1
|
Wu Z, Bayón JL, Kouznetsova TB, Ouchi T, Barkovich KJ, Hsu SK, Craig SL, Steinmetz NF. Virus-like Particles Armored by an Endoskeleton. NANO LETTERS 2024; 24:2989-2997. [PMID: 38294951 DOI: 10.1021/acs.nanolett.3c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qβ were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.
Collapse
Affiliation(s)
- Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Jorge L Bayón
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Krister J Barkovich
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Sean K Hsu
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Eriksson C, Gunasekera S, Muhammad T, Zhang M, Laurén I, Mangsbo SM, Lord M, Göransson U. Epitopes Displayed in a Cyclic Peptide Scaffold Bind SARS-COV-2 Antibodies. Chembiochem 2023; 24:e202300103. [PMID: 37021633 DOI: 10.1002/cbic.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/07/2023]
Abstract
The SARS-CoV-2 virus that causes COVID-19 is a global health issue. The spread of the virus has resulted in seven million deaths to date. The emergence of new viral strains highlights the importance of continuous surveillance of the SARS-CoV-2 virus by using timely and accurate diagnostic tools. Here, we used a stable cyclic peptide scaffolds to present antigenic sequences derived from the spike protein that are reactive to SARS-CoV-2 antibodies. Using peptide sequences from different domains of SARS-CoV-2 spike proteins, we grafted epitopes on the peptide scaffold sunflower trypsin inhibitor 1 (SFTI-1). These scaffold peptides were then used to develop an ELISA to detect SARS-CoV-2 antibodies in serum. We show that displaying epitopes on the scaffold improves reactivity overall. One of the scaffold peptides (S2_1146-1161_c) has reactivity equal to that of commercial assays, and shows diagnostic potential.
Collapse
Affiliation(s)
- Camilla Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Sunithi Gunasekera
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Taj Muhammad
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Mingshu Zhang
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Ida Laurén
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Martin Lord
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| |
Collapse
|
3
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
4
|
Wijesundara YH, Herbert FC, Kumari S, Howlett T, Koirala S, Trashi O, Trashi I, Al-Kharji NM, Gassensmith JJ. Rip it, stitch it, click it: A Chemist's guide to VLP manipulation. Virology 2022; 577:105-123. [PMID: 36343470 DOI: 10.1016/j.virol.2022.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Viruses are some of nature's most ubiquitous self-assembled molecular containers. Evolutionary pressures have created some incredibly robust, thermally, and enzymatically resistant carriers to transport delicate genetic information safely. Virus-like particles (VLPs) are human-engineered non-infectious systems that inherit the parent virus' ability to self-assemble under controlled conditions while being non-infectious. VLPs and plant-based viral nanoparticles are becoming increasingly popular in medicine as their self-assembly properties are exploitable for applications ranging from diagnostic tools to targeted drug delivery. Understanding the basic structure and principles underlying the assembly of higher-order structures has allowed researchers to disassemble (rip it), reassemble (stitch it), and functionalize (click it) these systems on demand. This review focuses on the current toolbox of strategies developed to manipulate these systems by ripping, stitching, and clicking to create new technologies in the biomedical space.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Thomas Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Noora M Al-Kharji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA; Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA.
| |
Collapse
|
5
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Soares DCF, Poletto F, Eberhardt MJ, Domingues SC, De Sousa FB, Tebaldi ML. Polymer-hybrid nanosystems for antiviral applications: Current advances. Biomed Pharmacother 2022; 146:112249. [PMID: 34972632 DOI: 10.1016/j.biopha.2021.112249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/02/2022] Open
Abstract
The emergence of many new viruses in recent times has resulted in a significant scientific challenge for discovering drugs and vaccines that effectively treat and prevent viral diseases. Nanotechnology has opened doors to prevent the spread of several diseases, including those caused by viruses. Polymer-hybrid nanodevices are a class of nanotechnology platforms for biomedical applications that present synergistic properties among their components, with improved performance compared to conventional forms of therapy. Considering the growing interest in this emerging field and the promising technological advantages of polymer-hybrid nanodevices, this work presents the current status of these systems in the context of prevention and treatment of viral diseases. A brief description of the different types of polymer-hybrid nanodevices highlighting some peculiar characteristics such as their composition, biodistribution, delivery of antigens, and overall immune responses in systemic tissues are discussed. Finally, the work presents the future trends for new nanotechnological hybrid materials based on polymers and perspectives for clinical use.
