1
|
Wang J, Guo C, Liu Y, Ji Y, Jia H, Li H. Enantioselective Synthesis of the 1,3-Dienyl-5-Alkyl-6-Oxy Motif: Method Development and Total Synthesis. Angew Chem Int Ed Engl 2024; 63:e202400478. [PMID: 38270494 DOI: 10.1002/anie.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
The 1,3-dienyl-5-alkyl-6-oxy motif is widely found in various types of bioactive natural products. However, present synthesis is mainly non-asymmetric which relied upon different olefination or transition metal-catalyzed cross-coupling reactions using enantioenriched precursors. Herein, based upon a newly developed enantioselective α-alkylation of conjugated polyenoic acids, a variety of 1,3-dienyl-5-alkyl-6-oxy motif (with E-configured internal olefin) was generated as the corresponding α-adducts in a highly enantioselective and diastereoselective manner. Utilizing 1,3-dienyl-5-alkyl-6-oxy motif as key intermediates, we further demonstrated their synthetic potential by expedient total syntheses of three types of natural products (glutarimide antibiotics, α-pyrone polyketides and Lupin alkaloids) within 4-7 steps.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yaqian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Wienecke P, Arndt HD. Direct C-H Cyanation by ICN Formed In Situ: Nannozinone B. Org Lett 2023; 25:1188-1191. [PMID: 36763903 DOI: 10.1021/acs.orglett.3c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A novel method for C-H cyanation of different pyrans, pyrroles, indoles, and acyclic nucleophilic double bonds using TMSCN, NIS, and Zn(OTf)2 as a catalyst is described. The transformation is conducted under mild conditions tolerating a variety of functional groups. Zn(OTf)2 is likely to serve a dual catalytic role as an activator for TMSCN and for the cyanogen iodide generated in situ. Optimization, the substrate scope, and mechanistic observations are reported. Furthermore, this method is applied in the first total synthesis of the natural product nannozinone B.
Collapse
Affiliation(s)
- Paul Wienecke
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstrasse 10, D-07743 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstrasse 10, D-07743 Jena, Germany
| |
Collapse
|
4
|
Goldfogel MJ, Jamison CR, Savage SA, Haley MW, Mukherjee S, Sfouggatakis C, Gujjar M, Mohan J, Rakshit S, Vaidyanathan R. Development of Two Synthetic Approaches to an APJ Receptor Agonist Containing a Tetra- ortho-Substituted Biaryl Pyridone. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew J. Goldfogel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Christopher R. Jamison
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Scott A. Savage
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Matthew W. Haley
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Subha Mukherjee
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Chris Sfouggatakis
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Manjunath Gujjar
- Chemical Development and API Supply, Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560 099, India
| | - Jayaraj Mohan
- Chemical Development and API Supply, Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560 099, India
| | - Souvik Rakshit
- Chemical Development and API Supply, Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560 099, India
| | - Rajappa Vaidyanathan
- Chemical Development and API Supply, Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560 099, India
| |
Collapse
|
5
|
Kamali M, Shahi S. Catalytic Switching in the Multi-component Synthesis of Novel Thioethers Based on 4-Hydroxy-2-pyridones. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2021.2010468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Sahar Shahi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
6
|
Sangwan S, Yadav N, Kumar R, Chauhan S, Dhanda V, Walia P, Duhan A. A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur J Med Chem 2022; 232:114199. [DOI: 10.1016/j.ejmech.2022.114199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
7
|
Drescher C, Brückner R. Stereostructure Clarifying Total Synthesis of the (Polyenoyl)tetramic Acid Militarinone B. A Highly Acid-Labile N-Protecting Group for Amides†. Org Lett 2021; 23:6194-6199. [PMID: 34324347 DOI: 10.1021/acs.orglett.1c01652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 5S, 8'R, and 10'R configurations of militarinone B (3), which is a natural product from Paecilomyces militaris, should equal those in its biosynthetic precursor, militarinone C. The configuration at C-1' emerged from syntheses of the militarinone B candidates 1''S- and 1''R-(5S,8'R,10'R)-3 from the building blocks 9, 11, 14, and 15a while introducing TMB as a more acid-labile N-protecting group for β-ketoamides than DMB. Comparisons of 1''S- and 1''R-(5S,8'R,10'R)-3 with natural militarinone B (3; reisolated from Nature) revealed identity versus distinctness.
