1
|
Ngamnithiporn A, Welin ER, Pototschnig G, Stoltz BM. Evolution of a Synthetic Strategy toward the Syntheses of Bis-tetrahydroisoquinoline Alkaloids. Acc Chem Res 2024; 57:1870-1884. [PMID: 38874438 PMCID: PMC11223266 DOI: 10.1021/acs.accounts.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
ConspectusThe bis-tetrahydroisoquinoline (bis-THIQ) natural products represent a medicinally important class of isoquinoline alkaloids that exhibit broad biological activities with particularly potent antitumor properties, as exemplified by the two U.S. FDA approved molecules trabectidin and lurbinectedin. Accordingly, other members within the bis-THIQ family have emerged as prime targets for synthetic chemists, aiming to innovate an orthogonal chemical production of these compounds. With the ability of these complementary strategies to reliably and predictably manipulate molecular structures with atomic precision, this should allow the preparation of synthetic derivatives not existing in nature as new drug leads in the development of novel medicines with desired biological functions.Beyond the biological perspective, bis-THIQ natural products also possess intricate and unique structures, serving as a source of intellectual stimulation for synthetic organic chemists. Within our laboratory, we have developed an integrated program that combines reaction development and target-directed synthesis, leveraging the architecturally complex molecular framework of bis-THIQ natural products as a driving force for the advancement of novel reaction methodologies. In this Account, we unveil our synthetic efforts in a comprehensive story, describing how our synthetic strategy toward bis-THIQ natural products, specifically jorunnamycin A and jorumycin, has evolved over the course of our studies through our key transformations comprising (a) the direct functionalization of isoquinoline N-oxide to prepare the bis-isoquinoline (bis-IQ) intermediate, (b) the diastereoselective and enantioselective isoquinoline hydrogenation to forge the pentacyclic skeleton of the natural product, and (c) the late-stage oxygenation chemistry to adjust the oxidation states of the A- and E-rings. First, we detail our plan in utilizing the aryne annulation strategy to prepare isoquinoline fragments for the bis-THIQ molecules. Faced with unpromising results in the direct C-H functionalization of isoquinoline N-oxide, we lay out in this Account our rationale behind the design of each isoquinoline coupling partner to overcome these challenges. Additionally, we reveal the inspiration for our hydrogenation system, the setup of our pseudo-high-throughput screening, and the extension of the developed hydrogenation protocols to other simplified isoquinolines.In the context of non-natural bis-THIQ molecules, we have successfully adapted this tandem coupling/hydrogenation approach in the preparation of perfluorinated bis-THIQs, representing the first set of electron-deficient non-natural analogues. Finally, we include our unsuccessful late-stage oxygenation attempts prior to the discovery of the Pd-catalyzed C-O cross-coupling reaction. With this full disclosure of the chemistry developed for the syntheses of bis-THIQs, we hope our orthogonal synthetic tactics will provide useful information and serve as an inspiration for the future development of bis-THIQ pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | - Brian M. Stoltz
- The Warren and Katharine Schlinger
Laboratory for Chemistry and Chemical Engineering, Division of Chemistry
and Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Kikushima K, Komiyama K, Umekawa N, Yamada K, Kita Y, Dohi T. Silver-Catalyzed Coupling of Unreactive Carboxylates: Synthesis of α-Fluorinated O-Aryl Esters. Org Lett 2024; 26:5347-5352. [PMID: 38885467 DOI: 10.1021/acs.orglett.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
α-Fluorinated aryl esters pose a challenge in synthesis via O-arylation of α-fluorinated carboxylates owing to their low reactivities. This limitation has been addressed by combining a silver catalyst with aryl(trimethoxyphenyl)iodonium tosylates to access α-fluorinated aryl esters. We envision that the catalytic system involves high-valent aryl silver species generated via the oxidation of silver(I) salt. The present method provided a synthetic protocol for various α-fluorinated aryl esters including fluorinated analogs of drug derivatives.
Collapse
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Keina Komiyama
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Narumi Umekawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Kohei Yamada
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
3
|
Bone KI, Puleo TR, Bandar JS. Direct C-H Hydroxylation of N-Heteroarenes and Benzenes via Base-Catalyzed Halogen Transfer. J Am Chem Soc 2024; 146:9755-9767. [PMID: 38530788 PMCID: PMC11006572 DOI: 10.1021/jacs.3c14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Hydroxylated (hetero)arenes are valued in many industries as both key constituents of end products and diversifiable synthetic building blocks. Accordingly, the development of reactions that complement and address the limitations of existing methods for the introduction of aromatic hydroxyl groups is an important goal. To this end, we apply base-catalyzed halogen transfer (X-transfer) to enable the direct C-H hydroxylation of mildly acidic N-heteroarenes and benzenes. This protocol employs an alkoxide base to catalyze X-transfer from sacrificial 2-halothiophene oxidants to aryl substrates, forming SNAr-active intermediates that undergo nucleophilic hydroxylation. Key to this process is the use of 2-phenylethanol as an inexpensive hydroxide surrogate that, after aromatic substitution and rapid elimination, provides the hydroxylated arene and styrene byproduct. Use of simple 2-halothiophenes allows for C-H hydroxylation of 6-membered N-heteroarenes and 1,3-azole derivatives, while a rationally designed 2-halobenzothiophene oxidant extends the scope to electron-deficient benzene substrates. Mechanistic studies indicate that aromatic X-transfer is reversible, suggesting that the deprotonation, halogenation, and substitution steps operate in synergy, manifesting in unique selectivity trends that are not necessarily dependent on the most acidic aryl position. The utility of this method is further demonstrated through streamlined target molecule syntheses, examples of regioselectivity that contrast alternative C-H hydroxylation methods, and the scalable recycling of the thiophene oxidants.