Collapse
Affiliation(s)
| | - Fernanda Poletto
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Marcelo J Eberhardt
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
| | - Stephanie Calazans Domingues
- Laboratório de Bioengenharia - Universidade Federal de Itajubá (UNIFEI) - Campus Itabira, Itabira, MG 35903-087, Brazil
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) - Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, MG 37500-903, Brazil
| | - Marli Luiza Tebaldi
- Laboratório de Bioengenharia - Universidade Federal de Itajubá (UNIFEI) - Campus Itabira, Itabira, MG 35903-087, Brazil
| |
Collapse
|
7
|
Szyszka TN, Jenner EN, Tasneem N, Lau YH. Molecular Display on Protein Nanocompartments: Design Strategies and Systems Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Taylor N. Szyszka
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| | - Eric N. Jenner
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Nuren Tasneem
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Yu Heng Lau
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| |
Collapse
|
8
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Marin A, Chowdhury A, Valencia SM, Zacharia A, Kirnbauer R, Roden RBS, Pinto LA, Shoemaker RH, Marshall JD, Andrianov AK. Next generation polyphosphazene immunoadjuvant: Synthesis, self-assembly and in vivo potency with human papillomavirus VLPs-based vaccine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 33:102359. [PMID: 33476764 PMCID: PMC8184581 DOI: 10.1016/j.nano.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Poly[di(carboxylatomethylphenoxy)phosphazene] (PCMP), a new member of polyphosphazene immunoadjuvant family, is synthesized. In vitro assessment of a new macromolecule revealed hydrolytic degradation profile and immunostimulatory activity comparable to its clinical stage homologue PCPP; however, PCMP was characterized by a beneficial reduced sensitivity to the ionic environment. In vivo evaluation of PCMP potency was conducted with human papillomavirus (HPV) virus-like particles (VLPs) based RG1-VLPs vaccine. In contrast with previously reported self-assembly of polyphosphazene adjuvants with proteins, which typically results in the formation of complexes with multimeric display of antigens, PCMP surface modified VLPs in a composition dependent pattern, which at a high polymer-to VLPs ratio led to stabilization of antigenic particles. Immunization experiments in mice demonstrated that PCMP adjuvanted RG1-VLPs vaccine induced potent humoral immune responses, in particular, on the level of highly desirable protective cross-neutralizing antibodies, and outperformed PCPP and Alhydrogel adjuvanted formulations.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Sarah M Valencia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Athina Zacharia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, , United States
| | - Ligia A Pinto
- HPV Immunology laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, United States
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.
| |
Collapse
|
10
|
Gao X, Ding J, Long Q, Zhan C. Virus-mimetic systems for cancer diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1692. [PMID: 33354937 DOI: 10.1002/wnan.1692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Over past decades, various strategies have been developed to enhance the delivery efficiency of therapeutics and imaging agents to tumor tissues. However, the therapeutic outcome of tumors to date have not been significantly improved, which can be partly attributed to the weak targeting ability, fast elimination, and low stability of conventional delivery systems. Viruses are the most efficient agents for gene transfer, serving as a valuable source of inspiration for designing nanoparticle-based delivery systems. Based on the properties of viruses, including well-defined geometry, precise composition, easy modification, stable construction, and specific infection, researchers attempt to design biocompatible delivery vectors by mimicking virus assembly and using the vector system to selectively concentrate drugs or imaging probes in tumors with mitigated toxicity and improved efficacy. In this review, we introduce common viruses features and provide an overview of various virus-mimetic strategies for cancer therapy and diagnosis. The challenges faced by virus-mimetic systems are also discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xihui Gao
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Junqiang Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai, China
| | - Qianqian Long
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Changyou Zhan
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Witika BA, Makoni PA, Mweetwa LL, Ntemi PV, Chikukwa MTR, Matafwali SK, Mwila C, Mudenda S, Katandula J, Walker RB. Nano-Biomimetic Drug Delivery Vehicles: Potential Approaches for COVID-19 Treatment. Molecules 2020; 25:E5952. [PMID: 33339110 PMCID: PMC7765509 DOI: 10.3390/molecules25245952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Larry L. Mweetwa
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
| | - Pascal V. Ntemi
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Melissa T. R. Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Jonathan Katandula
- Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| |
Collapse
|
12
|
|
13
|
Van Den Broeck E, Verbraeken B, Dedecker K, Cnudde P, Vanduyfhuys L, Verstraelen T, Van Hecke K, Jerca VV, Catak S, Hoogenboom R, Van Speybroeck V. Cation−π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elias Van Den Broeck