Collapse
Affiliation(s)
- Christian Drescher
- Institut für Organische Chemie, Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg, Germany
| | - Reinhard Brückner
- Institut für Organische Chemie, Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg, Germany
| |
Collapse
|
8
|
Shang Y, Wu C, Gao Q, Liu C, Li L, Zhang X, Cheng HG, Liu S, Zhou Q. Diversity-oriented functionalization of 2-pyridones and uracils. Nat Commun 2021; 12:2988. [PMID: 34016986 PMCID: PMC8137914 DOI: 10.1038/s41467-021-23058-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Heterocycles 2-pyridone and uracil are privileged pharmacophores. Diversity-oriented synthesis of their derivatives is in urgent need in medicinal chemistry. Herein, we report a palladium/norbornene cooperative catalysis enabled dual-functionalization of iodinated 2-pyridones and uracils. The success of this research depends on the use of two unique norbornene derivatives as the mediator. Readily available alkyl halides/tosylates and aryl bromides are utilized as ortho-alkylating and -arylating reagents, respectively. Widely accessible ipso-terminating reagents, including H/DCO2Na, boronic acid/ester, terminal alkene and alkyne are compatible with this protocol. Thus, a large number of valuable 2-pyridone derivatives, including deuterium/CD3-labeled 2-pyridones, bicyclic 2-pyridones, 2-pyridone-fenofibrate conjugate, axially chiral 2-pyridone (97% ee), as well as uracil and thymine derivatives, can be quickly prepared in a predictable manner (79 examples reported), which will be very useful in new drug discovery.
Collapse
Affiliation(s)
- Yong Shang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Chenggui Wu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qianwen Gao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Chang Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Lisha Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Xinping Zhang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Shanshan Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China.
| |
Collapse
|
9
|
Ilazi A, Huang B, de Almeida Campos V, Gademann K. Synthesis of Colibactin Pyrrolidono[3,4- d]pyridones via Regioselective C(sp 3)-H Activation. Org Lett 2020; 22:6858-6862. [PMID: 32815372 DOI: 10.1021/acs.orglett.0c02385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis of pyrrolidono[3,4-d]pyridones of relevance to putative genotoxic colibactin structures featuring a doubly conjugated 1,6-Michael acceptor system is reported. We investigated and implemented a highly selective Pd-catalyzed C(sp3)-H activation reaction as a key step and further functionalized the pyridone core. Evaluating the role of this structural unit of relevance to colibactin, we found that this structure displayed a high degree of stability toward both acidic conditions and nucleophiles.
Collapse
Affiliation(s)
- Agron Ilazi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Bin Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Valery de Almeida Campos
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Drescher C, Keller M, Potterat O, Hamburger M, Brückner R. Structure-Elucidating Total Synthesis of the (Polyenoyl)tetramic Acid Militarinone C§. Org Lett 2020; 22:2559-2563. [PMID: 32191484 DOI: 10.1021/acs.orglett.0c00431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The (polyenoyl)tetramic acid militarinone C (1) heads a family of seven members. Before our work, the configuration of C-5 was unknown whereas the configurations of C-8' and C-10' were either (R,R) or (S,S). We synthesized the four stereoisomers of constitution 1, which conform with these insights. This included cross-coupling both enantiomers of the western building block (8) with both enantiomers of the eastern building block (9). The specific rotations of the resulting 1 isomers suggested that natural 1 is configured like the coupling partners (S)-8 and (R,R)-9. This conclusion was corroborated by degrading natural 1 to alcohol 35 and by proving its configurational identity with synthetic (R,R)-35.