Collapse
Affiliation(s)
- Kendelyn I. Bone
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Thomas R. Puleo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Laudadio G, Neigenfind P, Péter Á, Rubel CZ, Emmanuel MA, Oderinde MS, Ewing TEH, Palkowitz MD, Sloane JL, Gillman KW, Ridge D, Mandler MD, Bolduc PN, Nicastri MC, Zhang B, Clementson S, Petersen NN, Martín-Gago P, Mykhailiuk P, Engle KM, Baran PS. Nickel-Electrocatalytic Decarboxylative Arylation to Access Quaternary Centers. Angew Chem Int Ed Engl 2024; 63:e202314617. [PMID: 38181042 DOI: 10.1002/anie.202314617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
There is a pressing need, particularly in the field of drug discovery, for general methods that will enable direct coupling of tertiary alkyl fragments to (hetero)aryl halides. Herein a uniquely powerful and simple set of conditions for achieving this transformation with unparalleled generality and chemoselectivity is disclosed. This new protocol is placed in context with other recently reported methods, applied to simplify the routes of known bioactive building blocks molecules, and scaled up in both batch and flow. The role of pyridine additive as well as the mechanism of this reaction are interrogated through Cyclic Voltammetry studies, titration experiments, control reactions with Ni(0) and Ni(II)-complexes, and ligand optimization data. Those studies indicate that the formation of a BINAPNi(0) is minimized and the formation of an active pyridine-stabilized Ni(I) species is sustained during the reaction. Our preliminary mechanistic studies ruled out the involvement of Ni(0) species in this electrochemical cross-coupling, which is mediated by Ni(I) species via a Ni(I)-Ni(II)-Ni(III)-Ni(I) catalytic cycle.
Collapse
Affiliation(s)
- Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Philipp Neigenfind
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Áron Péter
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Camille Z Rubel
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Martins S Oderinde
- Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Jack L Sloane
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Kevin W Gillman
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Daniel Ridge
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research & Early Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Michael D Mandler
- Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | | | | | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | - Pablo Martín-Gago
- Research and Early Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Pavel Mykhailiuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Keary M Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Lin Z, Dhawa U, Hou X, Surke M, Yuan B, Li SW, Liou YC, Johansson MJ, Xu LC, Chao CH, Hong X, Ackermann L. Electrocatalyzed direct arene alkenylations without directing groups for selective late-stage drug diversification. Nat Commun 2023; 14:4224. [PMID: 37454167 DOI: 10.1038/s41467-023-39747-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Electrooxidation has emerged as an increasingly viable platform in molecular syntheses that can avoid stoichiometric chemical redox agents. Despite major progress in electrochemical C-H activations, these arene functionalizations generally require directing groups to enable the C-H activation. The installation and removal of these directing groups call for additional synthesis steps, which jeopardizes the inherent efficacy of the electrochemical C-H activation approach, leading to undesired waste with reduced step and atom economy. In sharp contrast, herein we present palladium-electrochemical C-H olefinations of simple arenes devoid of exogenous directing groups. The robust electrocatalysis protocol proved amenable to a wide range of both electron-rich and electron-deficient arenes under exceedingly mild reaction conditions, avoiding chemical oxidants. This study points to an interesting approach of two electrochemical transformations for the success of outstanding levels of position-selectivities in direct olefinations of electron-rich anisoles. A physical organic parameter-based machine learning model was developed to predict position-selectivity in electrochemical C-H olefinations. Furthermore, late-stage functionalizations set the stage for the direct C-H olefinations of structurally complex pharmaceutically relevant compounds, thereby avoiding protection and directing group manipulations.
Collapse
Affiliation(s)
- Zhipeng Lin
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Uttam Dhawa
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Xiaoyan Hou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Max Surke
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Binbin Yuan
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Shu-Wen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Yan-Cheng Liou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Li-Cheng Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Chen-Hang Chao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, PR China.
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
| |
Collapse
|
6
|
Meng G, Wang Z, Chan HSS, Chekshin N, Li Z, Wang P, Yu JQ. Dual-Ligand Catalyst for the Nondirected C-H Olefination of Heteroarenes. J Am Chem Soc 2023; 145:8198-8208. [PMID: 36975773 PMCID: PMC10173962 DOI: 10.1021/jacs.3c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Pd(II)-catalyzed nondirected C-H functionalization of heteroarenes is a significant challenge for the following reasons: poor reactivity of electron-deficient heterocycles and the unproductive coordination of Lewis basic nitrogen atoms. Existing methodologies using palladium catalysis often employ a large excess of heterocycle substrates to overcome these hurdles. Despite recent advances in nondirected functionalization of arenes that allow them to be used as limiting reagents, the reaction conditions are incompatible with electron-deficient heteroarenes. Herein we report a dual-ligand catalyst that enables Pd(II)-catalyzed nondirected C-H olefination of heteroarenes without using a large excess of substrate. In general, the use of 1-2 equiv of substrates was sufficient to obtain synthetically useful yields. The reactivity was rationalized by the synergy between two types of ligands: a bidentate pyridine-pyridone ligand promotes C-H cleavage; the monodentate heterocycle substrate acts as a second ligand to form a cationic Pd(II) complex that has high affinity for arenes. The proposed dual-ligand cooperation is supported by a combination of X-ray, kinetics, and control experiments.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Vijaykumar M, Pradhan C, Gonnade RG, Punji B. Palladium-Catalyzed Chemoselective Oxygenation of C(sp 2)-H and C(sp 3)-H Bonds in Isatins. Org Lett 2023; 25:1862-1867. [PMID: 36920045 DOI: 10.1021/acs.orglett.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The palladium-catalyzed chemoselective C(sp2)-H and C(sp3)-H bond oxygenation of substituted isatin derivatives is reported. This mild protocol exhibits the C5 C(sp2)-H oxygenation of isatins through electrophilic intermolecular C-H palladation in concentrated solutions using PhI(OAc)2 or Selectfluor as an oxidant, whereas it exhibits-N-CH3 C(sp3)-H oxygenation in dilute solutions via carbonyl-assisted intramolecular palladation in the presence of K2S2O8. This oxygenation reaction provides a direct and unified approach for synthesizing diverse oxygenated isatins with sensitive functionalities, including biorelevant compounds.
