neurosciences, PsychologyDrug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6Sesto Fiorentino50019 Italy
| | - Michael Chorev
- Laboratory for Translational Research, Division of Hematology, Department of MedicineBrigham and Women's Hospital, Harvard Medical School, 75 Francis StreetBoston Massachusetts02115
| | - Anna Maria Papini
- French‐Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of FlorenceSesto Fiorentino50019 Italy
- Department of Chemistry “Ugo Schiff”University of Florence, Via della Lastruccia 13Sesto Fiorentino50019 Italy
- PeptLab@UCP and Laboratory of Chemical Biology EA4505Université Paris‐Seine, 5 Mail Gay‐LussacCergy‐Pontoise95031 France
| |
Collapse
|
45
|
Güell I, Vilà S, Badosa E, Montesinos E, Feliu L, Planas M. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection. Biopolymers 2018; 108. [PMID: 28026016 DOI: 10.1002/bip.23012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/17/2023]
Abstract
The search for novel antimicrobial agents to be used for plant protection has prompted us to design analogues incorporating non-natural amino acids. Herein, we designed and synthesized cyclic peptidotriazoles derived from the lead antimicrobial cyclic peptide c(Lys-Lys-Leu3 -Lys-Lys5 -Phe-Lys-Lys-Leu-Gln) (BPC194). In particular, Leu3 and Lys5 were replaced by a triazolyl alanine, a triazolyl norleucine or a triazolyl lysine. These peptides were screened for their antibacterial activity against Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, and Pseudomonas syringae pv. syringae, for their hemolysis and for their phytotoxicity. Results showed that the type of triazolyl amino acid and the substituent present at the triazole influenced the antibacterial and hemolytic activities. Moreover, the position of this residue was also crucial for the hemolysis. The lead compounds BPC548 and BPC550 exhibited high antibacterial activity (MIC of 3.1 to 25 μM), low hemolysis (19 and 26% at 375 μM, respectively) and low phytotoxicity. Therefore, these analogues could be used as new leads for the development of effective agents to control pathogenic bacteria responsible for plant diseases of economic importance.
Collapse
Affiliation(s)
- Imma Güell
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Sílvia Vilà
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| |
Collapse
|
46
|
Structure-based development of an osteoprotegerin-like glycopeptide that blocks RANKL/RANK interactions and reduces ovariectomy-induced bone loss in mice. Eur J Med Chem 2018; 145:661-672. [DOI: 10.1016/j.ejmech.2018.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
|
47
|
Zha M, Lin P, Yao H, Zhao Y, Wu C. A phage display-based strategy for the de novo creation of disulfide-constrained and isomer-free bicyclic peptide affinity reagents. Chem Commun (Camb) 2018; 54:4029-4032. [DOI: 10.1039/c7cc09142g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a phage-screening strategy for the development of bicyclic peptide ligands constrained with two sterically different and isomerically forbidden noncanonical disulfide bridges without elaborate chemical modifications and recourses to genetic code reprogramming.
Collapse
Affiliation(s)
- Mirao Zha
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Ping Lin
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Hongwei Yao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Yibing Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Chuanliu Wu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| |
Collapse
|
48
|
Edwards IA, Elliott AG, Kavanagh AM, Blaskovich MAT, Cooper MA. Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1. ACS Infect Dis 2017; 3:917-926. [PMID: 28960954 DOI: 10.1021/acsinfecdis.7b00123] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tachyplesin-1 (TP1; 1) is a cationic β-hairpin antimicrobial peptide with a membranolytic mechanism of action. While it possesses broad-spectrum, potent antimicrobial activity, 1 is highly hemolytic against mammalian erythrocytes, which precludes it from further development. In this study, we report a template-based approach to investigate the structure-function and structure-toxicity relationships of each amino acid of 1. We modulated charge and hydrophobicity by residue modification and truncation of the peptide. Antimicrobial activity was then assessed against six key bacterial pathogens and two fungi, with toxicity profiled against mammalian cells. The internal disulfide bridge Cys7-Cys12 of 1 was shown to play an important role in broad-spectrum antimicrobial activity against all pathogenic strains tested. Novel peptides based on the progenitor were then designed, including 5 (TP1[F4A]), 12 (TP1[I11A]), and 19 (TP1[C3A,C16A]). These had 26- to 64-fold improved activity/toxicity indices and show promise for further development. Structural studies of 5 (TP1[F4A]) and 12 (TP1[I11A]) identified a conserved β-hairpin secondary structure motif correlating with their very high stablility in mouse and human plasma. Membrane binding affinity determined by surface plasmon resonance confirmed their selectivity toward bacterial membranes, but the degree of membrane binding did not correlate with the degree of hemolysis, suggesting that other factors may drive toxicity.
Collapse
Affiliation(s)
- Ingrid A. Edwards
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Alysha G. Elliott
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Angela M. Kavanagh
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| |
Collapse
|
49
|
Wang T, Kong YF, Xu Y, Fan J, Xu HJ, Bierer D, Wang J, Shi J, Li YM. Efficient synthesis of hydrocarbon-bridged diaminodiacids through nickel-catalyzed reductive cross-coupling. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Hossain MA, Wade JD. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres. Acc Chem Res 2017; 50:2116-2127. [PMID: 28829564 DOI: 10.1021/acs.accounts.7b00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious insertion of disulfide isosteres that possess structurally subtle variations in bond length, hydrophobicity, and angle. These include lactam, dicarba, and cystathionine, each of which has required modifications to the peptide synthesis protocols for their successful placement within the peptides. Together, these synthesis improvements and the novel chemical developments of cysteine/cystine analogues have greatly aided in the development of novel insulin-like peptide (INSL) analogues, principally with intra-A-chain disulfide isosteres, possessing not only improved functional properties such as increased receptor selectivity but also, with one important and unexpected exception, greater in vivo half-lives due to stability against disulfide reductases. Such analogues greatly will aid further biochemical and pharmacological analyses to delineate the structure-function relationships of INSLs and also future potential drug development.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D. Wade
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|