Collapse
Affiliation(s)
- Christian Drescher
- Institut für Organische Chemie, Albert-Ludwigs-Universität, Albertstrasse 21, D-79104 Freiburg, Germany
| | - Morris Keller
- Pharmazeutische Biologie, Universität Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Olivier Potterat
- Pharmazeutische Biologie, Universität Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Hamburger
- Pharmazeutische Biologie, Universität Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Reinhard Brückner
- Institut für Organische Chemie, Albert-Ludwigs-Universität, Albertstrasse 21, D-79104 Freiburg, Germany
| |
Collapse
|
11
|
Kamali M, Shahi S, Mashhadi Akbar Bujar M. Temperature‐Dependent Green Synthesis of New Series of Mannich Bases from 4‐Hydroxy‐pyridine‐2‐one and Their Antioxidant Activity Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mahmood Kamali
- Faculty of Chemistry, Kharazmi University Mofatteh Ave., No. 49 15614 Tehran Iran
| | - Sahar Shahi
- Faculty of Chemistry, Kharazmi University Mofatteh Ave., No. 49 15614 Tehran Iran
| | | |
Collapse
|
12
|
Das D, Sahoo G, Biswas A, Samanta R. Rh
III
‐Catalyzed Synthesis of Highly Substituted 2‐Pyridones using Fluorinated Diazomalonate. Chem Asian J 2020; 15:360-364. [DOI: 10.1002/asia.201901620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Debapratim Das
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Gopal Sahoo
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
13
|
Li J, Tan H, An Y, Shao Z, Zhao S. Synthesis and DABCO‐induced demethylation of 3‐cyano‐4‐methoxy‐2‐pyridone derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jing Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Hong‐Ru Tan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Yu‐Long An
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Zhi‐Yu Shao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Sheng‐Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University No.2999 North Renmin Road Shanghai 201620 People's Republic of China
| |
Collapse
|
14
|
Profiling withanolide A for therapeutic targets in neurodegenerative diseases. Bioorg Med Chem 2019; 27:2508-2520. [DOI: 10.1016/j.bmc.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/22/2022]
|
15
|
Transition-metal-free highly efficient synthesis of 2-pyridones from β-keto amides and ynals. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Abstract
Natural products (NPs) are important sources of clinical drugs due to their structural diversity and biological prevalidation. However, the structural complexity of NPs leads to synthetic difficulties, unfavorable pharmacokinetic profiles, and poor drug-likeness. Structural simplification by truncating unnecessary substructures is a powerful strategy for overcoming these limitations and improving the efficiency and success rate of NP-based drug development. Herein, we will provide a comprehensive review of the structural simplification of NPs with a focus on design strategies, case studies, and new technologies. In particular, a number of successful examples leading to marketed drugs or drug candidates will be discussed in detail to illustrate how structural simplification is applied in lead optimization of NPs.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China.,Department of Medicinal Chemistry, School of Pharmacy , Fourth Military Medical University , 169 Changle West Road , Xi'an , 710032 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| |
Collapse
|
17
|
|
18
|
Maity S, Das D, Sarkar S, Samanta R. Direct Pd(II)-Catalyzed Site-Selective C5-Arylation of 2-Pyridone Using Aryl Iodides. Org Lett 2018; 20:5167-5171. [DOI: 10.1021/acs.orglett.8b02112] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saurabh Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
19
|
Kumar RS, Almansour AI, Arumugam N, Periyasami G, Athimoolam S, Kumar RR, Asad M, Asiri AM. Dipolar cycloaddition based multi-component reaction: Synthesis of spiro tethered acenaphthylene–indolizine–pyridinone hybrids. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Bruckner S, Weise M, Schobert R. Synthesis of the Entomopathogenic Fungus Metabolites Militarinone C and Fumosorinone A. J Org Chem 2018; 83:10805-10812. [DOI: 10.1021/acs.joc.8b01530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sebastian Bruckner
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Marie Weise
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
21
|
Sankar MG, Roy S, Tran TTN, Wittstein K, Bauer JO, Strohmann C, Ziegler S, Kumar K. Scaffold Diversity Synthesis Delivers Complex, Structurally, and Functionally Distinct Tetracyclic Benzopyrones. ChemistryOpen 2018; 7:302-309. [PMID: 29721402 PMCID: PMC5917230 DOI: 10.1002/open.201800025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Complexity-generating chemical transformations that afford novel molecular scaffolds enriched in sp3 character are highly desired. Here, we present a highly stereoselective scaffold diversity synthesis approach that utilizes cascade double-annulation reactions of diverse pairs of zwitterionic and non-zwitterionic partners with 3-formylchromones to generate highly complex tetracyclic benzopyrones. Each pair of annulation partners adds to the common chroman-4-one scaffold to build two new rings, supporting up to four contiguous chiral centers that include an all-carbon quaternary center. Differently ring-fused benzopyrones display different biological activities, thus demonstrating their immense potential in medicinal chemistry and chemical biology research.