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | - Karen Dedecker
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Toon Verstraelen
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
- Centre for Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, 202B Spl. Independentei CP 35-108, Bucharest 060023, Romania
| | - Saron Catak
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | | |
Collapse
|
14
|
|
15
|
|
16
|
Podevyn A, Arys K, de la Rosa VR, Glassner M, Hoogenboom R. End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019; 10:751. [PMID: 31333467 PMCID: PMC6624236 DOI: 10.3389/fphar.2019.00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
There are still great challenges for the effective treatment of infectious diseases, although considerable achievement has been made by using antiviral and antimicrobial agents varying from small-molecule drugs, peptides/proteins, to nucleic acids. The nanomedicine approach is emerging as a new strategy capable of overcoming disadvantages of molecular therapeutics and amplifying their anti-infective activities, by localized delivery to infection sites, reducing off-target effects, and/or attenuating resistance development. Nanotechnology, in combination with bioinspired and biomimetic approaches, affords additional functions to nanoparticles derived from synthetic materials. Herein, we aim to provide a state-of-the-art review on recent progress in biomimetic and bioengineered nanotherapies for the treatment of infectious disease. Different biomimetic nanoparticles, derived from viruses, bacteria, and mammalian cells, are first described, with respect to their construction and biophysicochemical properties. Then, the applications of diverse biomimetic nanoparticles in anti-infective therapy are introduced, either by their intrinsic activity or by loading and site-specifically delivering various molecular drugs. Bioinspired and biomimetic nanovaccines for prevention and/or therapy of infectious diseases are also highlighted. At the end, major translation issues and future directions of this field are discussed.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
19
|
Francini N, Cochrane D, Illingworth S, Purdie L, Mantovani G, Fisher K, Seymour LW, Spain SG, Alexander C. Polyvalent Diazonium Polymers Provide Efficient Protection of Oncolytic Adenovirus Enadenotucirev from Neutralizing Antibodies while Maintaining Biological Activity In Vitro and In Vivo. Bioconjug Chem 2019; 30:1244-1257. [PMID: 30874432 DOI: 10.1021/acs.bioconjchem.9b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncolytic viruses offer many advantages for cancer therapy when administered directly to confined solid tumors. However, the systemic delivery of these viruses is problematic because of the host immune response, undesired interactions with blood components, and inherent targeting to the liver. Efficacy of systemically administered viruses has been improved by masking viral surface proteins with polymeric materials resulting in modulation of viral pharmacokinetic profile and accumulation in tumors in vivo. Here we describe a new class of polyvalent reactive polymer based on poly( N-(2-hydroxypropyl)methacrylamide) (polyHPMA) with diazonium reactive groups and their application in the modification of the chimeric group B oncolytic virus enadenotucirev (EnAd). A series of six copolymers with different chain lengths and density of reactive groups was synthesized and used to coat EnAd. Polymer coating was found to be extremely efficient with concentrations as low as 1 mg/mL resulting in complete (>99%) ablation of neutralizing antibody binding. Coating efficiency was found to be dependent on both chain length and reactive group density. Coated viruses were found to have reduced transfection activity both in vitro and in vivo, with greater protection against neutralizing antibodies resulting in lower transgene production. However, in the presence of neutralizing antibodies, some in vivo transgene expression was maintained for coated virus compared to the uncoated control. The decrease in transgene expression was found not to be solely due to lower cellular uptake but due to reduced unpackaging of the virus within the cells and reduced replication, indicating that the polymer coating does not cause permanent inactivation of the virus. These data suggest that virus activity may be modulated by the appropriate design of coating polymers while retaining protection against neutralizing antibodies.
Collapse
Affiliation(s)
- Nora Francini
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Daniel Cochrane
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Sam Illingworth
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Laura Purdie
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Giuseppe Mantovani
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Kerry Fisher
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Leonard W Seymour
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Sebastian G Spain
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| | - Cameron Alexander
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
20
|
Van Guyse JFR, Mees MA, Vergaelen M, Baert M, Verbraeken B, Martens PJ, Hoogenboom R. Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach. Polym Chem 2019. [DOI: 10.1039/c9py00014c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new amidation approaches are evaluated to incorporate tyramine on methyl ester functional poly(2-oxazolines).