Collapse
Affiliation(s)
- Muniyappa Vijaykumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chandini Pradhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Benudhar Punji
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
8
|
Naksomboon K, Gómez-Bengoa E, Mehara J, Roithová J, Otten E, Fernández-Ibáñez MÁ. Mechanistic studies of the palladium-catalyzed S,O-ligand promoted C-H olefination of aromatic compounds. Chem Sci 2023; 14:2943-2953. [PMID: 36937590 PMCID: PMC10016329 DOI: 10.1039/d2sc06840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Pd-catalyzed C-H functionalization reactions of non-directed substrates have recently emerged as an attractive alternative to the use of directing groups. Key to the success of these transformations has been the discovery of new ligands capable of increasing both the reactivity of the inert C-H bond and the selectivity of the process. Among them, a new type of S,O-ligand has been shown to be highly efficient in promoting a variety of Pd-catalyzed C-H olefination reactions of non-directed arenes. Despite the success of this type of S,O-ligand, its role in the C-H functionalization processes is unknown. Herein, we describe a detailed mechanistic study focused on elucidating the role of the S,O-ligand in the Pd-catalyzed C-H olefination of non-directed arenes. For this purpose, several mechanistic tools, including isolation and characterization of reactive intermediates, NMR and kinetic studies, isotope effects and DFT calculations have been employed. The data from these experiments suggest that the C-H activation is the rate-determining step in both cases with and without the S,O-ligand. Furthermore, the results indicate that the S,O-ligand triggers the formation of more reactive Pd cationic species, which explains the observed acceleration of the reaction. Together, these studies shed light on the role of the S,O-ligand in promoting Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Kananat Naksomboon
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Enrique Gómez-Bengoa
- Department of Organic Chemistry I, Universidad País Vasco, UPV/EHU Apdo. 1072 20080 San Sebastian Spain
| | - Jaya Mehara
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - M Ángeles Fernández-Ibáñez
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
9
|
Monika, Sarkar A, Karmodak N, Dhar BB, Adhikari S. Bio-inspired Cu(II) amido-quinoline complexes as catalysts for aromatic C-H bond hydroxylation. Dalton Trans 2023; 52:540-545. [PMID: 36537082 DOI: 10.1039/d2dt03242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cu(II) complexes supported by tetradentate amido-quinoline acyclic ligands (L1 & L2) have been synthesized, characterized, and employed as catalysts for aromatic C-H hydroxylation using H2O2 as an oxidant in the absence of an external base with a high selectivity of around 90% for phenols via the non-radical pathway (TON ≥720). The KIE value, various spectroscopic studies and DFT calculation supported the involvement of Cu(II)-OOH species.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Shiv Nadar IoE, U.P. 201314, India.
| | - Aniruddha Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur 741246, India
| | | | | | - Sanjay Adhikari
- Faculty of Basic and Applied Sciences, Madhav University, Rajasthan 307026, India
| |
Collapse
|
10
|
Kong F, Chen S, Chen J, Liu C, Zhu W, Dickie DA, Schinski WL, Zhang S, Ess DH, Gunnoe TB. Cu(II) carboxylate arene C─H functionalization: Tuning for nonradical pathways. SCIENCE ADVANCES 2022; 8:eadd1594. [PMID: 36001664 PMCID: PMC9401614 DOI: 10.1126/sciadv.add1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
We report carbon-hydrogen acetoxylation of nondirected arenes benzene and toluene, as well as related functionalization with pivalate and 2-ethylhexanoate ester groups, using simple copper(II) [Cu(II)] salts with over 80% yield. By changing the ratio of benzene and Cu(II) salts, 2.4% conversion of benzene can be reached. Combined experimental and computational studies results indicate that the arene carbon-hydrogen functionalization likely occurs by a nonradical Cu(II)-mediated organometallic pathway. The Cu(II) salts used in the reaction can be isolated, recycled, and reused with little change in reactivity. In addition, the Cu(II) salts can be regenerated in situ using oxygen and, after the removal of the generated water, the arene carbon-hydrogen acetoxylation and related esterification reactions can be continued, which leads to a process that enables recycling of Cu(II).
Collapse
Affiliation(s)
- Fanji Kong
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Shusen Chen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Junqi Chen
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
11
|
Ren P, He Z, Xing T, Manar KK, Sampson J, Jin J, Wang L, Carrow BP. Synthesis of π‐Expanded Coumarins via Ligand‐Enabled Selective C–H Functionalization. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Ren
- Harbin Institute of Technology (Shenzhen) CHINA
| | - Zhijie He
- Harbin Institute of Technology Shenzhen CHINA
| | | | | | | | - Jian Jin
- Harbin Institute of Technology Shenzhen CHINA
| | - Long Wang
- BASF Advanced Chemical Co., Ltd CHINA
| | | |
Collapse
|
12
|
Kim J, Joo JM. Palladium‐catalyzed
C
H acetoxylation of arenes using a pyrazolonaphthyridine ligand. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jisu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Republic of Korea
| |
Collapse
|
13
|
Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123900. [PMID: 35745020 PMCID: PMC9230104 DOI: 10.3390/molecules27123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of polyvalent iodine compounds has piqued the interest of researchers due to their role as important and flexible reagents in synthetic organic chemistry, resulting in a broad variety of useful organic molecules. These chemicals have potential uses in various functionalization procedures due to their non-toxic and environmentally friendly properties. As they are also strong electrophiles and potent oxidizing agents, the use of hypervalent iodine reagents in palladium-catalyzed transformations has received a lot of attention in recent years. Extensive research has been conducted on the subject of C—H bond functionalization by Pd catalysis with hypervalent iodine reagents as oxidants. Furthermore, the iodine(III) reagent is now often used as an arylating agent in Pd-catalyzed C—H arylation or Heck-type cross-coupling processes. In this article, the recent advances in palladium-catalyzed oxidative cross-coupling reactions employing hypervalent iodine reagents are reviewed in detail.