Collapse
Affiliation(s)
- Muthukumar G. Sankar
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn Str. 1144227DortmundGermany
| | - Sayantani Roy
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn Str. 1144227DortmundGermany
| | - Tuyen Thi Ngoc Tran
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn Str. 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University of DortmundOtto-Hahn Str. 644227DortmundGermany
| | - Kathrin Wittstein
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn Str. 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University of DortmundOtto-Hahn Str. 644227DortmundGermany
| | - Jonathan O. Bauer
- Faculty of Chemistry and Chemical BiologyTechnical University of DortmundOtto-Hahn Str. 644227DortmundGermany
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical BiologyTechnical University of DortmundOtto-Hahn Str. 644227DortmundGermany
| | - Slava Ziegler
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn Str. 1144227DortmundGermany
| | - Kamal Kumar
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn Str. 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University of DortmundOtto-Hahn Str. 644227DortmundGermany
| |
Collapse
|
22
|
Reaction of N-(3-oxoalkenyl)chloroacetamides with sodium p-toluenesulfinate – synthesis of 3-tosylpyridin-2(1Н)-ones. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2215-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Abstract
An overview of the highlights in total synthesis of natural products using iridium as a catalyst is given.
Collapse
Affiliation(s)
- Changchun Yuan
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- PR China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
24
|
Chicca A, Berg R, Jessen HJ, Marck N, Schmid F, Burch P, Gertsch J, Gademann K. Biological evaluation of pyridone alkaloids on the endocannabinoid system. Bioorg Med Chem 2017; 25:6102-6114. [DOI: 10.1016/j.bmc.2017.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
25
|
Seino H, Kondo T, Mochizuki C, Tokunaga K, Yamaguchi M, Sato M. Structural Determination, DFT Calculation, and Formation Mechanism of Ethyl 2-Cyano-3-alkoxypent-2-enoates Synthesized via Ru-Mediated Coupling Reaction between α,β-Unsaturated Acetals and Cyanoacetate. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Yao H, Liu J, Xu S, Zhu Z, Xu J. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov 2016; 12:121-140. [DOI: 10.1080/17460441.2016.1272757] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
27
|
Peters BK, Liu J, Margarita C, Rabten W, Kerdphon S, Orebom A, Morsch T, Andersson PG. Enantio- and Regioselective Ir-Catalyzed Hydrogenation of Di- and Trisubstituted Cycloalkenes. J Am Chem Soc 2016; 138:11930-5. [PMID: 27548029 DOI: 10.1021/jacs.6b07291] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A number of cyclic olefins were prepared and evaluated for the asymmetric hydrogenation reaction using novel N,P-ligated iridium imidazole-based catalysts (Crabtree type). The diversity of these cyclic olefins spanned those having little functionality to others bearing strongly coordinating substituents and heterocycles. Excellent enantioselectivities were observed both for substrates having little functionality (up to >99% ee) and for substrates possessing functional groups several carbons away from the olefin. Substrates having functionalities such as carboxyl groups, alcohols, or heterocycles in the vicinity of the C═C bond were hydrogenated in high enantiomeric excess (up to >99% ee). The hydrogenation was also found to be regioselective, and by controlling the reaction conditions, selective hydrogenation of one of two trisubstituted olefins can be achieved. Furthermore, trisubstituted olefins can be selectively hydrogenated in the presence of tetrasubstituted olefins.
Collapse
Affiliation(s)
- Byron K Peters
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| | - Jianguo Liu
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| | - Cristiana Margarita
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| | - Wangchuk Rabten
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| | - Sutthichat Kerdphon
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| | - Alexander Orebom
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| | - Thomas Morsch
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius-laboratory , 10691 Stockholm, Sweden
| |
Collapse
|
28
|
Crane EA, Gademann K. Synthetisch gewonnene Naturstofffragmente in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201505863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Erika A. Crane
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
| | - Karl Gademann
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
- Institut für Chemie; Universität Zürich; Winterthurerstrasse 190 CH-8057 Zürich Schweiz
| |
Collapse
|
29
|
Crane EA, Gademann K. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. Angew Chem Int Ed Engl 2016; 55:3882-902. [PMID: 26833854 PMCID: PMC4797711 DOI: 10.1002/anie.201505863] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.