Collapse
Affiliation(s)
- Joachim F. R. Van Guyse
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Maarten Vergaelen
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Mathijs Baert
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Bart Verbraeken
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Penny J. Martens
- Graduate School of Biomedical Engineering
- UNSW Sydney
- Sydney 2052
- Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| |
Collapse
|
21
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Chen Z, Detvo ST, Pham E, Gassensmith JJ. Making Conjugation-induced Fluorescent PEGylated Virus-like Particles by Dibromomaleimide-disulfide Chemistry. J Vis Exp 2018:57712. [PMID: 29889200 PMCID: PMC6101432 DOI: 10.3791/57712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The recent rise in virus-like particles (VLPs) in biomedical and materials research can be attributed to their ease of biosynthesis, discrete size, genetic programmability, and biodegradability. While they're highly amenable to bioconjugation reactions for adding synthetic ligands onto their surface, the range in bioconjugation methodologies on these aqueous born capsids is relatively limited. To facilitate the direction of functional biomaterials research, non-traditional bioconjugation reactions must be considered. The reaction described in this protocol uses dibromomaleimides to introduce new functionality in the solvent exposed disulfide bonds of a VLP based upon Bacteriophage Qβ. Furthermore, the final product is fluorescent, which has the added benefit of generating a trackable in vitro probe using a commercially available filter set.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Chemistry & Biochemistry, University of Texas at Dallas
| | | | - Elizabeth Pham
- Undergraduate Healthcare Studies, University of Texas at Dallas
| | - Jeremiah J Gassensmith
- Departments of Chemistry & Biochemistry and Biomedical Engineering, University of Texas at Dallas;
| |
Collapse
|
23
|
Neburkova J, Sedlak F, Zackova Suchanova J, Kostka L, Sacha P, Subr V, Etrych T, Simon P, Barinkova J, Krystufek R, Spanielova H, Forstova J, Konvalinka J, Cigler P. Inhibitor-GCPII Interaction: Selective and Robust System for Targeting Cancer Cells with Structurally Diverse Nanoparticles. Mol Pharm 2018; 15:2932-2945. [PMID: 29389139 DOI: 10.1021/acs.molpharmaceut.7b00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) is a membrane protease overexpressed by prostate cancer cells and detected in the neovasculature of most solid tumors. Targeting GCPII with inhibitor-bearing nanoparticles can enable recognition, imaging, and delivery of treatments to cancer cells. Compared to methods based on antibodies and other large biomolecules, inhibitor-mediated targeting benefits from the low molecular weight of the inhibitor molecules, which are typically stable, easy-to-handle, and able to bind the enzyme with very high affinity. Although GCPII is established as a molecular target, comparing previously reported results is difficult due to the different methodological approaches used. In this work, we investigate the robustness and limitations of GCPII targeting with a diverse range of inhibitor-bearing nanoparticles (various structures, sizes, bionanointerfaces, conjugation chemistry, and surface densities of attached inhibitors). Polymer-coated nanodiamonds, virus-like particles based on bacteriophage Qβ and mouse polyomavirus, and polymeric poly(HPMA) nanoparticles with inhibitors attached by different means were synthesized and characterized. We evaluated their ability to bind GCPII and interact with cancer cells using surface plasmon resonance, inhibition assay, flow cytometry, and confocal microscopy. Regardless of the diversity of the investigated nanosystems, they all strongly interact with GCPII (most with low picomolar Ki values) and effectively target GCPII-expressing cells. The robustness of this approach was limited only by the quality of the nanoparticle bionanointerface, which must be properly designed by adding a sufficient density of hydrophilic protective polymers. We conclude that the targeting of cancer cells overexpressing GCPII is a viable approach transferable to a broad diversity of nanosystems.
Collapse
Affiliation(s)
- Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,First Faculty of Medicine , Charles University , Katerinska 32 , 121 08 Prague , Czech Republic
| | - Frantisek Sedlak
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,First Faculty of Medicine , Charles University , Katerinska 32 , 121 08 Prague , Czech Republic.,Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Jirina Zackova Suchanova
- Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry of the CAS , Heyrovskeho namesti 2 , 162 06 , Prague 6 , Czech Republic
| | - Pavel Sacha
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Vladimir Subr
- Institute of Macromolecular Chemistry of the CAS , Heyrovskeho namesti 2 , 162 06 , Prague 6 , Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular Chemistry of the CAS , Heyrovskeho namesti 2 , 162 06 , Prague 6 , Czech Republic
| | - Petr Simon
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Jitka Barinkova
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Robin Krystufek
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Hana Spanielova
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,Department of Biochemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 43 Prague 2 , Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| |
Collapse
|
24
|