Collapse
|
14
|
A study of the reactivity and transformations of Pd/NHC complexes in the reaction of oxidative C−H acetoxylation. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Lee J, Ju X, Lee M, Jiang Q, Jang H, Kim WS, Wu L, Williams S, Wang XJ, Zeng X, Payne J, Han ZS. Copper Catalyzed Regioselective and Stereospecific Aziridine Opening with Pyridyl Grignard Nucleophiles. Org Lett 2022; 24:2655-2659. [PMID: 35377668 DOI: 10.1021/acs.orglett.2c00703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper catalyzed regioselective and stereospecific coupling between aziridines and in situ generated pyridine Grignard reagents is reported. This method provides β-pyridylethylamines with diverse structures and functionalities from aziridines and iodopyridines. β-Pyridylethylamines are potential scaffolds for the synthesis of biologically active compounds often found in pharmaceuticals. The synthesis of challenging chiral dihydroazaindoles was also achieved through mild one-pot reaction conditions via aziridine opening followed by nucleophilic cyclization.
Collapse
Affiliation(s)
- Jaehee Lee
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Xuan Ju
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Miseon Lee
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Qi Jiang
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Hwanjong Jang
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Wan Shin Kim
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Linglin Wu
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Suja Williams
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Xiao-Jun Wang
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Xingzhong Zeng
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Jenna Payne
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Zhengxu S Han
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| |
Collapse
|
16
|
Sakakibara Y, Murakami K, Itami K. C-H Acyloxylation of Polycyclic Aromatic Hydrocarbons. Org Lett 2022; 24:602-607. [PMID: 34994201 DOI: 10.1021/acs.orglett.1c04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C-H acyloxylation of polycyclic aromatic hydrocarbons (PAHs) is described. This reaction constructs aryl acyloxylate scaffolds from PAHs with equimolar hypervalent iodine compounds under mild reaction conditions. Interestingly, the blue light irradiation accelerated this transformation. Additionally, the synthesis of structurally new symmetric and unsymmetric diaroyloxylated fluoranthenes was accomplished with a ruthenium photoredox catalyst.
Collapse
Affiliation(s)
- Yota Sakakibara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuin, Sanda, Hyogo 669-1337, Japan.,JST-PRESTO, 7 Gobancho, Chiyoda, Tokyo 102-0076, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
17
|
Mandal T, Yadav S, Choudhury J. Steric effect of NHC ligands in Pd(II)–NHC-catalyzed non-directed C–H acetoxylation of simple arenes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Wedi P, Farizyan M, Bergander K, Mück-Lichtenfeld C, van Gemmeren M. Mechanism of the Arene-Limited Nondirected C-H Activation of Arenes with Palladium*. Angew Chem Int Ed Engl 2021; 60:15641-15649. [PMID: 33998116 PMCID: PMC8361776 DOI: 10.1002/anie.202105092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Indexed: 01/11/2023]
Abstract
Recently palladium catalysts have been discovered that enable the directing-group-free C-H activation of arenes without requiring an excess of the arene substrate, thereby enabling methods for the late-stage modification of complex organic molecules. The key to success has been the use of two complementary ligands, an N-acyl amino acid and an N-heterocycle. Detailed experimental and computational mechanistic studies on the dual-ligand-enabled C-H activation of arenes have led us to identify the catalytically active species and a transition state model that explains the exceptional activity and selectivity of these catalysts. These findings are expected to be highly useful for further method development using this powerful class of catalysts.
Collapse
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Mirxan Farizyan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
19
|
Wedi P, Farizyan M, Bergander K, Mück‐Lichtenfeld C, Gemmeren M. Mechanismus der Aren‐limitierten, nicht‐dirigierten C‐H‐Aktivierung von Arenen mit Palladium**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Mirxan Farizyan
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| |
Collapse
|
20
|
Zhang Q, Xie X, Peng J, Chen F, Ma J, Li C, Liu H, Wang D, Wang J. Direct C4-Acetoxylation of Tryptophan and Tryptophan-Containing Peptides via Palladium(II)-Catalyzed C-H Activation. Org Lett 2021; 23:4699-4704. [PMID: 34060854 DOI: 10.1021/acs.orglett.1c01434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient regioselective palladium(II)-catalyzed C(sp2)-H 4-acetoxylation of tryptophan and tryptophan-containing peptides is described. This transformation achieves the direct construction of C-O bonds at the tryptophan C4-position and features good functional group tolerance. The 4-hydroxyl compound was obtained by removing acetyl after C4-acetoxylation of tryptophan derivatives and tryptophan-containing dipeptides. This method provides a novel strategy for the synthesis of 4-substituted tryptophan derivatives and modification of tryptophan-containing peptides.
Collapse
Affiliation(s)
- Qiyu Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jingjing Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Feiyang Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jinyu Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Dechuan Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
21
|
Jambu S, Shambhavi CN, Jeganmohan M. Aerobic Oxidative C-H Olefination of Arylamides with Unactivated Olefins via a Rh(III)-Catalyzed C-H Activation. Org Lett 2021; 23:2964-2970. [PMID: 33818094 DOI: 10.1021/acs.orglett.1c00646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient Rh(III)-catalyzed aerobic oxidative C-H alkenylation of arylamides with unactivated alkenes is described. The olefination reaction was compatible with various substituted arylamides including primary, secondary, and tertiary as well as functionalized unactivated olefins. Meanwhile, ortho mono/bis-alkylated arylamides were synthesized in the reaction of arylamides with norbornene. In the alkenylation reaction, molecular oxygen along with organic acid was used to regenerate the active catalyst for the next catalytic cycle. A possible reaction mechanism involving C-H activation/insertion/β-hydride elimination followed by aerobic oxidation was proposed and supported by the deuterium labeling studies.