Collapse
Affiliation(s)
- Erika A Crane
- Department of Chemistry, University of Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, Switzerland. .,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
30
|
Dash U, Sengupta S, Sim T. A Concise and Efficient Total Synthesis of Militarinone D. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Schröder P, Förster T, Kleine S, Becker C, Richters A, Ziegler S, Rauh D, Kumar K, Waldmann H. Neuritogenic militarinone-inspired 4-hydroxypyridones target the stress pathway kinase MAP4K4. Angew Chem Int Ed Engl 2015; 54:12398-403. [PMID: 25908259 DOI: 10.1002/anie.201501515] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/09/2022]
Abstract
Progressive loss and impaired restoration of neuronal activity are hallmarks of neurological diseases, and new small molecules with neurotrophic activity are in high demand. The militarinone alkaloids and structurally simplified analogues with 4-hydroxy-2-pyridone core structure induce pronounced neurite outgrowth, but their protein target has not been identified. Reported herein is the synthesis of a militarinone-inspired 4-hydroxy-2-pyridone collection, its investigation for enhancement of neurite outgrowth, and the discovery of the stress pathway kinase MAP4K4 as a target of the discovered neuritogenic pyridones. The most potent 4-hydroxy-2-pyridone is a selective ATP-competitive inhibitor of MAP4K4 but not of the other stress pathway related kinases, as proven by biochemical analysis and by a crystal structure of the inhibitor in complex with MAP4K4. The findings support the notion that MAP4K4 may be a new target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Schröder
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund (Germany).,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany)
| | - Tim Förster
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund (Germany).,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany)
| | - Stefan Kleine
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany)
| | - Christian Becker
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany)
| | - André Richters
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany)
| | - Slava Ziegler
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund (Germany)
| | - Daniel Rauh
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany)
| | - Kamal Kumar
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund (Germany).,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany)
| | - Herbert Waldmann
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund (Germany). .,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44221 Dortmund (Germany).
| |
Collapse
|
32
|
Schröder P, Förster T, Kleine S, Becker C, Richters A, Ziegler S, Rauh D, Kumar K, Waldmann H. Neuritogenic Militarinone-Inspired 4-Hydroxypyridones Target the Stress Pathway Kinase MAP4K4. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Gademann K. Copy, edit, and paste: natural product approaches to biomaterials and neuroengineering. Acc Chem Res 2015; 48:731-9. [PMID: 25719515 DOI: 10.1021/ar500435b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Progress in the chemical sciences has formed the world we live in, both on a macroscopic and on a nanoscopic scale. The last century witnessed the development of high performance materials that interact with humans on many layers, from clothing to construction, from media to medical devices. On a molecular level, natural products and their derivatives influence many biological processes, and these compounds have enormously contributed to the health and quality of living of humans. Although coatings of stone materials with oils or resins (containing natural products) have led to improved tools already millennia ago, in contrast today, natural product approaches to designer materials, that is, combining the best of both worlds, remain scarce. In this Account, we will summarize our recent research efforts directed to the generation of natural product functionalized materials, exploiting the strategy of "copy, edit, and paste with natural products". Natural products embody the wisdom of evolution, and only total synthesis is able to unlock the secrets enshrined in their molecular structure. We employ total synthesis ("copy") as a scientific approach to address problems related to molecular structure, the biosynthesis of natural products, and their bioactivity. Additionally, the fundamental desire to investigate the mechanism of action of natural products constitutes a key driver for scientific inquiry. In an emerging area of relevance to society, we have prepared natural products such as militarinone D that can stimulate neurite outgrowth and facilitate nerve regeneration. This knowledge obtained by synthetic organic chemistry on complex natural products can then be used to design structurally simplified compounds that retain the biological power of the parent natural product ("edit"). This process, sometimes referred to as function-oriented synthesis, allows obtaining derivatives with better properties, improving their chemical tractability and reducing the step count of the synthesis. Along these lines, we have demonstrated that militarinone D can be truncated to yield structurally simplified analogs with improved activity. Finally, with the goal of designing bioactive materials, we have immobilized functionally optimized, neuritogenic natural products ("paste"). These materials could facilitate nerve regeneration, act as nerve guidance conduits, or lead to new approaches in neuroengineering. Based on the surface-adhesive properties of electron-deficient catecholates and the knowledge gathered on neuritogenic natural product derivatives, two mechanistically different design principles have been applied to generate neuritogenic materials. In conclusion, natural products, and their functionally optimized analogs, present a large, mostly untapped reservoir of powerful modulators of biological systems, and their hybridization with materials can lead to new approaches in various fields, from biofilm prevention to neuroengineering.