Chen Z, Boyd SD, Calvo JS, Murray KW, Mejia GL, Benjamin CE, Welch RP, Winkler DD, Meloni G, D'Arcy S, Gassensmith JJ. Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjug Chem 2017; 28:2277-2283. [PMID: 28787574 DOI: 10.1021/acs.bioconjchem.7b00305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteinaceous nanomaterials and, in particular, virus-like particles (VLPs) have emerged as robust and uniform platforms that are seeing wider use in biomedical research. However, there are a limited number of bioconjugation reactions for functionalizing the capsids, and very few of those involve functionalization across the supramolecular quaternary structure of protein assemblies. In this work, we exploit the recently described dibromomaleimide moiety as part of a bioconjugation strategy on VLP Qβ to break and rebridge the exposed and structurally important disulfides in good yields. Not only was the stability of the quaternary structure retained after the reaction, but the newly functionalized particles also became brightly fluorescent and could be tracked in vitro using a commercially available filter set. Consequently, we show that this highly efficient bioconjugation reaction not only introduces a new functional handle "between" the disulfides of VLPs without compromising their thermal stability but also can be used to create a fluorescent probe.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Stefanie D Boyd
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Jenifer S Calvo
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Kyle W Murray
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Galo L Mejia
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Candace E Benjamin
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Raymond P Welch
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Duane D Winkler
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, and §School of Behavioral and Brain Sciences, University of Texas at Dallas , Richardson, Texas 75080, United States
| |
Collapse
|
25
|
Mohan TJ, Bahulayan D. Design, synthesis and fluorescence property evaluation of blue emitting triazole-linked chromene peptidomimetics. Mol Divers 2017; 21:585-596. [DOI: 10.1007/s11030-017-9744-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/16/2017] [Indexed: 11/25/2022]
|
26
|
Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Kempe K. Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2‐oxazoline)s to Poly(ester amide)s. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| |
Collapse
|
28
|
|
29
|
Bludau H, Czapar AE, Pitek AS, Shukla S, Jordan R, Steinmetz NF. POxylation as an alternative stealth coating for biomedical applications. Eur Polym J 2017; 88:679-688. [PMID: 28713172 PMCID: PMC5510027 DOI: 10.1016/j.eurpolymj.2016.10.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyethylene glycol (PEG) polymers are currently used in a variety of medical formulations to reduce toxicity, minimize immune interactions and improve pharmacokinetics. Despite its widespread use however, the presence of anti-PEG antibodies indicates that this polymer has the potential to be immunogenic and antigenic. Here we present an alternative polymer, poly(2-oxazoline) (POx) for stealth applications, specifically shielding of a proteinaceous nanoparticle from recognition by the immune system. Tobacco mosaic virus (TMV) was used as our testbed due to its potential for use as a nanocarrier for drug delivery and molecular imaging applications.
Collapse
Affiliation(s)
- Herdis Bludau
- Chair of Macromolecular Chemistry, School of Science, Technische
Unversität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Anna E. Czapar
- Department of Pathology, Case Western Reserve University, Cleveland,
OH 44106, United States
| | - Andrzej S. Pitek
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, OH 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, OH 44106, United States
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, School of Science, Technische
Unversität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, OH 44106, United States
- Department of Radiology, Case Western Reserve University, Cleveland,
OH 44106, United States
- Department of Materials Science and Engineering, Case Western
Reserve University, Cleveland, OH 44106, United States
- Department of Macromolecular Science and Engineering, Case Western
Reserve University, Cleveland, OH 44106, United States
- Case Comprehensive Cancer Center, Case Western Reserve University,
Cleveland, OH 44106, United States
| |
Collapse
|
30
|
Lühmann T, Schmidt M, Leiske MN, Spieler V, Majdanski TC, Grube M, Hartlieb M, Nischang I, Schubert S, Schubert US, Meinel L. Site-Specific POxylation of Interleukin-4. ACS Biomater Sci Eng 2017; 3:304-312. [DOI: 10.1021/acsbiomaterials.6b00578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Marcel Schmidt
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Meike N. Leiske
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Valerie Spieler
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| | - Tobias C. Majdanski
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Mandy Grube
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Matthias Hartlieb
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Ivo Nischang
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Stephanie Schubert
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
- Department
of Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Strasse 41, DE-07747 Jena, Germany
| | - Ulrich S. Schubert