Collapse
Affiliation(s)
- Subramanian Jambu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | | | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
22
|
Mackey K, Jones DJ, Pardo LM, McGlacken GP. Quinoline Ligands Improve the Classic Direct C−H Functionalisation/Intramolecular Cyclisation of Diaryl Ethers to Dibenzofurans. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Katrina Mackey
- School of Chemistry University College Cork T12 YN60 Cork Ireland
- Analytical and Biological Chemistry Research Facility (ABCRF) University College Cork T12 YN60 Cork Ireland
| | - David J. Jones
- School of Chemistry University College Cork T12 YN60 Cork Ireland
- Analytical and Biological Chemistry Research Facility (ABCRF) University College Cork T12 YN60 Cork Ireland
| | - Leticia M. Pardo
- School of Chemistry University College Cork T12 YN60 Cork Ireland
- Analytical and Biological Chemistry Research Facility (ABCRF) University College Cork T12 YN60 Cork Ireland
| | - Gerard P. McGlacken
- School of Chemistry University College Cork T12 YN60 Cork Ireland
- Analytical and Biological Chemistry Research Facility (ABCRF) University College Cork T12 YN60 Cork Ireland
| |
Collapse
|
23
|
Zheng W, Chen X, Chen F, He Z, Zeng Q. Syntheses and Transformations of Sulfoximines. CHEM REC 2020; 21:396-416. [DOI: 10.1002/tcr.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Xianlie Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Feng Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Ze He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| |
Collapse
|
24
|
Kumari S, Muthuramalingam S, Dhara AK, Singh UP, Mayilmurugan R, Ghosh K. Cu(I) complexes obtained via spontaneous reduction of Cu(II) complexes supported by designed bidentate ligands: bioinspired Cu(I) based catalysts for aromatic hydroxylation. Dalton Trans 2020; 49:13829-13839. [PMID: 33001072 DOI: 10.1039/d0dt02413a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper(i) complexes [Cu(L1-7)2](ClO4) (1-7) of bidentate ligands (L1-L7) have been synthesized via spontaneous reduction and characterized as catalysts for aromatic C-H activation using H2O2 as the oxidant. The single crystal X-ray structure of 1 exhibited a distorted tetrahedral geometry. All the copper(i) complexes catalyzed direct hydroxylation of benzene to form phenol with good selectivity up to 98%. The determined kinetic isotope effect (KIE) values, 1.69-1.71, support the involvement of a radical type mechanism. The isotope-labeling experiments using H218O2 showed 92% incorporation of 18O into phenol and confirm that H2O2 is the key oxygen supplier. Overall, the catalytic efficiencies of the complexes are strongly influenced by the electronic and steric factor of the ligand, which is fine-tuned by the ligand architecture. The benzene hydroxylation reaction possibly proceeded via a radical mechanism, which was confirmed by the addition of radical scavengers (TEMPO) to the catalytic reaction that showed a reduction in phenol formation.
Collapse
Affiliation(s)
- Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Ashish Kumar Dhara
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - U P Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| |
Collapse
|
25
|
Shetgaonkar SE, Singh FV. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Front Chem 2020; 8:705. [PMID: 33134246 PMCID: PMC7553084 DOI: 10.3389/fchem.2020.00705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Hypervalent iodine compounds are valuable and versatile reagents in synthetic organic chemistry, generating a diverse array of useful organic molecules. Owing to their non-toxic and environmentally friendly features, these reagents find potential applications in various oxidative functionalization reactions. In recent years, the use of hypervalent iodine reagents in palladium-catalyzed transformations has been widely studied as they are strong electrophiles and powerful oxidizing agents. For instance, extensive work has been carried out in the field of C–H bond functionalization via Pd-catalysis using hypervalent iodine reagents as oxidants. In addition, nowadays, iodine(III) reagents have been frequently employed as arylating agents in Pd-catalyzed C–H arylation or Heck-type cross-coupling reactions. In this review, recent advancements in the area of palladium-catalyzed oxidative cross-coupling reactions using hypervalent iodine reagents are summarized in detail.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| | - Fateh V Singh
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
26
|
Wang YJ, Yuan CH, Chu DZ, Jiao L. Regiocontrol in the oxidative Heck reaction of indole by ligand-enabled switch of the regioselectivity-determining step. Chem Sci 2020; 11:11042-11054. [PMID: 34094351 PMCID: PMC8162380 DOI: 10.1039/d0sc02246b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/13/2020] [Indexed: 11/22/2022] Open
Abstract
Efficient control of regioselectivity is a key concern in transition-metal-catalyzed direct C-H functionalization reactions. Various strategies for regiocontrol have been established by tuning the selectivity of the C-H activation step as a common mode. Herein, we present our study on an alternative mode of regiocontrol, in which the selectivity of the C-H activation step is no longer a key concern. We found that, in a reaction where the C-H activation step exhibits a different regio-preference from the subsequent functionalization step, a ligand-enabled switch of the regioselectivity-determining step could provide efficient regiocontrol. This mode has been exemplified by the Pd(ii)-catalyzed aerobic oxidative Heck reaction of indoles, in which a ligand-controlled C3-/C2-selectivity was achieved for the first time by the development of sulfoxide-2-hydroxypyridine (SOHP) ligands.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - Chen-Hui Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - De-Zhao Chu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| |
Collapse
|
27
|
Chen H, Farizyan M, Ghiringhelli F, van Gemmeren M. Sterically Controlled C-H Olefination of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:12213-12220. [PMID: 32267990 PMCID: PMC7384109 DOI: 10.1002/anie.202004521] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 01/06/2023]
Abstract
The regioselective functionalization of heteroarenes is a highly attractive synthetic target due to the prevalence of multiply substituted heteroarenes in nature and bioactive compounds. Some substitution patterns remain challenging: While highly efficient methods for the C2-selective olefination of 3-substituted five-membered heteroarenes have been reported, analogous methods to access the 5-olefinated products have remained limited by poor regioselectivities and/or the requirement to use an excess of the valuable heteroarene starting material. Herein we report a sterically controlled C-H olefination using heteroarenes as the limiting reagent. The method enables the highly C5-selective olefination of a wide range of heteroarenes and is shown to be useful in the context of late-stage functionalization.