Collapse
Affiliation(s)
- Karl Gademann
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, CH-4056 Basel, Switzerland
| |
Collapse
|
34
|
Grundler V, Gademann K. Direct arginine modification in native peptides and application to chemical probe development. ACS Med Chem Lett 2014; 5:1290-5. [PMID: 25516786 DOI: 10.1021/ml5003508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/27/2014] [Indexed: 01/31/2023] Open
Abstract
An efficient method for the direct labeling of the Arg guanidinium group in native peptides is reported. This straightforward procedure allows modifying the arginine moiety in peptides with various reporter groups, such as fluorophores, biotin, etc., under mild conditions in an operationally simple procedure. The scope of this method tolerates various functionalized amino acids such as His, Ser, Trp, Tyr, Glu, etc., while the only limitations uncovered so far are restricted to cysteine and free amine residues. The utility of this late-stage diversification method was demonstrated in direct labeling of leuprolide, a clinically used drug, for distribution monitoring in Daphnia, and in labeling of microcystin, a cyanobacterial toxin.
Collapse
Affiliation(s)
- Verena Grundler
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, 4056 Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Yang XW, Yang CP, Jiang LP, Qin XJ, Liu YP, Shen QS, Chen YB, Luo XD. Indole alkaloids with new skeleton activating neural stem cells. Org Lett 2014; 16:5808-11. [PMID: 25353160 DOI: 10.1021/ol5029223] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alstoscholarisines A-E (1-5), five unprecedented monoterpenoid indole alkaloids with 6/5/6/6/6 fused-bridge rings, were isolated from Alstonia scholaris. They promoted adult neuronal stem cells (NSCs) proliferation significantly, in which the most active one (1) functioned from a concentration of 0.1 μg/mL in a dosage-dependent manner. Furthermore, 1 enhanced NSC sphere formation and neurogenic fate commitment through activation of a Wnt signaling pathway and promoted NSC differentiation but did not affect proliferation of neuroblastoma cells.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Burch P, Schmid F, Gademann K. Neuritogenic surfaces using natural product analogs. Adv Healthc Mater 2014; 3:1415-9. [PMID: 24596342 DOI: 10.1002/adhm.201300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Indexed: 01/08/2023]
Abstract
Neuritogenic surfaces are generated by a simple dip-coating procedure, as glass slides are coated with a neurotrophin-like small organic molecule in the presence of a collagen matrix. The surfaces retain their biological activity for multiple cycles and the protocol is suitable for various substrates and coating conditions.
Collapse
Affiliation(s)
- Patrick Burch
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Fabian Schmid
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Karl Gademann
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 CH-4056 Basel Switzerland
| |
Collapse
|
37
|
Ding F, Leow ML, Ma J, William R, Liao H, Liu XW. Collective Synthesis of 4-Hydroxy-2-pyridone Alkaloids and Their Antiproliferation Activities. Chem Asian J 2014; 9:2548-54. [DOI: 10.1002/asia.201402466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 12/18/2022]
|
38
|
Hoecker J, Liffert R, Burch P, Wehlauch R, Gademann K. Caged retinoids as photoinducible activators: implications for cell differentiation and neurite outgrowth. Org Biomol Chem 2014; 11:3314-21. [PMID: 23538708 DOI: 10.1039/c3ob40106e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aiming to control neurite formation and navigate the axonal growth by an extrinsic guidance, we report on the design, synthesis and biological evaluation of caged retinoids. Agonists of RARβ have been temporarily blocked either by the [(α-methyl-2-nitropiperonyl)oxy]carbonyl (MeNPOC) group or by immobilization using nitrocatechol linkers on TiO2 particles. Release on demand has been achieved by release under UV irradiation, leading to the biologically active compounds, which have been shown to induce neuronal differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Johannes Hoecker
- Department of Chemistry, NCCR Chemical Biology, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Geerdink D, Buter J, van Beek TA, Minnaard AJ. Asymmetric total synthesis of a putative sex pheromone component from the parasitoid wasp Trichogramma turkestanica. Beilstein J Org Chem 2014; 10:761-6. [PMID: 24778730 PMCID: PMC3999798 DOI: 10.3762/bjoc.10.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
Virgin females of the parasitoid wasp Trichogramma turkestanica produce minute amounts of a sex pheromone, the identity of which has not been fully established. The enantioselective synthesis of a putative component of this pheromone, (6S,8S,10S)-4,6,8,10-tetramethyltrideca-2E,4E-dien-1-ol (2), is reported as a contribution to this identification. Catalytic asymmetric conjugate addition of methylmagnesium bromide and stereoselective Horner–Wadsworth–Emmons olefinations are used as the key steps, and 2 was obtained in 16 steps with an overall yield of 4.4%.