- Institute of Organic and Macromolecular Chemistry [IOMC], Friedrich Schiller University Jena, Humboldtstrasse 10, DE-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, DE-07743 Jena, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University of Würzburg, Am
Hubland, DE-97074 Würzburg, Germany
| |
Collapse
|
31
|
Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016; 59:74-110. [DOI: 10.1159/000449503] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
|
32
|
Chen Z, Li N, Chen L, Lee J, Gassensmith JJ. Dual Functionalized Bacteriophage Qβ as a Photocaged Drug Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4563-4571. [PMID: 27351167 DOI: 10.1002/smll.201601053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Proteinatious nanoparticles are emerging as promising materials in biomedical research owing to their many unique properties and our interest focuses on integrating environmental responsivity into these systems. In this work, the use of a virus-like particle (VLP) derived from bacteriophage Qβ as a photocaged drug delivery system is investigated. Ideally, a photocaged nanoparticle platform should be harmless and inert without activation by light yet, upon photoirradiation, should cause cell death. Approximately 530 photocleavable doxorubicin complexes are installed initially onto the surface of Qβ by CuAAC reaction for photocaging therapy; however, aggregation and precipitation are found to cause cell death at higher concentrations. In order to improve solution stability, thiol-dibromomaleimide chemistry has been developed to orthogonally modify the VLP. This chemistry provides a robust method of incorporating additional functionality at the disulfides on Qβ, which was used to increase the stability and solubility of the drug-loaded VLPs. As a result, the dual functionalied VLPs with polyethylene glycol and photocaged doxorubicin show not only negligible cytotoxicity before photoactivation but also highly controllable photorelease and cell killing power.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Na Li
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Luxi Chen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
33
|
Maassen SJ, van der Ham AM, Cornelissen JJLM. Combining Protein Cages and Polymers: from Understanding Self-Assembly to Functional Materials. ACS Macro Lett 2016; 5:987-994. [PMID: 35607217 DOI: 10.1021/acsmacrolett.6b00509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein cages, such as viruses, are well-defined biological nanostructures which are highly symmetrical and monodisperse. They are found in various shapes and sizes and can encapsulate or template non-native materials. Furthermore, the proteins can be chemically or genetically modified giving them new properties. For these reasons, these protein structures have received increasing attention in the field of polymer-protein hybrid materials over the past years, however, advances are still to be made. This Viewpoint highlights the different ways polymers and protein cages or their subunits have been combined to understand self-assembly and create functional materials.
Collapse
Affiliation(s)
- Stan J. Maassen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Anne M. van der Ham
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| |
Collapse
|
34
|
Reinhard S, Wagner E. How to Tackle the Challenge of siRNA Delivery with Sequence-Defined Oligoamino Amides. Macromol Biosci 2016; 17. [PMID: 27328447 DOI: 10.1002/mabi.201600152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/24/2016] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) as a mechanism of gene regulation provides exciting opportunities for medical applications. Synthetic small interfering RNA (siRNA) triggers the knockdown of complementary mRNA sequences in a catalytic fashion and has to be delivered into the cytosol of the targeted cells. The design of adequate carrier systems to overcome multiple extracellular and intracellular roadblocks within the delivery process has utmost importance. Cationic polymers form polyplexes through electrostatic interaction with negatively charged nucleic acids and present a promising class of carriers. Issues of polycations regarding toxicity, heterogeneity, and polydispersity can be overcome by solid-phase-assisted synthesis of sequence-defined cationic oligomers. These medium-sized highly versatile nucleic acid carriers display low cytotoxicity and can be modified and tailored in multiple ways to meet specific requirements of nucleic acid binding, polyplex size, shielding, targeting, and intracellular release of the cargo. In this way, sequence-defined cationic oligomers can mimic the dynamic and bioresponsive behavior of viruses.
Collapse
Affiliation(s)
- Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany
| |
Collapse
|
35
|
van Rijn P, Schirhagl R. Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications. Adv Healthc Mater 2016; 5:1386-400. [PMID: 27119823 DOI: 10.1002/adhm.201501000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications.
Collapse
Affiliation(s)
- Patrick van Rijn
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Romana Schirhagl
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
| |
Collapse
|
36
|
Bissadi G, Weberskirch R. Efficient synthesis of polyoxazoline-silica hybrid nanoparticles by using the “grafting-onto” approach. Polym Chem 2016. [DOI: 10.1039/c5py01775k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first preparation of silica hybrid nanoparticles by comparing the click chemistry approach with the silane coupling of α-telechelic poly(2-methyl-2-oxazoline)s is reported.