Collapse
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Mirxan Farizyan
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Francesca Ghiringhelli
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Manuel van Gemmeren
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
28
|
Chen H, Farizyan M, Ghiringhelli F, Gemmeren M. Sterically Controlled C−H Olefination of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Mirxan Farizyan
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Francesca Ghiringhelli
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
29
|
Muthuramalingam S, Anandababu K, Velusamy M, Mayilmurugan R. Benzene Hydroxylation by Bioinspired Copper(II) Complexes: Coordination Geometry versus Reactivity. Inorg Chem 2020; 59:5918-5928. [DOI: 10.1021/acs.inorgchem.9b03676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
30
|
Hao HY, Mao YJ, Xu ZY, Lou SJ, Xu DQ. Selective Cross-Dehydrogenative C(sp 3)-H Arylation with Arenes. Org Lett 2020; 22:2396-2402. [PMID: 32124610 DOI: 10.1021/acs.orglett.0c00588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective C(sp3)-C(sp2) bond construction is of central interest in chemical synthesis. Despite the success of classic cross-coupling reactions, the cross-dehydrogenative coupling between inert C(sp3)-H and C(sp2)-H bonds represents an attractive alternative toward new C(sp3)-C(sp2) bonds. Herein, we establish a selective inter- and intramolecular C(sp3)-H arylation of alcohols with nondirected arenes that thereby provides a general pathway to access a wide range of β-arylated alcohols, including tetrahydronaphthalen-2-ols and benzopyran-3-ols, with high to excellent chemo- and regioselectivity.
Collapse
Affiliation(s)
- Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
31
|
Carrow BP, Sampson J, Wang L. Base-Assisted C-H Bond Cleavage in Cross-Coupling: Recent Insights into Mechanism, Speciation, and Cooperativity. Isr J Chem 2020; 60:230-258. [PMID: 32669731 PMCID: PMC7363398 DOI: 10.1002/ijch.201900095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023]
Abstract
This review analyzes recent mechanistic studies that have provided new insights into how the structure of a metal complex influences the rate and selectivity of base-assisted C-H cleavage. Partitioning a broader mechanistic continuum into classes delimited by the polarization between catalyst and substrate during C-H cleavage is postulated as a method to identify catalysts favoring electrophilic or nucleophilic reactivity patterns, which may be predictive based on structural features of the metal complex (i.e., oxidation state, d-electron count, charge). Multi-metallic cooperativity and polynuclear speciation also provide new avenues to affect energy barriers for C-H cleavage and site selectivity beyond the limitations of single metal catalysts. An improved understanding of mechanistic nuances and structure-activity relationships on this important bond activation step carries important implications for efficiency and controllable site selectivity in non-directed C-H functionalization.
Collapse
Affiliation(s)
- Brad P Carrow
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jessica Sampson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Long Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Anandababu K, Muthuramalingam S, Velusamy M, Mayilmurugan R. Single-step benzene hydroxylation by cobalt(ii) catalysts via a cobalt(iii)-hydroperoxo intermediate. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02601k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cobalt(ii) complexes reported as efficient and selective catalysts for single-step phenol formation from benzene using H2O2. The catalysis proceeds likely via cobalt(iii)-hydroperoxo species.
Collapse
Affiliation(s)
- Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Marappan Velusamy
- Department of Chemistry
- North Eastern Hill University
- Shillong-793022
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| |
Collapse
|
33
|
Dai C, Han Y, Liu L, Huang ZB, Shi DQ, Zhao Y. Palladium-catalyzed ortho-selective C–H hydroxylation of carboxybenzyl-protected benzylamines. Org Chem Front 2020. [DOI: 10.1039/c9qo01523j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient approach to synthesize o-hydroxybenzylamine via Pd-catalyzed hydroxylation of benzylamine with a removable Cbz-amide as the directing group was developed.