Collapse
Affiliation(s)
- Danny Geerdink
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Teris A van Beek
- Natural Products Chemistry Group, Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
40
|
Burch P, Chicca A, Gertsch J, Gademann K. Functionally Optimized Neuritogenic Farinosone C Analogs: SAR-Study and Investigations on Their Mode of Action. ACS Med Chem Lett 2014; 5:172-7. [PMID: 24900793 PMCID: PMC4027619 DOI: 10.1021/ml400435h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
Abstract
Several natural products derived from entomopathogenic fungi have been shown to initiate neuronal differentiation in the rat pheochromocytoma PC12 cell line. After the successful completion of the total synthesis program, the reduction of structural complexity while retaining biological activity was targeted. In this study, farinosone C served as a lead structure and inspired the preparation of small molecules with reduced complexity, of which several were able to induce neurite outgrowth. This allowed for the elaboration of a detailed structure-activity relationship. Investigations on the mode of action utilizing a computational similarity ensemble approach suggested the involvement of the endocannabinoid system as potential target for our analogs and also led to the discovery of four potent new endocannabinoid transport inhibitors.
Collapse
Affiliation(s)
- Patrick Burch
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Swiss
Federal Institute of Technology (EPFL), Chemical Synthesis Laboratory
(SB-ISIC-LSYNC), 1015 Lausanne, Switzerland
| | - Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Karl Gademann
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
41
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed Engl 2014; 53:956-87. [PMID: 24353244 PMCID: PMC3945720 DOI: 10.1002/anie.201302268] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| |
Collapse
|
42
|
Kiruthika SE, Perumal PT. One-pot four-component approach for the construction of dihydropyridines and dihydropyridinones using amines and activated alkynes. RSC Adv 2014. [DOI: 10.1039/c3ra45850d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
43
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophe Naturstoffe - ihre Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Ding F, William R, Leow ML, Chai H, Fong JZM, Liu XW. Directed Orthometalation and the Asymmetric Total Synthesis of N-Deoxymilitarinone A and Torrubiellone B. Org Lett 2013; 16:26-9. [DOI: 10.1021/ol402820d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Feiqing Ding
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ronny William
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Min Li Leow
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Hua Chai
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Jacqueline Zi Mei Fong
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Xue-Wei Liu
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
45
|
Synthesis of enantiomerically pure model compounds of the glucose-6-phosphate-T1-translocase inhibitors kodaistatins A–D. Inferences with regard to the stereostructure of the natural products. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.05.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Dakas PY, Parga JA, Höing S, Schöler HR, Sterneckert J, Kumar K, Waldmann H. Discovery of neuritogenic compound classes inspired by natural products. Angew Chem Int Ed Engl 2013; 52:9576-81. [PMID: 23733315 DOI: 10.1002/anie.201302045] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Pierre-Yves Dakas
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Dakas PY, Parga JA, Höing S, Schöler HR, Sterneckert J, Kumar K, Waldmann H. Discovery of Neuritogenic Compound Classes Inspired by Natural Products. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Highly Enantioselective Catalytic Synthesis of Neurite Growth-Promoting Secoyohimbanes. ACTA ACUST UNITED AC 2013; 20:500-9. [DOI: 10.1016/j.chembiol.2013.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/22/2022]
|
49
|
Hoecker J, Gademann K. Enantioselective Total Syntheses and Absolute Configuration of JBIR-02 and Mer-A2026B. Org Lett 2013; 15:670-3. [DOI: 10.1021/ol303502a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Hoecker
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
50
|
Burch P, Binaghi M, Scherer M, Wentzel C, Bossert D, Eberhardt L, Neuburger M, Scheiffele P, Gademann K. Total Synthesis of Gelsemiol. Chemistry 2013; 19:2589-91. [DOI: 10.1002/chem.201203746] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 01/20/2023]
|