Collapse
Affiliation(s)
- Golnaz Bissadi
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| |
Collapse
|
37
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
38
|
Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith JJ. Viral chemistry: the chemical functionalization of viral architectures to create new technology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:512-34. [DOI: 10.1002/wnan.1379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Na Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Shaobo Li
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | | | - Anna Schlimme
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Jeremiah J Gassensmith
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| |
Collapse
|
39
|
Jithin Raj P, Bahulayan D. An efficient click-multicomponent strategy for the diversity oriented synthesis of 15–18 membered macrocyclic peptidomimetic fluorophores. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Schmitz M, Kuhlmann M, Reimann O, Hackenberger CR, Groll J. Side-chain cysteine-functionalized poly(2-oxazoline)s for multiple peptide conjugation by native chemical ligation. Biomacromolecules 2015; 16:1088-94. [PMID: 25728550 PMCID: PMC4428813 DOI: 10.1021/bm501697t] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Indexed: 12/19/2022]
Abstract
We prepared statistical copolymers composed of 2-methyl-2-oxazoline (MeOx) in combination with 2-butenyl-2-oxazoline (BuOx) or 2-decenyl-2-oxazoline (DecOx) as a basis for polymer analogous introduction of 1,2-aminothiol moieties at the side chain. MeOx provides hydrophilicity as well as cyto- and hemocompatibility, whereas the alkene groups of BuOx and DecOx serve for functionalization with a thiofunctional thiazolidine by UV-mediated thiol-ene reaction. After deprotection the cysteine content in functionalized poly(2-oxazoline) (POx) is quantified by NMR and a modified trinitrobenzenesulfonic acid assay. The luminescent cell viability assay shows no negative influence of cysteine-functionalized POx (cys-POx) concerning cell viability and cell number. cys-POx was used for multiple chemically orthogonal couplings with thioester-terminated peptides through native chemical ligation (NCL), which was performed and confirmed by NMR and MALDI-ToF measurements.
Collapse
Affiliation(s)
- Michael Schmitz
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Matthias Kuhlmann
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Oliver Reimann
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian
P. R. Hackenberger
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Humboldt
Universität zu Berlin, Department
Chemie, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Jürgen Groll
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
41
|
|
42
|
Hovlid ML, Lau JL, Breitenkamp K, Higginson CJ, Laufer B, Manchester M, Finn MG. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS NANO 2014; 8:8003-14. [PMID: 25073013 PMCID: PMC4148144 DOI: 10.1021/nn502043d] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/16/2014] [Indexed: 04/14/2023]
Abstract
Virus-like particles (VLPs) are unique macromolecular structures that hold great promise in biomedical and biomaterial applications. The interior of the 30 nm-diameter Qβ VLP was functionalized by a three-step process: (1) hydrolytic removal of endogenously packaged RNA, (2) covalent attachment of initiator molecules to unnatural amino acid residues located on the interior capsid surface, and (3) atom-transfer radical polymerization of tertiary amine-bearing methacrylate monomers. The resulting polymer-containing particles were moderately expanded in size; however, biotin-derivatized polymer strands were only very weakly accessible to avidin, suggesting that most of the polymer was confined within the protein shell. The polymer-containing particles were also found to exhibit physical and chemical properties characteristic of positively charged nanostructures, including the ability to easily enter mammalian cells and deliver functional small interfering RNA.
Collapse
Affiliation(s)
- Marisa L. Hovlid
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene L. Lau
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kurt Breitenkamp
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Cody J. Higginson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Burkhardt Laufer
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, United States
| | - M. G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- School of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Soumya T, Thasnim P, Bahulayan D. Step-economic and cost effective synthesis of coumarin based blue emitting fluorescent dyes. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.06.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Accurso AA, Delaney M, O'Brien J, Kim H, Iovine PM, Díaz DD, Finn MG. Improved Metal-Adhesive Polymers from Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Chemistry 2014; 20:10710-9. [DOI: 10.1002/chem.201400137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Indexed: 01/08/2023]
|
45
|
Bryksin AV, Brown AC, Baksh MM, Finn M, Barker TH. Learning from nature - novel synthetic biology approaches for biomaterial design. Acta Biomater 2014; 10:1761-9. [PMID: 24463066 DOI: 10.1016/j.actbio.2014.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
Many biomaterials constructed today are complex chemical structures that incorporate biologically active components derived from nature, but the field can still be said to be in its infancy. The need for materials that bring sophisticated properties of structure, dynamics and function to medical and non-medical applications will only grow. Increasing appreciation of the functionality of biological systems has caused biomaterials researchers to consider nature for design inspiration, and many examples exist of the use of biomolecular motifs. Yet evolution, nature's only engine for the creation of new designs, has been largely ignored by the biomaterials community. Molecular evolution is an emerging tool that enables one to apply nature's engineering principles to non-natural situations using variation and selection. The purpose of this review is to highlight the most recent advances in the use of molecular evolution in synthetic biology applications for biomaterial engineering, and to discuss some of the areas in which this approach may be successfully applied in the future.