Collapse
Affiliation(s)
- Chenyang Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi Han
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lingling Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhi-Bin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
34
|
Gupta M, Kumar S, Kumar P, Kumar Singh A, Bahadur V, K. Singh B. N‐Directed Pd‐Catalyzed Direct
ortho
‐Acetoxylation and
ortho
‐
tert
‐Butoxylation of 2‐Phenyl‐4
H
‐benzo[
d
][1,3]oxazin‐4‐ones via C‐H Activation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohit Gupta
- Department of chemistryUniversity of DelhiBio-organic Research LaboratoryDepartment of Chemistry Delhi- 110007 India
- Department of ChemistryL.N.M.S College, Birpur Bihar- 854340 India
| | - Sandeep Kumar
- Department of chemistryUniversity of DelhiBio-organic Research LaboratoryDepartment of Chemistry Delhi- 110007 India
| | - Prashant Kumar
- Department of chemistryUniversity of DelhiBio-organic Research LaboratoryDepartment of Chemistry Delhi- 110007 India
- Department of ChemistrySRM University, Delhi-NCR Sonepat Haryana- 131029
| | - Amit Kumar Singh
- Department of chemistryUniversity of DelhiBio-organic Research LaboratoryDepartment of Chemistry Delhi- 110007 India
| | - Vijay Bahadur
- Department of chemistryUniversity of DelhiBio-organic Research LaboratoryDepartment of Chemistry Delhi- 110007 India
- Department of ChemistrySRM University, Delhi-NCR Sonepat Haryana- 131029
| | - Brajendra K. Singh
- Department of chemistryUniversity of DelhiBio-organic Research LaboratoryDepartment of Chemistry Delhi- 110007 India
| |
Collapse
|
35
|
Mondal A, Chen H, Flämig L, Wedi P, van Gemmeren M. Sterically Controlled Late-Stage C–H Alkynylation of Arenes. J Am Chem Soc 2019; 141:18662-18667. [DOI: 10.1021/jacs.9b10868] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arup Mondal
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hao Chen
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lea Flämig
- Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Philipp Wedi
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Manuel van Gemmeren
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
36
|
Majeed MH, Shayesteh P, Tunå P, Persson AR, Gritcenko R, Wallenberg LR, Ye L, Hulteberg C, Schnadt J, Wendt OF. Directed C-H Halogenation Reactions Catalysed by Pd II Supported on Polymers under Batch and Continuous Flow Conditions. Chemistry 2019; 25:13591-13597. [PMID: 31418957 DOI: 10.1002/chem.201902949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Indexed: 12/21/2022]
Abstract
A new generation of N-heterocyclic carbene palladium(II) complexes containing vinyl groups in different positions in the backbone of the N-heterocycle have been developed. The fully characterised monomers were copolymerised with divinylbenzene to fabricate robust polymer supported NHC-PdII complexes and these polymers were applied as heterogeneous catalysts in directed C-H halogenation of arenes with a pyridine-type directing group. The catalysts demonstrated medium-high catalytic activity with up to 90 % conversion and 100 % selectivity in chlorination. They are heterogeneous and recyclable (at least six times) with no significant leaching of palladium in batch mode catalysis. The best catalyst was also applied under continuous flow conditions where it disclosed an exceptional activity (90 % conversion) and 100 % selectivity for the mono-halogenated product for at least six days, with no leaching of palladium, no loss of activity and an ability to maintain the original oxidation state of PdII .
Collapse
Affiliation(s)
- Maitham H Majeed
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Payam Shayesteh
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Per Tunå
- Department of Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Axel R Persson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.,National Centre for High Resolution Electron Microscopy (nCHREM), Lund University, Box 124, 221 00, Lund, Sweden
| | - Roman Gritcenko
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - L Reine Wallenberg
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.,National Centre for High Resolution Electron Microscopy (nCHREM), Lund University, Box 124, 221 00, Lund, Sweden
| | - Lei Ye
- Centre for Applied Life Sciences, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Christian Hulteberg
- Department of Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Ola F Wendt
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| |
Collapse
|
37
|
Wang L, Carrow BP. Oligothiophene Synthesis by a General C-H Activation Mechanism: Electrophilic Concerted Metalation-Deprotonation ( eCMD). ACS Catal 2019; 9:6821-6836. [PMID: 32704402 DOI: 10.1021/acscatal.9b01195] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative C-H/C-H coupling is a promising synthetic route for the streamlined construction of conjugated organic materials for optoelectronic applications. Broader adoption of these methods is nevertheless hindered by the need for catalysts that excel in forging core semiconductor motifs, such as ubiquitous oligothiophenes, with high efficiency in the absence of metal reagents. We report a (thioether)Pd-catalyzed oxidative coupling method for the rapid assembly of both privileged oligothiophenes and challenging hindered cases, even at low catalyst loading under Ag- and Cu-free conditions. A combined experimental and computational mechanistic study was undertaken to understand how a simple thioether ligand, MeS(CH2)3SO3Na, leads to such potent reactivity toward electron-rich substrates. The consensus from these data is that a concerted, base-assisted C-H cleavage transition state is operative, but thioether coordination to Pd is associated with decreased synchronicity (bond formation exceeding bond breaking) versus the "standard" concerted metalation-deprotonation (CMD) model that was formalized by Fagnou in direct arylation reaction. Enhanced positive charge build-up on the substrate results from this perturbation, which rationalizes experimental trends strongly favoring π-basic sites. The term electrophilic CMD (eCMD) is introduced to distinguish this mechanism from the standard model, even though both mechanisms locate in a broad concerted continuum. More O'Ferrall-Jencks analysis further suggests eCMD should be a general mechanism manifested by many metal complexes. A preliminary classification of complexes into those favoring eCMD or standard CMD is proposed, which should be informative for studies toward tunable catalyst-controlled reactivity.
Collapse
Affiliation(s)
- Long Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Brad P. Carrow
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Beyzaie N, Tayyari SF, Vakili M, Beyramabadi SA. Quantum chemical study of the mechanism of the palladium-catalysed C−H acetoxylation of benzene. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.1177/1468678319830487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the mechanism of the palladium-catalysed acetoxylation of benzene C-H has been studied theoretically in detail. Based on experimental studies, a four-step mechanism for this reaction had been proposed, that is, C−H activation of benzene is the rate-determining step which forms an intermediate ( k1 pathway) which is subsequently oxidized to produce a high-valent Pd intermediate ( k2 pathway). Using quantum chemical calculations, all pathways were investigated, and the activation energy, activation enthalpy and activation Gibbs free energy for all steps were calculated and compared with each other. It was determined that the RDS proceeds through a square complex instead of a T-shaped complex. The activation energy related to the k2 pathway is higher than that of the RDS, and therefore, a new mechanism is proposed.
Collapse
Affiliation(s)
- Nazanin Beyzaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Vakili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
39
|
Lee J, Park HJ, Joo JM, Hwang DH. Synthesis and Characterization of DPP-Based Conjugated Polymers via Dehydrogenative Direct Alkenylation Polycondensation. Macromol Res 2019. [DOI: 10.1007/s13233-019-7070-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Chen H, Mondal A, Wedi P, van Gemmeren M. Dual Ligand-Enabled Nondirected C–H Cyanation of Arenes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04639] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Arup Mondal
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Philipp Wedi
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Manuel van Gemmeren
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
41
|
|
42
|
Muthuramalingam S, Anandababu K, Velusamy M, Mayilmurugan R. One step phenol synthesis from benzene catalysed by nickel(ii) complexes. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01471c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nickel(ii)complexes of N4-ligands are reported as efficient catalysts for direct benzene hydroxylation via bis(μ-oxo)dinickel(iii) intermediate species. The exclusive phenol formation is achieved with a yield of 41%.
Collapse
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| | - Marappan Velusamy
- Department of Chemistry
- North Eastern Hill University
- Shillong-793022
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
- India
| |
Collapse
|
43
|
Li Z, Duan W. Palladium‐Catalyzed C−H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4‐Chlorine Migration. Angew Chem Int Ed Engl 2018; 57:16041-16045. [DOI: 10.1002/anie.201808866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Zhen Li
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
| | - Wei‐Liang Duan
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
44
|
Majeed MH, Shayesteh P, Persson AR, Wallenberg LR, Schnadt J, Wendt OF. A PdII
Carbene Complex with Anthracene Side-Arms for π-Stacking on Reduced Graphene Oxide (rGO): Activity towards Undirected C-H Oxygenation of Arenes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maitham H. Majeed
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Payam Shayesteh
- Division of Synchrotron Radiation Research; Department of Physics; Lund University; Box 118 221 00 Lund Sweden
| | - Axel R. Persson
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
- National Center for High Resolution Electron Microscopy and NanoLund; Lund University; Box 124 221 00 Lund Sweden
| | - L. Reine Wallenberg
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
- National Center for High Resolution Electron Microscopy and NanoLund; Lund University; Box 124 221 00 Lund Sweden
| | - Joachim Schnadt
- Division of Synchrotron Radiation Research; Department of Physics; Lund University; Box 118 221 00 Lund Sweden
| | - Ola F. Wendt
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| |
Collapse
|
45
|
Abstract
Synthetic methods for oxidative aromatic C-O bond formation are sparse, despite their demand in metabolite synthesis for drug discovery and development. We report a novel methodology for late-stage C-O bond formation of arenes. The reaction proceeds with excellent functional group tolerance even for highly functionalized substrates. The resulting aryl mesylates provide access to potential human metabolites of pharmaceuticals, and may be used directly to install a C-F bond to block metabolic hotspots. A charge-transfer interaction between the reagent bis(methanesulfonyl) peroxide and the substrate arenes may be relevant for the chemoselective functionalization of arenes over other functional groups.
Collapse
Affiliation(s)
- Jonas Börgel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Lalita Tanwar
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Florian Berger
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
46
|
Li Z, Duan W. Palladium‐Catalyzed C−H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4‐Chlorine Migration. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Li
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
| | - Wei‐Liang Duan
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
47
|
Jia WL, Fernández-Ibáñez MÁ. Ligand-Enabled γ-C(sp3)-H Acetoxylation of Triflyl-Protected Amines. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wen-Liang Jia
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández-Ibáñez
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
48
|
Han JN, Du C, Zhu X, Wang ZL, Zhu Y, Chu ZY, Niu JL, Song MP. Cobalt-catalyzed peri-selective alkoxylation of 1-naphthylamine derivatives. Beilstein J Org Chem 2018; 14:2090-2097. [PMID: 30202462 PMCID: PMC6122339 DOI: 10.3762/bjoc.14.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
A cobalt-catalyzed C(sp2)-H alkoxylation of 1-naphthylamine derivatives has been disclosed, which represents an efficient approach to synthesize aryl ethers with broad functional group tolerance. It is noteworthy that secondary alcohols, such as hexafluoroisopropanol, isopropanol, isobutanol, and isopentanol, were well tolerated under the current catalytic system. Moreover, a series of biologically relevant fluorine-aryl ethers were easily obtained under mild reaction conditions after the removal of the directing group.
Collapse
Affiliation(s)
- Jiao-Na Han
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Cong Du
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xinju Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zheng-Long Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yue Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhao-Yang Chu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jun-Long Niu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Mao-Ping Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
49
|
Mei Q, Yang Y, Liu H, Li S, Liu H, Han B. A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers. SCIENCE ADVANCES 2018; 4:eaaq0266. [PMID: 29795781 PMCID: PMC5959316 DOI: 10.1126/sciadv.aaq0266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/02/2018] [Indexed: 05/24/2023]
Abstract
Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C-O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies.
Collapse
Affiliation(s)
- Qingqing Mei
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences (CAS) Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Youdi Yang
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences (CAS) Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hangyu Liu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences (CAS) Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences (CAS) Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences (CAS) Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences (CAS) Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
50
|
Cabrera PJ, Lee M, Sanford MS. Second-Generation Palladium Catalyst System for Transannular C-H Functionalization of Azabicycloalkanes. J Am Chem Soc 2018; 140:5599-5606. [PMID: 29652497 PMCID: PMC5956530 DOI: 10.1021/jacs.8b02142] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article describes the development of a second-generation catalyst system for the transannular C-H functionalization of alicyclic amines. Pyridine- and quinoline-carboxylate ligands are shown to be highly effective for increasing the reaction rate, yield, and scope of Pd-catalyzed transannular C-H arylation reactions of azabicyclo[3.1.0]hexane, azabicyclo[3.1.1]heptane, azabicyclo[3.2.1]octane, and piperidine derivatives. Mechanistic studies reveal that the pyridine/quinoline-carboxylates play a role in impeding both reversible and irreversible catalyst decomposition pathways. These ligands enable the first reported examples of the transannular C-H arylation of the ubiquitous tropane, 7-azanorbornane, and homotropane cores. Finally, the pyridine/quinoline-carboxylates are shown to promote both transannular C-H arylation and transannular C-H dehydrogenation on a homotropane substrate.
Collapse
|