Collapse
|
46
|
Kempe K, Ng SL, Noi KF, Müllner M, Gunawan ST, Caruso F. Clickable Poly(2-oxazoline) Architectures for the Fabrication of Low-Fouling Polymer Capsules. ACS Macro Lett 2013; 2:1069-1072. [PMID: 35606969 DOI: 10.1021/mz400522e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hollow polymer capsules were prepared from linear as well as brushlike poly(2-oxazoline)s (POxs). Linear POxs containing alkene functionalities were obtained by cationic ring-opening polymerization (CROP), whereas the brush POxs bearing alkyne moieties were synthesized by a combination of CROP and reversible addition-fragmentation chain transfer (RAFT) polymerization. Multilayers consisting of POx/poly(methacrylic acid) (PMA) were sequentially deposited onto silica particle templates, and the films were stabilized either by thiol-ene (TE) chemistry or copper-catalyzed azide-alkyne cycloaddition (CuAAc). Stable, monodisperse capsules were formed after removal of the silica particles with hydrofluoric acid and were observed using fluorescence and atomic force microscopy (AFM). Both architectures exhibited low-fouling behavior, an essential criteria for therapeutic carriers to be utilized in bioapplications. In particular, the brush-like POx capsules show potential as a viable alternative material for the fabrication of low-fouling capsules.
Collapse
Affiliation(s)
- Kristian Kempe
- Department
of Chemical and
Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Sher Leen Ng
- Department
of Chemical and
Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Ka Fung Noi
- Department
of Chemical and
Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Markus Müllner
- Department
of Chemical and
Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Sylvia T. Gunawan
- Department
of Chemical and
Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Frank Caruso
- Department
of Chemical and
Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
47
|
Kempe K, Killops KL, Poelma JE, Jung H, Bang J, Hoogenboom R, Tran H, Hawker CJ, Schubert US, Campos LM. Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features. ACS Macro Lett 2013; 2:677-682. [PMID: 35606952 DOI: 10.1021/mz400309d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The modular synthesis and lithographic potential of diblock copolymers based on polystyrene-block-poly(2-ethyl-2-oxazoline) (PS-b-PEtOx) are highlighted herein. Controlled radical and living cationic polymerization techniques were utilized to synthesize hydrophobic PS and hydrophilic PEtOx building block of varying molar mass. Subsequently, "click" chemistry was used to couple the blocks and obtain a family of PS-b-PEtOx polymers. The influence of molar mass, composition, and thin-film thickness on the microphase-segregated morphology and orientation were investigated with atomic force microscopy (AFM) and grazing incidence small-angle X-ray scattering (GISAXS). Dense hexagonal arrays of cylindrical nanodomains normal to the substrate, having a periodicity of less than 20 nm were obtained.
Collapse
Affiliation(s)
- Kristian Kempe
- Laboratory of Organic and Macromolecular
Chemistry (IOMC), Friedrich-Schiller-Universität Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter
(JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
- Materials Research Laboratory, Materials Department, and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93016, United States
| | - Kato L. Killops
- Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland
21010, United States
| | - Justin E. Poelma
- Materials Research Laboratory, Materials Department, and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93016, United States
| | - Hyunjung Jung
- Department
of Chemical and Biological
Engineering, Korea University, 136-713
Seoul, Republic of Korea
| | - Joona Bang
- Department
of Chemical and Biological
Engineering, Korea University, 136-713
Seoul, Republic of Korea
| | - Richard Hoogenboom
- Supramolecular Chemistry Group,
Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Helen Tran
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| | - Craig J. Hawker
- Materials Research Laboratory, Materials Department, and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93016, United States
- Visiting Chair
Professor at King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia 31261
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular
Chemistry (IOMC), Friedrich-Schiller-Universität Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter
(JCSM), Friedrich-Schiller-Universität Jena, Philosophenweg 7, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The
Netherlands
| | - Luis M. Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| |
Collapse
|
48
|
|
49
|
|
50
|
Such GK, Gunawan ST, Liang K, Caruso F. Design of degradable click delivery systems. Macromol Rapid Commun 2013; 34:894-902. [PMID: 23649708 DOI: 10.1002/marc.201300093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/22/2013] [Indexed: 12/14/2022]
Abstract
Click chemistry has had a significant impact in the field of materials science over the last 10 years, as it has enabled the design of new hybrid building blocks, leading to multifunctional and responsive materials. One key application for such materials is in the biomedical field, such as gene or drug delivery. However, to meet the functional requirements of such applications, tailored degradability of these materials under biological conditions is critical. There has been an increasing interest in combining click chemistry techniques with a range of degradable or responsive building blocks as well as investigating new or milder chemistries to design click delivery systems that are capable of physiologically relevant degradation. This Feature Article will cover some of the different approaches to synthesize degradable click delivery systems and their investigation for therapeutic release.
Collapse
Affiliation(s)
- Georgina K Such
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville 3010, Australia
| | | | | | | |
Collapse
|